>> Center for Computational Physics

Publications

J. Opt. Soc. Am. B 30, 468 (2013)

SCI

One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage

Si-Yang Hao, Yan Xia, Jie Song and Nguyen Ba An

We propose a scheme to deterministically generate Greenberger–Horne–Zeilinger states of N ≥ 3 atoms trapped in spatially separated cavities connected by optical fibers. The scheme is based on the technique of fractional stimulated Raman adiabatic passage, which is a one-step technique in the sense that one needs only to wait for the desired entangled state to be generated in the stationary regime. The parametrized shapes of the Rabi frequencies of the classical fields that drive the two end atoms are chosen appropriately to realize the scheme. We also show numerically that the proposed scheme is insensitive to fluctuations of the pulses’ parameters and, at the same time, that it is robust against decoherence caused by the dissipation due to fiber decay. Moreover, a relatively high fidelity can be obtained even in the presence of cavity decay and atomic spontaneous emission.