| B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 1983 | 3.1.6.1, 3.1.6.2, 3.1.6.3 | 1995 | 3.1.6.35, 3.1.6.36, 3.1.6.37 |
| 1984 | 3.1.6.4, 3.1.6.5 | 1996 | 3.1.6.38, 3.1.6.39, 3.1.6.40, 3.1.6.41 |
| 1985 | 3.1.6.6 | 1997 | 3.1.6.42, 3.1.6.43, 3.1.6.44, 3.1.6.45, 3.1.6.46, 3.1.6.47, 3.1.6.48, 3.1.6.49, 3.1.6.50, 3.1.6.51, 3.1.6.52, 3.1.6.53 |
| 1988 | 3.1.6.7, 3.1.6.8, 3.1.6.9 | 1998 | 3.1.6.54, 3.1.6.55, 3.1.6.56, 3.1.6.57, 3.1.6.58, 3.1.6.59 |
| 1989 | 3.1.6.10, 3.1.6.11, 3.1.6.12, 3.1.6.13 | 1999 | 3.1.6.60, 3.1.6.61, 3.1.6.62, 3.1.6.63, 3.1.6.64, 3.1.6.65, 3.1.6.66, 3.1.6.67 |
| 1990 | 3.1.6.14, 3.1.6.15, 3.1.6.16, 3.1.6.17 | 2000 | 3.1.6.68, 3.1.6.69, 3.1.6.70, 3.1.6.71, 3.1.6.72, 3.1.6.73, 3.1.6.74 |
| 1991 | 3.1.6.18 | 2001 | 3.1.6.75, 3.1.6.76, 3.1.6.77, 3.1.6.78, 3.1.6.79 |
| 1992 | 3.1.6.19, 3.1.6.20, 3.1.6.21, 3.1.6.22 | 2002 | 3.1.6.80, 3.1.6.81, 3.1.6.82, 3.1.6.83 |
| 1993 | 3.1.6.23, 3.1.6.24, 3.1.6.25, 3.1.6.26, 3.1.6.27 | 3d model | 2.4.6 |
| 1994 | 3.1.6.28, 3.1.6.29, 3.1.6.30, 3.1.6.31, 3.1.6.32, 3.1.6.33, 3.1.6.34 |
| ab initio | 2.1.1 | analysis | 3.1.6.5 |
| Ab initio folding | 3.1.6.60 | Analysis | 3.1.6.81 |
| ab initio prediction | 3.1.6.32 | Analytical Molecular Surface | 3.1.6.38 |
| Abagyan | 3.1.6.1, 3.1.6.11, 3.1.6.12, 3.1.6.13, 3.1.6.14, 3.1.6.15, 3.1.6.19, 3.1.6.2, 3.1.6.20, 3.1.6.21, 3.1.6.23, 3.1.6.28, 3.1.6.3, 3.1.6.30, 3.1.6.33, 3.1.6.4, 3.1.6.45, 3.1.6.46, 3.1.6.49, 3.1.6.51, 3.1.6.60, 3.1.6.7, 3.1.6.75 | anchorage | 3.1.6.59 |
| ABP | 3.1.6.59 | Andrew Bordner | 9.1.3 |
| abstracts | 3, 3.2 | Andrew Orry | 9.1.10 |
| acceleration | 3.1.6.6 | Anomalous | 3.1.6.8 |
| Active Site CD59 | 3.1.6.44 | Antibodies against TRAP | 3.1.6.70 |
| adenine-thymine | 3.1.6.8 | anticholera toxin antibody using internal coordinate mechanics | 3.1.6.64 |
| administrative | 9.2 | appearing | 3.1.6.2 |
| administrative assistant | 9.1 | applications | 3.1.5 |
| Algorithm | 3.1.6.81 | Argos | 3.1.6.29 |
| algorithms | 2.4, 3.1.4 | arrangement | 3.1.6.3 |
| aligned sequences | 3.1.6.45 | Array | 3.1.6.81 |
| alumni | 9.2 | articles | 3 |
| Aminoglycoside binding | 3.1.6.71 | assistant | 9.1.12 |
| AMPA | 3.1.6.59 | assistants | 9.2 |
| An integrated genetic linkage map | 3.1.6.61 | Automatic Search | 3.1.6.12 |
| B-Type Conformation | 3.1.6.16 | Bioorganic Chemistry | 3.1.6.4 |
| barrel structure stability | 3.1.6.36 | Biophysics | 3.1.6.1, 3.1.6.2, 3.1.6.3 |
| bee | 6, 6.2 | Biopolymers | 3.1.6.16, 3.1.6.5, 3.1.6.79 |
| beowulf | 8 | BMC Structural Biology Journal | 3.1.6.77 |
| Biased Probability Monte Carlo Conformational Searches | 3.1.6.30 | book chapters | 3 |
