3 Publications
Next
3.1 Papers
Section Intro | Molecular modeling | Bioinformatics | docking | Methods and algorithms | Applications | Chronological list

3.1.6 Chronological list
Section Contents | ref 1 | ref 2 | ref 3 | ref 4 | ref 5 | ref 6 | ref 7 | ref 8 | ref 9 | ref 10 | ref 11 | ref 12 | ref 13 | ref 14 | ref 15 | ref 16 | ref 17 | ref 18 | ref 19 | ref 20 | ref 21 | ref 22 | ref 23 | ref 24 | ref 25 | ref 26 | ref 27 | ref 28 | ref 29 | ref 30 | ref 31 | ref 32 | ref 33 | ref 34 | ref 35 | ref 36 | ref 37 | ref 38 | ref 39 | ref 40 | ref 41 | ref 42 | ref 43 | ref 44 | ref 45 | ref 46 | ref 47 | ref 48 | ref 49 | ref 50 | ref 51 | ref 52 | ref 53 | ref 54 | ref 55 | ref 56 | ref 57 | ref 58 | ref 59 | ref 60 | ref 61 | ref 62 | ref 63 | ref 64 | ref 65 | ref 66 | ref 67 | ref 68 | ref 69 | ref 70 | ref 71 | ref 72 | ref 73 | ref 74 | ref 75 | ref 76 | ref 77 | ref 78 | ref 79 | ref 80 | ref 81 | ref 82 | ref 83 | in press

3.1.6.40 Strynadka, N.C.J., Eisenstein, M., Katchalski-Katzir, E., Shoichet, B.K., Kuntz, I.D., Abagyan, R., Totrov, M., Janin, J., Cherfils, J., Zimmerman, F., Olson, A., Duncan, B., Rao, M., Jackson, R., Sternberg, M., and. James, M.N.G. (1996). Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nature Struct. Biol., 3, 233-239

Crystallization of the 1:1 molecular complex between the beta-lactamase TEM-1 and the beta-lactamase inhibitory protein BLIP has provided an opportunity to put a stringent test on current protein-docking algorithms. Prior to the successful determination of the structure of the complex, nine laboratory groups were given the refined atomic coordinates of each of the native molecules. Other than the fact that BLIP is an effective inhibitor of a number of beta-lactamase enzymes (KI for TEM-1 approximately 100 pM) no other biochemical or structural data were available to assist the practitioners in their molecular docking. In addition, it was not known whether the molecules underwent conformational changes upon association or whether the inhibition was competitive or non-competitive. All six of the groups that accepted the challenge correctly predicted the general mode of association of BLIP and TEM-1.