| B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
1983 | 3.1.6.1, 3.1.6.2, 3.1.6.3 | 1995 | 3.1.6.35, 3.1.6.36, 3.1.6.37 |
1984 | 3.1.6.4, 3.1.6.5 | 1996 | 3.1.6.38, 3.1.6.39, 3.1.6.40, 3.1.6.41 |
1985 | 3.1.6.6 | 1997 | 3.1.6.42, 3.1.6.43, 3.1.6.44, 3.1.6.45, 3.1.6.46, 3.1.6.47, 3.1.6.48, 3.1.6.49, 3.1.6.50, 3.1.6.51, 3.1.6.52, 3.1.6.53 |
1988 | 3.1.6.7, 3.1.6.8, 3.1.6.9 | 1998 | 3.1.6.54, 3.1.6.55, 3.1.6.56, 3.1.6.57, 3.1.6.58, 3.1.6.59 |
1989 | 3.1.6.10, 3.1.6.11, 3.1.6.12, 3.1.6.13 | 1999 | 3.1.6.60, 3.1.6.61, 3.1.6.62, 3.1.6.63, 3.1.6.64, 3.1.6.65, 3.1.6.66, 3.1.6.67 |
1990 | 3.1.6.14, 3.1.6.15, 3.1.6.16, 3.1.6.17 | 2000 | 3.1.6.68, 3.1.6.69, 3.1.6.70, 3.1.6.71, 3.1.6.72, 3.1.6.73, 3.1.6.74 |
1991 | 3.1.6.18 | 2001 | 3.1.6.75, 3.1.6.76, 3.1.6.77, 3.1.6.78, 3.1.6.79 |
1992 | 3.1.6.19, 3.1.6.20, 3.1.6.21, 3.1.6.22 | 2002 | 3.1.6.80, 3.1.6.81, 3.1.6.82, 3.1.6.83 |
1993 | 3.1.6.23, 3.1.6.24, 3.1.6.25, 3.1.6.26, 3.1.6.27 | 3d model | 2.4.6 |
1994 | 3.1.6.28, 3.1.6.29, 3.1.6.30, 3.1.6.31, 3.1.6.32, 3.1.6.33, 3.1.6.34 |
ab initio | 2.1.1 | analysis | 3.1.6.5 |
Ab initio folding | 3.1.6.60 | Analysis | 3.1.6.81 |
ab initio prediction | 3.1.6.32 | Analytical Molecular Surface | 3.1.6.38 |
Abagyan | 3.1.6.1, 3.1.6.11, 3.1.6.12, 3.1.6.13, 3.1.6.14, 3.1.6.15, 3.1.6.19, 3.1.6.2, 3.1.6.20, 3.1.6.21, 3.1.6.23, 3.1.6.28, 3.1.6.3, 3.1.6.30, 3.1.6.33, 3.1.6.4, 3.1.6.45, 3.1.6.46, 3.1.6.49, 3.1.6.51, 3.1.6.60, 3.1.6.7, 3.1.6.75 | anchorage | 3.1.6.59 |
ABP | 3.1.6.59 | Andrew Bordner | 9.1.3 |
abstracts | 3, 3.2 | Andrew Orry | 9.1.10 |
acceleration | 3.1.6.6 | Anomalous | 3.1.6.8 |
Active Site CD59 | 3.1.6.44 | Antibodies against TRAP | 3.1.6.70 |
adenine-thymine | 3.1.6.8 | anticholera toxin antibody using internal coordinate mechanics | 3.1.6.64 |
administrative | 9.2 | appearing | 3.1.6.2 |
administrative assistant | 9.1 | applications | 3.1.5 |
Algorithm | 3.1.6.81 | Argos | 3.1.6.29 |
algorithms | 2.4, 3.1.4 | arrangement | 3.1.6.3 |
aligned sequences | 3.1.6.45 | Array | 3.1.6.81 |
alumni | 9.2 | articles | 3 |
Aminoglycoside binding | 3.1.6.71 | assistant | 9.1.12 |
AMPA | 3.1.6.59 | assistants | 9.2 |
An integrated genetic linkage map | 3.1.6.61 | Automatic Search | 3.1.6.12 |
B-Type Conformation | 3.1.6.16 | Bioorganic Chemistry | 3.1.6.4 |
barrel structure stability | 3.1.6.36 | Biophysics | 3.1.6.1, 3.1.6.2, 3.1.6.3 |
bee | 6, 6.2 | Biopolymers | 3.1.6.16, 3.1.6.5, 3.1.6.79 |
beowulf | 8 | BMC Structural Biology Journal | 3.1.6.77 |