| binding energy for small molecules | 3.1.6.63 | Borchert | 3.1.6.24, 3.1.6.31, 3.1.6.35 |
| Biochemistry | 3.1.6.47 | boss | 9.1, 9.1.1 |
| Biofizika | 3.1.6.22, 3.1.6.6 | Brian Marsden | 9.1.9 |
| bioinformatics | 2.2, 3.1.2 | Brive | 3.1.6.83 |
| Biomolecular | 3.1.6.10, 3.1.6.11 |
| Calculation | 3.1.6.4 | Computer-Aided | 3.1.6.10, 3.1.6.11 |
| calendar | 12 | Computers & Chemistry | 3.1.6.29, 3.1.6.68 |
| calf thymus type I topoisomerase | 3.1.6.17 | Computers Chem | 3.1.6.14 |
| camptothecin | 3.1.6.17 | configure protein side-chains | 3.1.6.25 |
| Cardozo | 3.1.6.37, 3.1.6.54, 3.1.6.68 | Conformational | 3.1.6.14, 3.1.6.5 |
| cDNA | 3.1.6.55 | conformational energy | 3.1.6.22 |
| CED-4 | 3.1.6.54 | conformational flexibility | 3.1.6.35 |
| Chain | 3.1.6.7 | Conformational Searches | 3.1.6.19 |
| Chalikian | 3.1.6.39 | conformational searches | 3.1.6.20 |
| characterization | 3.1.6.31 | conformations | 3.1.6.4 |
| chip | 3.1.6.81 | contact area difference | 2.4.6 |
| Chuprina | 3.1.6.8, 3.1.6.9 | Contact Area Difference | 3.1.6.46 |
| Claudio Cavasotto | 9.1.5 | Contour-Buildup Algorithm | 3.1.6.38 |
| cluster | 8 | convertase enzyme | 3.1.6.55 |
| collagen | 3.1.6.3, 3.1.6.4 | creation | 3.1.6.31 |
| collagen structure | 3.1.6.5 | cross correlating thermodynamic | 3.1.6.39 |
| Comparison | 3.1.6.7 | crystal structure | 3.1.6.24 |
| complement inhibitor CD59 | 3.1.6.47 | Crystal Structure | 3.1.6.53 |
| compressibility measurements | 3.1.6.39 | current members | 9.1 |
| computer | 8 | Current Opinion in Chemical Biology | 3.1.6.75 |
| Computer Aided Innovation of New Materials | 3.1.6.20 | Cytokine & Growth Factor Reviews | 3.1.6.41 |
| Computer Simulation Biomolecular Systems | 3.1.6.51 |
| Deedee Bridgens | 9.2.9 | Diverse Functions | 3.1.6.41 |
| deformation zone mapping | 3.1.6.49 | DNA | 3.1.6.9 |
| Derivation | 3.1.6.18, 3.1.6.65 | DNA bending model | 3.1.6.15 |
| derivative calculations | 3.1.6.34 | DNA cleaving activity | 3.1.6.17 |
| design | 2.3 | DNA Sequences | 3.1.6.13 |
| Design | 3.1.6.31 | DNA-binding Domain | 3.1.6.26 |
| Determine Human CD59 Species Selective Activity | 3.1.6.66 | docking | 2.3, 3.1.3, 3.1.6.59 |
| diagram | 4 | Docking | 3.1.6.80, 3.1.6.82 |
| differential display | 3.1.6.55 | docking and structure prediction | 3.1.6.33 |
| Diffraction | 3.1.6.1 | Doklady Academii Nauk SSSR | 3.1.6.13 |
| diffraction | 3.1.6.2 | Domain Shared Between | 3.1.6.54 |
| Dimeric Peroxisomal | 3.1.6.53 | drug | 2.3, 2.3.1 |
| distant similarities | 2.2.1 | drug design | 3.1.3 |
