3 Publications
Next
3.1 Papers
Section Intro | Molecular modeling | Bioinformatics | docking | Methods and algorithms | Applications | Chronological list

3.1.6 Chronological list
Section Contents | ref 1 | ref 2 | ref 3 | ref 4 | ref 5 | ref 6 | ref 7 | ref 8 | ref 9 | ref 10 | ref 11 | ref 12 | ref 13 | ref 14 | ref 15 | ref 16 | ref 17 | ref 18 | ref 19 | ref 20 | ref 21 | ref 22 | ref 23 | ref 24 | ref 25 | ref 26 | ref 27 | ref 28 | ref 29 | ref 30 | ref 31 | ref 32 | ref 33 | ref 34 | ref 35 | ref 36 | ref 37 | ref 38 | ref 39 | ref 40 | ref 41 | ref 42 | ref 43 | ref 44 | ref 45 | ref 46 | ref 47 | ref 48 | ref 49 | ref 50 | ref 51 | ref 52 | ref 53 | ref 54 | ref 55 | ref 56 | ref 57 | ref 58 | ref 59 | ref 60 | ref 61 | ref 62 | ref 63 | ref 64 | ref 65 | ref 66 | ref 67 | ref 68 | ref 69 | ref 70 | ref 71 | ref 72 | ref 73 | ref 74 | ref 75 | ref 76 | ref 77 | ref 78 | ref 79 | ref 80 | ref 81 | ref 82 | ref 83 | in press

3.1.6.62 Li, D., Desai-Yajnik, V., Lo, E., Schapira, M., Abagyan, R., and Samulels, H.H. (1999). NRIF3 is a novel co-activator mediating functional specificity of nuclear hormone receptors. Molecular and Cellular Biology Oct, 19 (10), 7191-7202

Many nuclear receptors are capable of recognizing similar DNA elements. The molecular event(s) underlying the functional specificities of these receptors (in regulating the expression of their native target genes) is a very important issue that remains poorly understood. Here we report the cloning and analysis of a novel nuclear receptor coactivator (designated NRIF3) that exhibits a distinct receptor specificity. Fluorescence microscopy shows that NRIF3 localizes to the cell nucleus. The yeast two-hybrid and/or in vitro binding assays indicated that NRIF3 specifically interacts with the thyroid hormone receptor (TR) and retinoid X receptor (RXR) in a ligand-dependent fashion but does not bind to the retinoic acid receptor, vitamin D receptor, progesterone receptor, glucocorticoid receptor, or estrogen receptor. Functional experiments showed that NRIF3 significantly potentiates TR- and RXR- mediated transactivation in vivo but has little effect on other examined nuclear receptors. Domain and mutagenesis analyses indicated that a novel C-terminal domain in NRIF3 plays an essential role in its specific interaction with liganded TR and RXR while the N-terminal LXXLL motif plays a minor role in allowing optimum interaction. Computer modeling and subsequent experimental analysis suggested that the C-terminal domain of NRIF3 directly mediates interaction with liganded receptors through an LXXIL (a variant of the canonical LXXLL) module while the other part of the NRIF3 protein may still play a role in conferring its receptor specificity. Identification of a coactivator with such a unique receptor specificity may provide new insight into the molecular mechanism(s) of receptor-mediated transcriptional activation as well as the functional specificities of nuclear receptors.