Biased Probability Monte Carlo Conformational Searches | 3.1.6.30 | book chapters | 3 |
binding energy for small molecules | 3.1.6.63 | Borchert | 3.1.6.24, 3.1.6.31, 3.1.6.35 |
Biochemistry | 3.1.6.47 | boss | 9.1, 9.1.1 |
Biofizika | 3.1.6.22, 3.1.6.6 | Brian Marsden | 9.1.9 |
bioinformatics | 2.2, 3.1.2 | Brive | 3.1.6.83 |
Biomolecular | 3.1.6.10, 3.1.6.11 |
Calculation | 3.1.6.4 | Computer-Aided | 3.1.6.10, 3.1.6.11 |
calendar | 12 | Computers & Chemistry | 3.1.6.29, 3.1.6.68 |
calf thymus type I topoisomerase | 3.1.6.17 | Computers Chem | 3.1.6.14 |
camptothecin | 3.1.6.17 | configure protein side-chains | 3.1.6.25 |
Cardozo | 3.1.6.37, 3.1.6.54, 3.1.6.68 | Conformational | 3.1.6.14, 3.1.6.5 |
cDNA | 3.1.6.55 | conformational energy | 3.1.6.22 |
CED-4 | 3.1.6.54 | conformational flexibility | 3.1.6.35 |
Chain | 3.1.6.7 | Conformational Searches | 3.1.6.19 |
Chalikian | 3.1.6.39 | conformational searches | 3.1.6.20 |
characterization | 3.1.6.31 | conformations | 3.1.6.4 |
chip | 3.1.6.81 | contact area difference | 2.4.6 |
Chuprina | 3.1.6.8, 3.1.6.9 | Contact Area Difference | 3.1.6.46 |
Claudio Cavasotto | 9.1.5 | Contour-Buildup Algorithm | 3.1.6.38 |
cluster | 8 | convertase enzyme | 3.1.6.55 |
collagen | 3.1.6.3, 3.1.6.4 | creation | 3.1.6.31 |
collagen structure | 3.1.6.5 | cross correlating thermodynamic | 3.1.6.39 |
Comparison | 3.1.6.7 | crystal structure | 3.1.6.24 |
complement inhibitor CD59 | 3.1.6.47 | Crystal Structure | 3.1.6.53 |
compressibility measurements | 3.1.6.39 | current members | 9.1 |
computer | 8 | Current Opinion in Chemical Biology | 3.1.6.75 |
Computer Aided Innovation of New Materials | 3.1.6.20 | Cytokine & Growth Factor Reviews | 3.1.6.41 |
Computer Simulation Biomolecular Systems | 3.1.6.51 |
Deedee Bridgens | 9.2.9 | Diverse Functions | 3.1.6.41 |
deformation zone mapping | 3.1.6.49 | DNA | 3.1.6.9 |
Derivation | 3.1.6.18, 3.1.6.65 | DNA bending model | 3.1.6.15 |
derivative calculations | 3.1.6.34 | DNA cleaving activity | 3.1.6.17 |
design | 2.3 | DNA Sequences | 3.1.6.13 |
Design | 3.1.6.31 | DNA-binding Domain | 3.1.6.26 |
Determine Human CD59 Species Selective Activity | 3.1.6.66 | docking | 2.3, 3.1.3, 3.1.6.59 |
diagram | 4 | Docking | 3.1.6.80, 3.1.6.82 |
differential display | 3.1.6.55 | docking and structure prediction | 3.1.6.33 |
Diffraction | 3.1.6.1 | Doklady Academii Nauk SSSR | 3.1.6.13 |
diffraction | 3.1.6.2 | Domain Shared Between | 3.1.6.54 |
Dimeric Peroxisomal | 3.1.6.53 | drug | 2.3, 2.3.1 |
distant similarities | 2.2.1 | drug design | 3.1.3 |
