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Abstract. Contribution of the free electrons to the paramagnetic susceptibility of metals at low
temperature is investigated by using the q-deformed Fermi-Dirac statistics. Besides the general
Pauli term, in our analytic expression of the paramagnetic susceptibility, the contribution of the
q-deformed is also taken into account. Our numerical evaluation for some typical metals Na, K,
Cs, Rb and Ba shows the adequation with one measured in experimental. In the low temperature
limit, we also pointed out the weakly temperature dependence of the paramagnetic susceptibility of
the metals.

I. INTRODUCTION

In metal many electrons can move freely throughout the crystal that leads the
metal often to be a high electrical conductivity candidate with the electrical conductivity
typically being around 106 to 108 Ω−1m−1. For instance, if each atom in material contains
only one free electron, there would be about 1022 conduction electrons in a cm3. Depending
on which distribution function used to consider the free-electron gas, a different theory
could be established: (i) Once free electrons are considered as simplest classical gas settling
on the same energy, the Drudes theory can be used to analyze issues arising on the metal;
(ii) In the case of using the Maxwell-Boltzmann distribution function for the classical
gas, the metal can be described in the framework of the Lorentzs theory; (iii) In the
quantum feature with the Fermi-Dirac distribution function being used, the Sommerfelds
theory is proposed instead. In the mean of these theories, the paramagnetic susceptibility
of the free electrons in the metals had been studied in detail [2, 5]. In this article, we
propose another way to apply the statistical distribution of Fermi-Dirac -q deformation to
investigate the paramagnetic susceptibility of metals at low temperature. We will point
out the analytical expressions of the paramagnetic susceptibility of metals as well as the
q-deformed parameter. Our numerical evaluation for some typical metals Cs, Na, K, Rb
and Ba will be discussed and compared with one measured in experiments [8, 9, 10, 11].

II. THEORY

According to the classical free electron theory, the paramagnetic susceptibility of
the free electrons must obey the Curie’s law [2, 5].

χ =
I

H
=

Nµ2
B

kBT
(1)
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where I is the magnetization, H is magnetic field, N is the total number of free electrons,
µB is magneton Bohr, kB is the Boltzmann constant and T is the absolute temperature.
The paramagnetic susceptibility of the free electrons in equations (1) shows its inverse
proportion to the temperature.
In the quantum theory, Pauli pointed out another expression for the paramagnetic sus-
ceptibility of the free electrons, which does not depend on temperature [5].

χ =
3

2

Nµ2
B

kBTF

. (2)

Here TF is the Fermi temperature.
Now we consider aramagnetic susceptibility of metals in the theory of q-deformed Fermi-
Dirac statistiec.
In the q-deformed formalism, the Fermions oscillator operators satisfy the following com-
mutative relations [3, 4, 6, 7].

b̂b̂+ + qb̂+b̂ = q−N̂ (3)

where

b̂+b̂ =
{
N̂
}
q

(4)

b̂b̂+ =
{
N̂ + 1

}
q

(5)

with the q-deformed Fermions number:

{N}q =
q−n − (−1)nqn

q + q−1
(6)

In statistical physics, the thermal average expression of the operator F̂ reads:

〈
F̂
〉
=

Tr
(
exp

{
−β(Ĥ−µN̂)

}
.F̂

)

Tr
(
exp

{
−β(Ĥ−µN̂)

}) (7)

Where µ is the chemical, Ĥ is the Hamiltonian operator of the system, β = 1
kBT

.

From equation (7) one can evaluate the average number of particles with the same energy
as follows:

〈
N̂
〉
=

Tr
(
exp

{
−β(Ĥ−µN̂)

}
N̂
)

Tr
(
exp

{
−β(Ĥ−µN̂)

}) (8)

The calculations give the following results:

Tr

(
exp

{
−β(Ĥ − µN̂)

}{
N̂
}
q

)
=

∞∑
n=0

〈n|e−β(ε−µ)N̂
{
N̂
}
q
|n〉

=
∞∑
n=0

〈n|e−β(ε−µ)n {n}q |n〉 =
∞∑
n=0

e−β(ε−µ)n {n}q

=
∞∑
n=0

e−β(ε−µ)n.
q−n

−(−1)nqn

q+q−1
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= 1
q+q−1

[
∞∑
n=0

(
q−1.e−β(ε−µ)

)n
−

∞∑
n=0

(
−q.e−β(ε−µ)

)n
]

= 1
q+q−1

[
1

1−q−1.e−β(ε−µ) −
1

1+q.e−β(ε−µ)

]

=
e−β(ε−µ)

1 + (q − q−1)e−β(ε−µ) − e−2β(ε−µ)
(9)

On the other hand:

Tr
(
exp

{
−β(Ĥ − µN̂)

})
=

∞∑
n=0

〈n|e−β(ε−µ)N̂ |n〉

=
∞∑
n=0

〈n|e−β(ε−µ)n |n〉 =
∞∑
n=0

e−β(ε−µ)n

=
1

1− e−β(ε−µ)
(10)

Substituting equation (9) and equation (10) into equation (8), we obtain the q-deformed
Fermi-Dirac distribution function as following:

n (ε) = fq (ε) =
eβ(ε−µ) − 1

e2β(ε−µ) + (q − q−1) eβ(ε−µ) − 1
(11)

In quantum mechanics, the temperature dependence of density of state on energy must
read fq (ε, T )×D (ε) [2, 5].
Therefore

fq (ε, T )×D (ε) =
eβ(ε−µ) − 1

e2β(ε−µ) + (q − q−1) eβ(ε−µ) − 1
·
V

2π2

(
2m

~2

) 3
2

ε
1
2 (12)

In magnetic field, the free electrons would be redistributed. Part of the electrons with spin
settling opposite with the magnetic field can reverse their spins and with the rest ones
modify the total magnetization. That means, the magnetization changes to

I = (N+ −N−)µB (13)

where

N+ =
1

2

εF∫

−µBH

dεfq (ε, T )D (ε+ µBH) =
1

2
I1q (14)

N− =
1

2

εF∫

+µBH

dεfq (ε, T )D (ε− µBH) =
1

2
I2q. (15)

Substituting equation (14) and equation (15) into equation (13) one delives:

I =
1

2
(I1q − I2q)µB (16)
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with

I1q =
εF∫

−µBH

dεfq (ε, T )D (ε+ µBH)

=
εF∫

−µBH

e
ε−µ
kT −1

e
2.