| distantly related proteins | 3.1.6.28 | Drug-Receptor Thermodynamics Introduction and Applications | 3.1.6.78 |
| distorted native conformation | 3.1.6.33 | Dynamics | 3.1.6.10, 3.1.6.11 |
| effects | 3.1.6.2 | Energy strain | 3.1.6.56 |
| Efficient parallelization energy | 3.1.6.34 | engineered monomeric triosephosphate isomerase | 3.1.6.24 |
| Efficient stochastic global optimization | 3.1.6.67 | Estimating local backbone structural deviation | 3.1.6.68 |
| Eisenhaber | 3.1.6.16 | eucaryotic gene regulatory proteins | 3.1.6.26 |
| Eisenmenger | 3.1.6.25 | evaluate accuracy | 3.1.6.46 |
| Electrophoretic behaviour | 3.1.6.15 | Evaluating energetics empty cavities | 3.1.6.52 |
| Electrostatic Calculations | 3.1.6.30 | evaluation | 2.4.6 |
| Embo J | 3.1.6.57 | events | 12 |
| Emerging Group Proteins | 3.1.6.41 | Experimental Cell Research | 3.1.6.74 |
| encodes ubiquitin-conjugating enzyme homolog | 3.1.6.48 | Explicit Equations | 3.1.6.18 |
| energy calculations | 3.1.6.28 | expression active enzyme regulation | 3.1.6.55 |
| energy optimization problem | 3.1.6.78 | Expression Adenovirus Receptor | 3.1.6.74 |
| factor | 3.1.6.6 | Folding & Design | 3.1.6.56 |
| Fernandez-Recio | 3.1.6.80, 3.1.6.82 | Folding and Design | 3.1.6.58 |
| Fiber Knob | 3.1.6.74 | folding simulations | 3.1.6.79 |
| fibrils | 3.1.6.3 | Folds | 3.1.6.7 |
| Filikov | 3.1.6.69 | former | 9.2, 9.2 |
| finding few minimums | 3.1.6.29 | former interns | 9.2 |
| flexible | 2.3 | former members | 9.2 |
| flexible docking | 3.1.3 | Frederic Fleche | 9.2.11 |
| Flexible Proline Rings | 3.1.6.14 | fully conserved phosphateloop | 3.1.6.76 |
| flexible protein-ligand docking | 2.3.1 | fundings | 2.5 |
| Flexible protein-ligand docking | 3.1.6.50 |
| G-proteins | 3.1.6.54 | Genome Res | 3.1.6.72 |
| Gallery | 4 | Gibson | 3.1.6.26 |
| Gantt | 3.1.6.70 | global energy optimization | 3.1.6.23, 3.1.6.50, 3.1.6.51 |
| Gates | 3.1.6.61 | Global optimization | 3.1.6.22 |
| gaussian | 6 | global optimization | 3.1.6.60 |
| Gaussian | 6.4 | Globular Proteins | 3.1.6.12 |
| gene mutated | 3.1.6.48 | Goodman | 3.1.6.41 |
| General Patterns | 3.1.6.13 | graduate students | 9.2 |
| Genetic linkage mapping | 3.1.6.72 | grants | 2.5 |
| genetic text | 3.1.6.6 | Gromova | 3.1.6.17 |
| Genome Research 9 | 3.1.6.61 | group publications | 3 |
| helical | 3.1.6.2 | homology modeling | 3.1.6.25 |
| Helices | 3.1.6.12 | Homology modeling | 3.1.6.37, 3.1.6.49 |
| helix | 3.1.6.1 | homology models | 3.1.6.68 |
| Helix-Loop-Helix family | 3.1.6.26 | Houbrechts | 3.1.6.36 |
| High-Density | 3.1.6.81 | human arthritis-affected cartilage | 3.1.6.55 |