distantly related proteins | 3.1.6.28 | Drug-Receptor Thermodynamics Introduction and Applications | 3.1.6.78 |
distorted native conformation | 3.1.6.33 | Dynamics | 3.1.6.10, 3.1.6.11 |
effects | 3.1.6.2 | Energy strain | 3.1.6.56 |
Efficient parallelization energy | 3.1.6.34 | engineered monomeric triosephosphate isomerase | 3.1.6.24 |
Efficient stochastic global optimization | 3.1.6.67 | Estimating local backbone structural deviation | 3.1.6.68 |
Eisenhaber | 3.1.6.16 | eucaryotic gene regulatory proteins | 3.1.6.26 |
Eisenmenger | 3.1.6.25 | evaluate accuracy | 3.1.6.46 |
Electrophoretic behaviour | 3.1.6.15 | Evaluating energetics empty cavities | 3.1.6.52 |
Electrostatic Calculations | 3.1.6.30 | evaluation | 2.4.6 |
Embo J | 3.1.6.57 | events | 12 |
Emerging Group Proteins | 3.1.6.41 | Experimental Cell Research | 3.1.6.74 |
encodes ubiquitin-conjugating enzyme homolog | 3.1.6.48 | Explicit Equations | 3.1.6.18 |
energy calculations | 3.1.6.28 | expression active enzyme regulation | 3.1.6.55 |
energy optimization problem | 3.1.6.78 | Expression Adenovirus Receptor | 3.1.6.74 |
factor | 3.1.6.6 | Folding & Design | 3.1.6.56 |
Fernandez-Recio | 3.1.6.80, 3.1.6.82 | Folding and Design | 3.1.6.58 |
Fiber Knob | 3.1.6.74 | folding simulations | 3.1.6.79 |
fibrils | 3.1.6.3 | Folds | 3.1.6.7 |
Filikov | 3.1.6.69 | former | 9.2, 9.2 |
finding few minimums | 3.1.6.29 | former interns | 9.2 |
flexible | 2.3 | former members | 9.2 |
flexible docking | 3.1.3 | Frederic Fleche | 9.2.11 |
Flexible Proline Rings | 3.1.6.14 | fully conserved phosphateloop | 3.1.6.76 |
flexible protein-ligand docking | 2.3.1 | fundings | 2.5 |
Flexible protein-ligand docking | 3.1.6.50 |
G-proteins | 3.1.6.54 | Genome Res | 3.1.6.72 |
Gallery | 4 | Gibson | 3.1.6.26 |
Gantt | 3.1.6.70 | global energy optimization | 3.1.6.23, 3.1.6.50, 3.1.6.51 |
Gates | 3.1.6.61 | Global optimization | 3.1.6.22 |
gaussian | 6 | global optimization | 3.1.6.60 |
Gaussian | 6.4 | Globular Proteins | 3.1.6.12 |
gene mutated | 3.1.6.48 | Goodman | 3.1.6.41 |
General Patterns | 3.1.6.13 | graduate students | 9.2 |
Genetic linkage mapping | 3.1.6.72 | grants | 2.5 |
genetic text | 3.1.6.6 | Gromova | 3.1.6.17 |
Genome Research 9 | 3.1.6.61 | group publications | 3 |
helical | 3.1.6.2 | homology modeling | 3.1.6.25 |
Helices | 3.1.6.12 | Homology modeling | 3.1.6.37, 3.1.6.49 |
helix | 3.1.6.1 | homology models | 3.1.6.68 |
Helix-Loop-Helix family | 3.1.6.26 | Houbrechts | 3.1.6.36 |
