| ||||||||||
Publications |
Proceedings of the National Academy of Sciences of USA 116, 21385-21391 (2019)
ISSN: 1091-6490, SCI Electronic structure of dense solid oxygen from insulator to metal investigated with X-ray Raman scatteringHiroshi Fukuia, Le The Anh, Masahiro Wada, Nozomu Hiraoka, Toshiaki Iitaka, Naohisa Hirao, Yuichi Akahama, and Tetsuo Irifune Electronic structures of dense solid oxygen have been investigated up to 140 GPa with oxygen K-edge X-ray Raman scattering spectroscopy with the help of ab initio calculations based on density functional theory with semilocal metageneralized gradient approximation and nonlocal van der Waals density functionals. The present study demonstrates that the transition energies (Pi*, Sigma*, and the continuum) increase with compression, and the slopes of the pressure dependences then change at 94 GPa. The change in the slopes indicates that the electronic structure changes at the metallic transition. The change in the Pi* and Sigma* bands implies metallic characteristics of dense solid oxygen not only in the crystal a–b plane but also parallel to the c axis. The pressure evolution of the spectra also changes at ∼40 GPa. The experimental results are qualitatively reproduced in the calculations, indicating that dense solid oxygen transforms from insulator to metal via the semimetallic transition. DOI: 10.1073/pnas.1905771116 Download: | |||||||||
Home |
Library |
Tiếng Việt
© 2010 Center for Computational Physics Institute of Physics, 10 Dao Tan, Ba Dinh, Ha Noi |