| High-throughput Docking | 3.1.6.75 | human breast cancer | 3.1.6.48 |
| HIV-1 TAR | 3.1.6.69 | hydration of globular proteins | 3.1.6.39 |
| Home | 1 | Hydration Shells | 3.1.6.16 |
| homology | 5 | Hyuk Soon Choi | 9.1.11 |
| ICM | 3.1.6.33, 3.1.6.49 | inhibit Plasmodium sporozoite infectivity in vivo | 3.1.6.70 |
| icm | 6, 6.1 | Integral Distribution | 3.1.6.81 |
| ICM Build Model Web Interface | 5.3 | Interaction | 3.1.6.13, 3.1.6.74 |
| ICM method | 3.1.6.37 | internal coordinate mechanics | 3.1.6.34 |
| Identification analysis | 3.1.6.57 | Internal Coordinates | 3.1.6.18 |
| Identification Individual Residues | 3.1.6.66 | internal coordinates | 3.1.6.50 |
| Identification Ligands RNA targets structure-based virtual screening | 3.1.6.69 | internal mutations proteins | 3.1.6.52 |
| identifying atoms | 3.1.6.27 | internship | 9.2.11 |
| improvement | 3.1.6.6 | internships | 9.1 |
| improvements | 3.1.6.49 | Isakoff | 3.1.6.57 |
| in press | 3.1.6.83 | Isolation | 3.1.6.55 |
| In Silico Discovery | 3.1.6.77 | Ivanitskii | 3.1.6.6 |
| Infection and Immunity | 3.1.6.70 |
| J Biomol Struct Dyn | 3.1.6.10, 3.1.6.11, 3.1.6.12, 3.1.6.7 | J Struct Biol | 3.1.6.38 |
| J Comp Chem | 3.1.6.33, 3.1.6.34 | J | |
| J Comput Phys | 3.1.6.18 | Biomol Struct Dyn | 3.1.6.9 |
| J Expt Medicine | 3.1.6.44 | JBiolChem | 3.1.6.66 |
| J Mol Biol | 3.1.6.19, 3.1.6.25, 3.1.6.30, 3.1.6.39, 3.1.6.45, 3.1.6.46, 3.1.6.53, 3.1.6.71 | JCAMD | 3.1.6.69 |
| J Mol Graph | 3.1.6.27 | Jianghong An | 9.1.2 |
| J Molecular Recognition | 3.1.6.63 | Jin | 3.1.6.71 |
| J of Immunology | 3.1.6.55 | Journal of Computational Physics | 3.1.6.60 |
| J of Mol Model | 3.1.6.54 | Juan Fernandez-Recio | 9.1.7 |
| Kaisheng Chen | 9.2.5 | Kelly | 3.1.6.72 |
| Kathleen Vanderbur | 9.1.12 | Koonin | 3.1.6.48 |
| kathy | 9.1.12 | Kuznetsov | 3.1.6.27 |
| lab members | 9 | Lee the whaco's Bfac makeup | 5.2 |
| lab research | 2 | Li | 3.1.6.62 |
| large-scale rearrangements | 3.1.6.43 | ligand | 2.3.1 |
| Lars Brive | 9.1.4 | Long Pentraxins | 3.1.6.41 |
| lead compound | 2.3.1 | lysozyme-antibody complex with 1 | |
| Lead Generation | 3.1.6.75 | 6 accuracy | 3.1.6.32 |
| leader | 9.1, 9.1.1 |
| Magnus Berg | 9.2.10 | modeling homology | 2.4.3 |
| mainchain trace | 3.1.6.25 | Modelling | 3.1.6.10, 3.1.6.11 |
| Maiorov | 3.1.6.43, 3.1.6.56 | models via conformational search | 3.1.6.49 |
| major groove of duplex RNA | 3.1.6.71 | MOID | 3.1.6.81 |
| Mammalian Homologue Apaf-1 | 3.1.6.54 | Molecular | 3.1.6.3 |
| Mapping | 3.1.6.44 | Molecular Cellular Biology | 3.1.6.62 |