High-Density | 3.1.6.81 | human arthritis-affected cartilage | 3.1.6.55 |
High-throughput Docking | 3.1.6.75 | human breast cancer | 3.1.6.48 |
HIV-1 TAR | 3.1.6.69 | hydration of globular proteins | 3.1.6.39 |
Home | 1 | Hydration Shells | 3.1.6.16 |
homology | 5 | Hyuk Soon Choi | 9.1.11 |
ICM | 3.1.6.33, 3.1.6.49 | inhibit Plasmodium sporozoite infectivity in vivo | 3.1.6.70 |
icm | 6, 6.1 | Integral Distribution | 3.1.6.81 |
ICM Build Model Web Interface | 5.3 | Interaction | 3.1.6.13, 3.1.6.74 |
ICM method | 3.1.6.37 | internal coordinate mechanics | 3.1.6.34 |
Identification analysis | 3.1.6.57 | Internal Coordinates | 3.1.6.18 |
Identification Individual Residues | 3.1.6.66 | internal coordinates | 3.1.6.50 |
Identification Ligands RNA targets structure-based virtual screening | 3.1.6.69 | internal mutations proteins | 3.1.6.52 |
identifying atoms | 3.1.6.27 | internship | 9.2.11 |
improvement | 3.1.6.6 | internships | 9.1 |
improvements | 3.1.6.49 | Isakoff | 3.1.6.57 |
in press | 3.1.6.83 | Isolation | 3.1.6.55 |
In Silico Discovery | 3.1.6.77 | Ivanitskii | 3.1.6.6 |
Infection and Immunity | 3.1.6.70 |
J Biomol Struct Dyn | 3.1.6.10, 3.1.6.11, 3.1.6.12, 3.1.6.7 | J Struct Biol | 3.1.6.38 |
J Comp Chem | 3.1.6.33, 3.1.6.34 | J | |
J Comput Phys | 3.1.6.18 | Biomol Struct Dyn | 3.1.6.9 |
J Expt Medicine | 3.1.6.44 | JBiolChem | 3.1.6.66 |
J Mol Biol | 3.1.6.19, 3.1.6.25, 3.1.6.30, 3.1.6.39, 3.1.6.45, 3.1.6.46, 3.1.6.53, 3.1.6.71 | JCAMD | 3.1.6.69 |
J Mol Graph | 3.1.6.27 | Jianghong An | 9.1.2 |
J Molecular Recognition | 3.1.6.63 | Jin | 3.1.6.71 |
J of Immunology | 3.1.6.55 | Journal of Computational Physics | 3.1.6.60 |
J of Mol Model | 3.1.6.54 | Juan Fernandez-Recio | 9.1.7 |
Kaisheng Chen | 9.2.5 | Kelly | 3.1.6.72 |
Kathleen Vanderbur | 9.1.12 | Koonin | 3.1.6.48 |
kathy | 9.1.12 | Kuznetsov | 3.1.6.27 |
lab members | 9 | Lee the whaco's Bfac makeup | 5.2 |
lab research | 2 | Li | 3.1.6.62 |
large-scale rearrangements | 3.1.6.43 | ligand | 2.3.1 |
Lars Brive | 9.1.4 | Long Pentraxins | 3.1.6.41 |
lead compound | 2.3.1 | lysozyme-antibody complex with 1 | |
Lead Generation | 3.1.6.75 | 6 accuracy | 3.1.6.32 |
leader | 9.1, 9.1.1 |
Magnus Berg | 9.2.10 | modeling homology | 2.4.3 |
mainchain trace | 3.1.6.25 | Modelling | 3.1.6.10, 3.1.6.11 |
Maiorov | 3.1.6.43, 3.1.6.56 | models via conformational search | 3.1.6.49 |
major groove of duplex RNA | 3.1.6.71 | MOID | 3.1.6.81 |
Mammalian Homologue Apaf-1 | 3.1.6.54 | Molecular | 3.1.6.3 |
Mapping | 3.1.6.44 | Molecular Cellular Biology | 3.1.6.62 |
