3 Publications
Next
3.1 Papers
Section Intro | Molecular modeling | Bioinformatics | docking | Methods and algorithms | Applications | Chronological list

3.1.6 Chronological list
Section Contents | ref 1 | ref 2 | ref 3 | ref 4 | ref 5 | ref 6 | ref 7 | ref 8 | ref 9 | ref 10 | ref 11 | ref 12 | ref 13 | ref 14 | ref 15 | ref 16 | ref 17 | ref 18 | ref 19 | ref 20 | ref 21 | ref 22 | ref 23 | ref 24 | ref 25 | ref 26 | ref 27 | ref 28 | ref 29 | ref 30 | ref 31 | ref 32 | ref 33 | ref 34 | ref 35 | ref 36 | ref 37 | ref 38 | ref 39 | ref 40 | ref 41 | ref 42 | ref 43 | ref 44 | ref 45 | ref 46 | ref 47 | ref 48 | ref 49 | ref 50 | ref 51 | ref 52 | ref 53 | ref 54 | ref 55 | ref 56 | ref 57 | ref 58 | ref 59 | ref 60 | ref 61 | ref 62 | ref 63 | ref 64 | ref 65 | ref 66 | ref 67 | ref 68 | ref 69 | ref 70 | ref 71 | ref 72 | ref 73 | ref 74 | ref 75 | ref 76 | ref 77 | ref 78 | ref 79 | ref 80 | ref 81 | ref 82 | ref 83 | in press

3.1.6.76 Norledge, B.V., Lambeir, A.M., Abagyan, R.A., Rottmann, A., Fernandez, A.M., Filimonov, V., Peter, M.G., and Wierenga, R.K. (2001). Modeling, mutagenesis, and structural studies on the fully conserved phosphateloop (loop 8) of triosephosphate isomerase: toward a new substrate specificity. Proteins. Feb 15;42(3), 383-9

Loop 8 (residues 232-242) in triosephosphate isomerase (TIM) is a highly conserved loop that forms a tight binding pocket for the phosphate moiety of the substrate. Its sequence includes the fully conserved, solvent-exposed Leu238. The tight phosphate-binding pocket explains the high substrate specificity of TIM being limited to the in vivo substrates dihydroxyacetone-phosphate and D-glyceraldehyde-3-phosphate. Here we use the monomeric variant of trypanosomal TIM for exploring the structural consequences of shortening this loop. The mutagenesis, guided by extensive modeling calculations and followed up by crystallographic characterization, is aimed at widening the phosphate-binding pocket and, consequently, changing the substrate specificity. Two new variants were characterized. The crystal structures of these variants indicate that in monomeric forms of TIM, the Leu238 side-chain is nicely buried in a hydrophobic cluster. Monomeric forms of wild-type dimeric TIM are known to exist transiently as folding intermediates; our structural analysis suggests that in this monomeric form, Leu238 of loop 8 also adopts this completely buried conformation, which explains its full conservation across the evolution. The much wider phosphate-binding pocket of the new variant allows for the development of a new TIM variant with a different substrate specificity.