| Mapping regions | 3.1.6.47 | Molecular docking programs | 3.1.6.40 |
| Match-Only | 3.1.6.81 | molecular modeling | 2.1, 3.1.1 |
| Mathieu | 3.1.6.53 | Molecular Modeling | 3.1.6.54 |
| Matthieu Schapira | 9.2.3 | molecules | 3.1.6.2 |
| Maxim Totrov | 9.2.1 | monomeric triosephosphate isomerase | 3.1.6.31, 3.1.6.42 |
| Mazur | 3.1.6.10, 3.1.6.18 | monoTIM | 3.1.6.24, 3.1.6.35, 3.1.6.42 |
| meetings | 12 | Monte Carlo | 3.1.6.60 |
| methods | 2.4, 2.4.3, 3.1.4 | Monte Carlo Calculations | 3.1.6.16 |
| Modeling | 3.1.6.76 | mutagenesis | 3.1.6.76 |
| Nature | 3.1.6.8 | Norledge | 3.1.6.76 |
| Nature Genetics | 3.1.6.48 | novel co-activator mediating functional specificity | 3.1.6.62 |
| Nature Struct Biol | 3.1.6.40 | novel nuclear hormone receptor antagonists | 3.1.6.73 |
| Nature Structural Biology | 3.1.6.32 | novel Retinoic Acid Receptor Agonist Structures | 3.1.6.77 |
| new method | 3.1.6.33 | NRIF3 | 3.1.6.62 |
| new method modeling | 3.1.6.43 | Nucl Acids Res | 3.1.6.15, 3.1.6.17 |
| New Methodology | 3.1.6.10 | nuclear hormone receptors | 3.1.6.62 |
| new substrate specificity | 3.1.6.76 |
| Oligo | 3.1.6.16, 3.1.6.9 | Optimal Protocol | 3.1.6.19 |
| Oligonucleotide | 3.1.6.81 | optimal-bias Monte Carlo minimization | 3.1.6.60 |
| oligopeptides | 3.1.6.22 |
| packing | 3.1.6.2 | principal investigator | 9.1 |
| packing optimization | 3.1.6.21 | problem | 3.1.6.5 |
| papers | 3 | Proc Natl Acad Sci USA | 3.1.6.31 |
| Patel | 3.1.6.55 | processing | 8 |
| people | 9 | professor | 9.1, 9.1.1 |
| peptide | 3.1.6.64 | properties | 3.1.6.8 |
| peptides | 3.1.6.60 | Proposed structure | 3.1.6.26 |
| Peptides and Proteins | 3.1.6.19 | protein design | 2.4.2 |
| peptides and proteins | 3.1.6.20 | protein domains | 3.1.6.43 |
| Peptides and Proteins | 3.1.6.30 | Protein Eng | 3.1.6.42 |
| peptides and proteins | 3.1.6.63 | Protein Engineering | 3.1.6.26, 3.1.6.36 |
| Petukhov | 3.1.6.22 | Protein engineering | 3.1.6.42 |
| PH domain-containing targets phosphatidylinositol 3-kinase | 3.1.6.57 | protein folding | 3.1.6.60 |
| phosphotyrosine-containing peptides bind | 3.1.6.58 | protein folding problem | 3.1.6.29 |
| photo | 4 | protein modeling | 2.4.2 |
| pi | 9.1, 9.1.1 | protein modeling and design | 3.1.6.33 |
| pictures | 4 | protein models | 3.1.6.46 |
| PLoS | 11 | Protein Science | 3.1.6.52 |
| PNAS | 3.1.6.73 | Protein structure prediction | 3.1.6.51 |
| point mutation variants | 3.1.6.35 | protein structure prediction | 3.1.6.67 |
| Polypeptid | 3.1.6.7 | Protein Tertiary Structures | 3.1.6.7 |
| Polypeptides | 3.1.6.14 | protein- | 2.3.1 |