Mapping regions | 3.1.6.47 | Molecular docking programs | 3.1.6.40 |
Match-Only | 3.1.6.81 | molecular modeling | 2.1, 3.1.1 |
Mathieu | 3.1.6.53 | Molecular Modeling | 3.1.6.54 |
Matthieu Schapira | 9.2.3 | molecules | 3.1.6.2 |
Maxim Totrov | 9.2.1 | monomeric triosephosphate isomerase | 3.1.6.31, 3.1.6.42 |
Mazur | 3.1.6.10, 3.1.6.18 | monoTIM | 3.1.6.24, 3.1.6.35, 3.1.6.42 |
meetings | 12 | Monte Carlo | 3.1.6.60 |
methods | 2.4, 2.4.3, 3.1.4 | Monte Carlo Calculations | 3.1.6.16 |
Modeling | 3.1.6.76 | mutagenesis | 3.1.6.76 |
Nature | 3.1.6.8 | Norledge | 3.1.6.76 |
Nature Genetics | 3.1.6.48 | novel co-activator mediating functional specificity | 3.1.6.62 |
Nature Struct Biol | 3.1.6.40 | novel nuclear hormone receptor antagonists | 3.1.6.73 |
Nature Structural Biology | 3.1.6.32 | novel Retinoic Acid Receptor Agonist Structures | 3.1.6.77 |
new method | 3.1.6.33 | NRIF3 | 3.1.6.62 |
new method modeling | 3.1.6.43 | Nucl Acids Res | 3.1.6.15, 3.1.6.17 |
New Methodology | 3.1.6.10 | nuclear hormone receptors | 3.1.6.62 |
new substrate specificity | 3.1.6.76 |
Oligo | 3.1.6.16, 3.1.6.9 | Optimal Protocol | 3.1.6.19 |
Oligonucleotide | 3.1.6.81 | optimal-bias Monte Carlo minimization | 3.1.6.60 |
oligopeptides | 3.1.6.22 |
packing | 3.1.6.2 | principal investigator | 9.1 |
packing optimization | 3.1.6.21 | problem | 3.1.6.5 |
papers | 3 | Proc Natl Acad Sci USA | 3.1.6.31 |
Patel | 3.1.6.55 | processing | 8 |
people | 9 | professor | 9.1, 9.1.1 |
peptide | 3.1.6.64 | properties | 3.1.6.8 |
peptides | 3.1.6.60 | Proposed structure | 3.1.6.26 |
Peptides and Proteins | 3.1.6.19 | protein design | 2.4.2 |
peptides and proteins | 3.1.6.20 | protein domains | 3.1.6.43 |
Peptides and Proteins | 3.1.6.30 | Protein Eng | 3.1.6.42 |
peptides and proteins | 3.1.6.63 | Protein Engineering | 3.1.6.26, 3.1.6.36 |
Petukhov | 3.1.6.22 | Protein engineering | 3.1.6.42 |
PH domain-containing targets phosphatidylinositol 3-kinase | 3.1.6.57 | protein folding | 3.1.6.60 |
phosphotyrosine-containing peptides bind | 3.1.6.58 | protein folding problem | 3.1.6.29 |
photo | 4 | protein modeling | 2.4.2 |
pi | 9.1, 9.1.1 | protein modeling and design | 3.1.6.33 |
pictures | 4 | protein models | 3.1.6.46 |
PLoS | 11 | Protein Science | 3.1.6.52 |
PNAS | 3.1.6.73 | Protein structure prediction | 3.1.6.51 |
point mutation variants | 3.1.6.35 | protein structure prediction | 3.1.6.67 |
Polypeptid | 3.1.6.7 | Protein Tertiary Structures | 3.1.6.7 |
