3 Publications
Next
3.1 Papers
Section Intro | Molecular modeling | Bioinformatics | docking | Methods and algorithms | Applications | Chronological list

3.1.6 Chronological list
Section Contents | ref 1 | ref 2 | ref 3 | ref 4 | ref 5 | ref 6 | ref 7 | ref 8 | ref 9 | ref 10 | ref 11 | ref 12 | ref 13 | ref 14 | ref 15 | ref 16 | ref 17 | ref 18 | ref 19 | ref 20 | ref 21 | ref 22 | ref 23 | ref 24 | ref 25 | ref 26 | ref 27 | ref 28 | ref 29 | ref 30 | ref 31 | ref 32 | ref 33 | ref 34 | ref 35 | ref 36 | ref 37 | ref 38 | ref 39 | ref 40 | ref 41 | ref 42 | ref 43 | ref 44 | ref 45 | ref 46 | ref 47 | ref 48 | ref 49 | ref 50 | ref 51 | ref 52 | ref 53 | ref 54 | ref 55 | ref 56 | ref 57 | ref 58 | ref 59 | ref 60 | ref 61 | ref 62 | ref 63 | ref 64 | ref 65 | ref 66 | ref 67 | ref 68 | ref 69 | ref 70 | ref 71 | ref 72 | ref 73 | ref 74 | ref 75 | ref 76 | ref 77 | ref 78 | ref 79 | ref 80 | ref 81 | ref 82 | ref 83 | in press

3.1.6.41 Goodman, A.R., Cardozo, T., Abagyan, R.A., Altmeyer, A., Wisniewski, H.G., and Vilcek, J. (1996). Long Pentraxins: an Emerging Group of Proteins with Diverse Functions. Cytokine & Growth Factor Reviews, 7, 191-202

The earliest described pentraxins, C reactive protein (CRP) and serum amyloid P component (SAP), are cytokine-inducible acute phase proteins implicated in innate immunity whose concentrations in the blood increase dramatically upon infection or trauma. The highly conserved family of pentraxins was thought to consist solely of approximately 25 kDa proteins. Recently, several distinct larger proteins have been identified in which only the C-terminal halves show characteristic features of the pentraxin family. One of the recently described "long" pentraxins (TSG-14/PTX3) is inducible by TNF or IL-1 and is produced during the acute phase response. Other newly identified long pentraxins are constitutively expressed proteins associated with sperm-egg fusion (apexin/p50), may function at the neuronal synapse (neuronal pentraxin I, NPI), or may serve yet other, unknown functions (NPII and XL-PXN1). Evidence obtained by molecular modeling and by direct physicochemical analysis suggests that TSG-14 protein retains some characteristic structural features of the pentraxins, including the formation of pentameric complexes.