| polypeptides designed | 3.1.6.36 | Protein-ligand docking | 3.1.6.78 |
| polytripeptides | 3.1.6.5 | Protein-Protein | 3.1.6.80, 3.1.6.82 |
| post-doctoral fellowships | 9.3 | Proteins | 3.1.6.13, 3.1.6.28, 3.1.6.43, 3.1.6.49, 3.1.6.50, 3.1.6.76 |
| postdoc | 9.1.10, 9.1.11, 9.1.2, 9.1.3, 9.1.5, 9.1.6, 9.1.7, 9.1.8, 9.1.9 | Proteins Structure Function Genetics | 3.1.6.37 |
| postsynaptic | 3.1.6.59 | Public Library of Science Initiative | 11 |
| prediction | 2.2.1, 3.1.6.21 | publications | 3 |
| Prediction | 3.1.6.63 |
| Quantitative | 3.1.6.7 |
| Rapid boundary element solvation electrostatics calculations | 3.1.6.79 | ref 48 | 3.1.6.48 |
| Rashin | 3.1.6.52 | ref 49 | 3.1.6.49 |
| Rational discovery | 3.1.6.73 | ref 5 | 3.1.6.5 |
| Reaction Mechanism | 3.1.6.53 | ref 50 | 3.1.6.50 |
| receptor | 3.1.6.59 | ref 51 | 3.1.6.51 |
| recognition | 2.2.1 | ref 52 | 3.1.6.52 |
| Recognition | 3.1.6.28 | ref 53 | 3.1.6.53 |
| ref 1 | 3.1.6.1 | ref 54 | 3.1.6.54 |
| ref 10 | 3.1.6.10 | ref 55 | 3.1.6.55 |
| ref 11 | 3.1.6.11 | ref 56 | 3.1.6.56 |
| ref 12 | 3.1.6.12 | ref 57 | 3.1.6.57 |
| ref 13 | 3.1.6.13 | ref 58 | 3.1.6.58 |
| ref 14 | 3.1.6.14 | ref 59 | 3.1.6.59 |
| ref 15 | 3.1.6.15 | ref 6 | 3.1.6.6 |
| ref 16 | 3.1.6.16 | ref 60 | 3.1.6.60 |
| ref 17 | 3.1.6.17 | ref 61 | 3.1.6.61 |
| ref 18 | 3.1.6.18 | ref 62 | 3.1.6.62 |
| ref 19 | 3.1.6.19 | ref 63 | 3.1.6.63 |
| ref 2 | 3.1.6.2 | ref 64 | 3.1.6.64 |
| ref 20 | 3.1.6.20 | ref 65 | 3.1.6.65 |
| ref 21 | 3.1.6.21 | ref 66 | 3.1.6.66 |
| ref 22 | 3.1.6.22 | ref 67 | 3.1.6.67 |
| ref 23 | 3.1.6.23 | ref 68 | 3.1.6.68 |
| ref 24 | 3.1.6.24 | ref 69 | 3.1.6.69 |
| ref 25 | 3.1.6.25 | ref 7 | 3.1.6.7 |
| ref 26 | 3.1.6.26 | ref 70 | 3.1.6.70 |
| ref 27 | 3.1.6.27 | ref 71 | 3.1.6.71 |
| ref 28 | 3.1.6.28 | ref 72 | 3.1.6.72 |
| ref 29 | 3.1.6.29 | ref 73 | 3.1.6.73 |
| ref 3 | 3.1.6.3 | ref 74 | 3.1.6.74 |
| ref 30 | 3.1.6.30 | ref 75 | 3.1.6.75 |
| ref 31 | 3.1.6.31 | ref 76 | 3.1.6.76 |
| ref 32 | 3.1.6.32 | ref 77 | 3.1.6.77 |
| ref 33 | 3.1.6.33 | ref 78 | 3.1.6.78 |
| ref 34 | 3.1.6.34 | ref 79 | 3.1.6.79 |
| ref 35 | 3.1.6.35 | ref 8 | 3.1.6.8 |
| ref 36 | 3.1.6.36 | ref 80 | 3.1.6.80 |
| ref 37 | 3.1.6.37 | ref 81 | 3.1.6.81 |
| ref 38 | 3.1.6.38 | ref 82 | 3.1.6.82 |
| ref 39 | 3.1.6.39 | ref 9 | 3.1.6.9 |
| ref 4 | 3.1.6.4 | references | 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.6 |
| ref 40 | 3.1.6.40 | replaced active cysteine | 3.1.6.48 |
| ref 41 | 3.1.6.41 | Research | 2 |
| ref 42 | 3.1.6.42 | research associates | 9.1, 9.2 |
| ref 43 | 3.1.6.43 | resumed list | 3.1 |