Polypeptides | 3.1.6.14 | protein- | 2.3.1 |
polypeptides designed | 3.1.6.36 | Protein-ligand docking | 3.1.6.78 |
polytripeptides | 3.1.6.5 | Protein-Protein | 3.1.6.80, 3.1.6.82 |
post-doctoral fellowships | 9.3 | Proteins | 3.1.6.13, 3.1.6.28, 3.1.6.43, 3.1.6.49, 3.1.6.50, 3.1.6.76 |
postdoc | 9.1.10, 9.1.11, 9.1.2, 9.1.3, 9.1.5, 9.1.6, 9.1.7, 9.1.8, 9.1.9 | Proteins Structure Function Genetics | 3.1.6.37 |
postsynaptic | 3.1.6.59 | Public Library of Science Initiative | 11 |
prediction | 2.2.1, 3.1.6.21 | publications | 3 |
Prediction | 3.1.6.63 |
Quantitative | 3.1.6.7 |
Rapid boundary element solvation electrostatics calculations | 3.1.6.79 | ref 48 | 3.1.6.48 |
Rashin | 3.1.6.52 | ref 49 | 3.1.6.49 |
Rational discovery | 3.1.6.73 | ref 5 | 3.1.6.5 |
Reaction Mechanism | 3.1.6.53 | ref 50 | 3.1.6.50 |
receptor | 3.1.6.59 | ref 51 | 3.1.6.51 |
recognition | 2.2.1 | ref 52 | 3.1.6.52 |
Recognition | 3.1.6.28 | ref 53 | 3.1.6.53 |
ref 1 | 3.1.6.1 | ref 54 | 3.1.6.54 |
ref 10 | 3.1.6.10 | ref 55 | 3.1.6.55 |
ref 11 | 3.1.6.11 | ref 56 | 3.1.6.56 |
ref 12 | 3.1.6.12 | ref 57 | 3.1.6.57 |
ref 13 | 3.1.6.13 | ref 58 | 3.1.6.58 |
ref 14 | 3.1.6.14 | ref 59 | 3.1.6.59 |
ref 15 | 3.1.6.15 | ref 6 | 3.1.6.6 |
ref 16 | 3.1.6.16 | ref 60 | 3.1.6.60 |
ref 17 | 3.1.6.17 | ref 61 | 3.1.6.61 |
ref 18 | 3.1.6.18 | ref 62 | 3.1.6.62 |
ref 19 | 3.1.6.19 | ref 63 | 3.1.6.63 |
ref 2 | 3.1.6.2 | ref 64 | 3.1.6.64 |
ref 20 | 3.1.6.20 | ref 65 | 3.1.6.65 |
ref 21 | 3.1.6.21 | ref 66 | 3.1.6.66 |
ref 22 | 3.1.6.22 | ref 67 | 3.1.6.67 |
ref 23 | 3.1.6.23 | ref 68 | 3.1.6.68 |
ref 24 | 3.1.6.24 | ref 69 | 3.1.6.69 |
ref 25 | 3.1.6.25 | ref 7 | 3.1.6.7 |
ref 26 | 3.1.6.26 | ref 70 | 3.1.6.70 |
ref 27 | 3.1.6.27 | ref 71 | 3.1.6.71 |
ref 28 | 3.1.6.28 | ref 72 | 3.1.6.72 |
ref 29 | 3.1.6.29 | ref 73 | 3.1.6.73 |
ref 3 | 3.1.6.3 | ref 74 | 3.1.6.74 |
ref 30 | 3.1.6.30 | ref 75 | 3.1.6.75 |
ref 31 | 3.1.6.31 | ref 76 | 3.1.6.76 |
ref 32 | 3.1.6.32 | ref 77 | 3.1.6.77 |
ref 33 | 3.1.6.33 | ref 78 | 3.1.6.78 |
ref 34 | 3.1.6.34 | ref 79 | 3.1.6.79 |
ref 35 | 3.1.6.35 | ref 8 | 3.1.6.8 |
ref 36 | 3.1.6.36 | ref 80 | 3.1.6.80 |
ref 37 | 3.1.6.37 | ref 81 | 3.1.6.81 |
ref 38 | 3.1.6.38 | ref 82 | 3.1.6.82 |
ref 39 | 3.1.6.39 | ref 9 | 3.1.6.9 |
ref 4 | 3.1.6.4 | references | 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.6 |
ref 40 | 3.1.6.40 | replaced active cysteine | 3.1.6.48 |
ref 41 | 3.1.6.41 | Research | 2 |
ref 42 | 3.1.6.42 | research associates | 9.1, 9.2 |
ref 43 | 3.1.6.43 | resumed list | 3.1 |
