3 Publications
Next
3.1 Papers
Section Intro | Molecular modeling | Bioinformatics | docking | Methods and algorithms | Applications | Chronological list

3.1.6 Chronological list
Section Contents | ref 1 | ref 2 | ref 3 | ref 4 | ref 5 | ref 6 | ref 7 | ref 8 | ref 9 | ref 10 | ref 11 | ref 12 | ref 13 | ref 14 | ref 15 | ref 16 | ref 17 | ref 18 | ref 19 | ref 20 | ref 21 | ref 22 | ref 23 | ref 24 | ref 25 | ref 26 | ref 27 | ref 28 | ref 29 | ref 30 | ref 31 | ref 32 | ref 33 | ref 34 | ref 35 | ref 36 | ref 37 | ref 38 | ref 39 | ref 40 | ref 41 | ref 42 | ref 43 | ref 44 | ref 45 | ref 46 | ref 47 | ref 48 | ref 49 | ref 50 | ref 51 | ref 52 | ref 53 | ref 54 | ref 55 | ref 56 | ref 57 | ref 58 | ref 59 | ref 60 | ref 61 | ref 62 | ref 63 | ref 64 | ref 65 | ref 66 | ref 67 | ref 68 | ref 69 | ref 70 | ref 71 | ref 72 | ref 73 | ref 74 | ref 75 | ref 76 | ref 77 | ref 78 | ref 79 | ref 80 | ref 81 | ref 82 | ref 83 | in press

3.1.6.69 Filikov, A.V., Mohan, V., Vickers, T.A., Griffey, R.H., Cook, P.D., Abagyan, R.A., and James, T.L. (2000). Identification of Ligands for HIV-1 TAR RNA via Structure Based Virtual Screening. JCAMD. Aug 14(6), 593-610

Binding of the Tat protein to TAR RNA is necessary for viral replication of HIV-1. We screened the Available Chemicals Directory (ACD) to identify ligands to bind to a TAR RNA structure using a four-step docking procedure: rigid docking first, followed by three steps of flexible docking using a pseudobrownian Monte Carlo minimization in torsion angle space with progressively more detailed conformational sampling on a progressively smaller list of top-ranking compounds. To validate the procedure, we successfully docked ligands for five RNA complexes of known structure. For ranking ligands according to binding avidity, an empirical binding free energy function was developed which accounts, in particular, for solvation, isomerization free energy, and changes in conformational entropy. System-specific parameters for the function were derived on a training set of RNA/ligand complexes with known structure and affinity. To validate the free energy function, we screened the entire ACD for ligands for an RNA aptamer which binds L-arginine tightly. The native ligand ranked 17 out of ca. 153,000 compounds screened, i.e., the procedure is able to filter out >99.98% of the database and still retain the native ligand. Screening of the ACD for TAR ligands yielded a high rank for all known TAR ligands contained in the ACD and suggested several other potential TAR ligands. Eight of the highest ranking compounds not previously known to be ligands were assayed for inhibition of the Tat-TAR interaction, and two exhibited a CD50 of ca. 1 microM.