| ref 44 | 3.1.6.44 | Rigidity Theory and Application | 3.1.6.67 |
| ref 45 | 3.1.6.45 | robust measure | 3.1.6.46 |
| ref 46 | 3.1.6.46 | Ruben Abagyan | 9.1.1 |
| ref 47 | 3.1.6.47 |
| Saccharomyces cerevisiae | 3.1.6.53 | Soft docking | 3.1.6.64 |
| Schapira | 3.1.6.63, 3.1.6.73, 3.1.6.77 | species selective activity | 3.1.6.47 |
| scheme | 4 | Srivastava | 3.1.6.59 |
| science | 2 | Stable Bending | 3.1.6.9 |
| screen image | 3.1.6.27 | staff | 9 |
| Second-generation octarellins | 3.1.6.36 | Stigler | 3.1.6.64 |
| sensitive discrimination potential | 3.1.6.65 | Strands | 3.1.6.12 |
| Sequence alignment | 2.4.1 | Structural | 3.1.6.9 |
| Sequence dependent modulating effects | 3.1.6.17 | Structural Alignment Database | 5.1 |
| Sergei Batalov | 9.2.6 | Structural Relationship | 3.1.6.54 |
| servers | 5 | structural studies | 3.1.6.76 |
| services | 5 | Structure | 3.1.6.16, 3.1.6.24, 3.1.6.35, 3.1.6.64 |
| seven residue loop | 3.1.6.42 | structure prediction | 3.1.6.60 |
| SH2 and PTB domains | 3.1.6.58 | structure verification | 3.1.6.42 |
| share same fold | 3.1.6.45 | structures | 3.1.6.4 |
| Sheila Silverstein | 9.2.8 | Strynadka | 3.1.6.40 |
| side-chain conformation | 3.1.6.21 | submission | 5 |
| sign | 3.1.6.1 | Substrate Binding | 3.1.6.53 |
| signal detection | 2.4.1 | Successful folding | 3.1.6.79 |
| Similar Spatial Arrangements | 3.1.6.12 | successfully predict the binding of a beta-lactamase inhibitory protein | 3.1.6.40 |
| Simple | 3.1.6.7 | support | 2.5 |
| small molecule | 2.3.1 | surface | 3.1.6.34 |
| Soft | 3.1.6.80, 3.1.6.82 |
| tasks | 5 | Tim Cardozo | 9.2.4 |
| technique | 3.1.6.27 | TNF-a | 3.1.6.55 |
| TEM-1 beta-lactamase | 3.1.6.40 | Tomko | 3.1.6.74 |
| Testing | 3.1.6.18 | tools | 5 |
| Thanki | 3.1.6.42 | Totrov | 3.1.6.32, 3.1.6.34, 3.1.6.38, 3.1.6.50, 3.1.6.65, 3.1.6.78, 3.1.6.79 |
| Theoretical Experimental Applications | 3.1.6.51 | Towards protein folding | 3.1.6.23 |
| Therese Eneqvist | 9.1.6 | Trajectory Visualization | 3.1.6.19 |
| thermodynamic electrostatic forces that govern recognition | 3.1.6.71 | triosephosphate isomerase | 3.1.6.76 |
| Thiolase | 3.1.6.53 | tripeptide | 3.1.6.4 |
| Threading and energy profiles | 2.2.1 | Tumanyan | 3.1.6.5 |
| Three new crystal structures | 3.1.6.35 | tunnel algorithm | 3.1.6.22 |
| three-dimensional protein structures | 3.1.6.56 |
| Unite | 6 | unite | 6.3 |
| variable | 3.1.6.1 | volume | 3.1.6.39 |
| virtual ligand screening | 3.1.6.65 | Vsevolod Katritch | 9.2.12 |
| Vladimir Maiorov | 9.2.7 |
| Wen Hwa Lee | 9.1.8 |
| Yingyao Zhou | 9.2.2 | Yu | 3.1.6.44, 3.1.6.47 |