ref 44 | 3.1.6.44 | Rigidity Theory and Application | 3.1.6.67 |
ref 45 | 3.1.6.45 | robust measure | 3.1.6.46 |
ref 46 | 3.1.6.46 | Ruben Abagyan | 9.1.1 |
ref 47 | 3.1.6.47 |
Saccharomyces cerevisiae | 3.1.6.53 | Soft docking | 3.1.6.64 |
Schapira | 3.1.6.63, 3.1.6.73, 3.1.6.77 | species selective activity | 3.1.6.47 |
scheme | 4 | Srivastava | 3.1.6.59 |
science | 2 | Stable Bending | 3.1.6.9 |
screen image | 3.1.6.27 | staff | 9 |
Second-generation octarellins | 3.1.6.36 | Stigler | 3.1.6.64 |
sensitive discrimination potential | 3.1.6.65 | Strands | 3.1.6.12 |
Sequence alignment | 2.4.1 | Structural | 3.1.6.9 |
Sequence dependent modulating effects | 3.1.6.17 | Structural Alignment Database | 5.1 |
Sergei Batalov | 9.2.6 | Structural Relationship | 3.1.6.54 |
servers | 5 | structural studies | 3.1.6.76 |
services | 5 | Structure | 3.1.6.16, 3.1.6.24, 3.1.6.35, 3.1.6.64 |
seven residue loop | 3.1.6.42 | structure prediction | 3.1.6.60 |
SH2 and PTB domains | 3.1.6.58 | structure verification | 3.1.6.42 |
share same fold | 3.1.6.45 | structures | 3.1.6.4 |
Sheila Silverstein | 9.2.8 | Strynadka | 3.1.6.40 |
side-chain conformation | 3.1.6.21 | submission | 5 |
sign | 3.1.6.1 | Substrate Binding | 3.1.6.53 |
signal detection | 2.4.1 | Successful folding | 3.1.6.79 |
Similar Spatial Arrangements | 3.1.6.12 | successfully predict the binding of a beta-lactamase inhibitory protein | 3.1.6.40 |
Simple | 3.1.6.7 | support | 2.5 |
small molecule | 2.3.1 | surface | 3.1.6.34 |
Soft | 3.1.6.80, 3.1.6.82 |
tasks | 5 | Tim Cardozo | 9.2.4 |
technique | 3.1.6.27 | TNF-a | 3.1.6.55 |
TEM-1 beta-lactamase | 3.1.6.40 | Tomko | 3.1.6.74 |
Testing | 3.1.6.18 | tools | 5 |
Thanki | 3.1.6.42 | Totrov | 3.1.6.32, 3.1.6.34, 3.1.6.38, 3.1.6.50, 3.1.6.65, 3.1.6.78, 3.1.6.79 |
Theoretical Experimental Applications | 3.1.6.51 | Towards protein folding | 3.1.6.23 |
Therese Eneqvist | 9.1.6 | Trajectory Visualization | 3.1.6.19 |
thermodynamic electrostatic forces that govern recognition | 3.1.6.71 | triosephosphate isomerase | 3.1.6.76 |
Thiolase | 3.1.6.53 | tripeptide | 3.1.6.4 |
Threading and energy profiles | 2.2.1 | Tumanyan | 3.1.6.5 |
Three new crystal structures | 3.1.6.35 | tunnel algorithm | 3.1.6.22 |
three-dimensional protein structures | 3.1.6.56 |
Unite | 6 | unite | 6.3 |
variable | 3.1.6.1 | volume | 3.1.6.39 |
virtual ligand screening | 3.1.6.65 | Vsevolod Katritch | 9.2.12 |
Vladimir Maiorov | 9.2.7 |
Wen Hwa Lee | 9.1.8 |
Yingyao Zhou | 9.2.2 | Yu | 3.1.6.44, 3.1.6.47 |