3 Publications
Next
3.1 Papers
Section Intro | Molecular modeling | Bioinformatics | docking | Methods and algorithms | Applications | Chronological list

3.1.6 Chronological list
Section Contents | ref 1 | ref 2 | ref 3 | ref 4 | ref 5 | ref 6 | ref 7 | ref 8 | ref 9 | ref 10 | ref 11 | ref 12 | ref 13 | ref 14 | ref 15 | ref 16 | ref 17 | ref 18 | ref 19 | ref 20 | ref 21 | ref 22 | ref 23 | ref 24 | ref 25 | ref 26 | ref 27 | ref 28 | ref 29 | ref 30 | ref 31 | ref 32 | ref 33 | ref 34 | ref 35 | ref 36 | ref 37 | ref 38 | ref 39 | ref 40 | ref 41 | ref 42 | ref 43 | ref 44 | ref 45 | ref 46 | ref 47 | ref 48 | ref 49 | ref 50 | ref 51 | ref 52 | ref 53 | ref 54 | ref 55 | ref 56 | ref 57 | ref 58 | ref 59 | ref 60 | ref 61 | ref 62 | ref 63 | ref 64 | ref 65 | ref 66 | ref 67 | ref 68 | ref 69 | ref 70 | ref 71 | ref 72 | ref 73 | ref 74 | ref 75 | ref 76 | ref 77 | ref 78 | ref 79 | ref 80 | ref 81 | ref 82 | ref 83 | in press

3.1.6.81 Zhou, Y. and Abagyan, R. (2002). Match-Only Integral Distribution (MOID) Algorithm for High-Density Oligonucleotide Array Analysis. BMC Bioinformatics.

Background: High-density oligonucleotide arrays have become a valuable tool for high-throughput gene expression profiling. Increasing the array information density and improving the analysis algorithms are two important computational research topics.

Results: A new algorithm, Match-Only Integral Distribution (MOID), was developed to analyze high-density oligonucleotide arrays. Using known data from both spiking experiments and no-change experiments performed with Affymetrix GeneChipO arrays, MOID and the Affymetrix algorithm implemented in Microarray Suite 4.0 (MAS4) were compared. While MOID gave similar performance to MAS4 in the spiking experiments, better performance was observed in the no-change experiments.MOID also provides a set of alternative statistical analysis tools to MAS4. There are two main features that distinguish MOID from MAS4. First, MOID uses continuous P values for the likelihood of gene presence, while MAS4 resorts to discrete absolute calls. Secondly, MOID uses heuristic confidence intervals for both gene expression levels and fold change values, while MAS4 categorizes the significance of gene expression level changes into discrete fold change calls.

Conclusions: The results show that by using MOID, Affymetrix GeneChipO arrays may need as little as ten probes per gene without compromising analysis accuracy.