ε−µ
kT +(q−q−1)e

ε−µ
kT −1

· V
2π2

(
2m
~2

) 3
2 (ε+ µBH)

1
2dε

(17)

and

I2q =
εF∫

+µBH

dεfq (ε, T )D (ε− µBH)

=
εF∫

+µBH

e
ε−µ
kT −1

e
2.

ε−µ
kT +(q−q−1)e

ε−µ
kT −1

· V
2π2

(
2m
~2

) 3
2 (ε− µBH)

1
2dε

(18)

Integrals in equation (17) and equation (18) can be evaluated approximately and we obtain

I1q = α
2

3
ε

3
2
F

(
1 +

3

2

µBH

εF

)
+ αε

−
1
2

F

(
1−

1

2

µBH

εF

)
F (q) (kBT )

2 (19)

I2q = α
2

3
ε

3
2
F

(
1−

3

2

µBH

εF

)
+ αε

−
1
2

F

(
1 +

1

2

µBH

εF

)
F (q) (kBT )

2 (20)

Where α = V
2π2

(
2m
~2

) 3
2 and

F (q) = −
1

q2 + 1

[
q (q − 1)

∞∑

k=1

(q)k

k2
+ (1 + q)

∞∑

k=1

(−q)k

k2
− q

∞∑

k=1

(q)k

k3
+

∞∑

k=1

(−q)k

k3

]
(21)

From Eqs. (16), (19) and (20) we have:

I = αε
1
2
Fµ

2
BH −

1

2

µ2
B

ε
3
2
F

αε
−

1
2

F HF (q) (kBT )
2 (22)

Thus

χ =
I

H
= αε

1
2
Fµ

2
B −

µ2
B

2ε
3
2
F

αε
−

1
2

F F (q) · (kBT )
2 (23)

with the following notations:

α =
V

2π2

(
2m

~2

) 3
2

,N =
V

3π2

(
2mεF

~2

) 3
2

, εF =
~
2

2m

(
3π2N

V

) 2
3

(24)

Equation (23) can be rewritten and our paramagnetic susceptibility expression finally
reads.

χ =
I

H
=

3

2

Nµ2
B

εF
−

3

4

Nµ2
B

ε3F
F (q) (kBT )

2 (25)
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Table 1. The experimental data for the Fermi energy and the obtained results of
F(q) [5, 12].

Metals Cs K Na Rb Ba
εF (eV ) 1.58 2.12 3.23 1.85 3.65
F (q) 1.17585 1.02554 1.03666 1.03695 2.29199

Table 2. The experimental and theoretical valuas of the paramagnetic suscepti-
bility of metals.

Metals Cs K Na Rb Ba
χexp × 10−6cm3.mol−1 +29 +20.8 +16 +17 +20.6
χtheo×10−6cm3.mol−1 +30.67 +22.86 +15 +16.21 +21.86

III. NUMERICAL RESULTS AND DISCUSSIONS

In the CGS units, the paramagnetic susceptibility in the q-deformed theory can be
evaluated belonging to according (25). values.

Table 2 shows a comparison of our results with ones observed in experimental [2,
8, 9, 10, 11, 12]. At T=0K, equation (25) leads to the paramagnetic susceptibility of the
free electrons evaluated according to the Pauli quantum theory [5]:

χ =
3

2

Nµ2
B

kBTF
(26)

Fig. 1. The temperature dependence of paramagnetic susceptibility for cesium.
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Fig. 2. The temperature dependence of paramagnetic susceptibility for potassium.

Whereas at low temperature, the adjustment quantity can be derived from the
components that depend on the q-deformed. The result reads

−
3

4

Nµ2
B

ε3F
F (q) (kBT )

2 (27)

Fig. 3. The temperature dependence of paramagnetic susceptibility for sodium.

Using Maple, distortion parameter q can be obtained in corresponding to F (q)(
Table. 1) for each metal, which was reported in the online proceeding of 36th NCTP .
Evaluating equation (27) indicates that the adjustment quantity is quite small. That
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Fig. 4. The temperature dependence of paramagnetic susceptibility for rubidium .

concludes the slight temperature dependence of paramagnetic susceptibility of the free
electrons in metals as observed in experiment. Molt paramagnetic susceptibility in metals
versus temperature for each metal is displayed in Figs. 1.1-1.4 In addition, when taking
the contribution of the deformation into account, the paramagnetic susceptibility results
for some typical metals are more suitable with ones evaluated by Pauli. Our results are
also looks better in comparing with the observations in the experiments [8, 9, 10, 11].

IV. CONCLUSIONS

Consulting the empirical data to the q-deformed Fermi-Dirac statistics we have
considered the electron contribution to the paramagnetic susceptibility. Obtained results
show an agreement with that observed in experiments [8, 9, 10, 11]. At low temperature,
we point out that the paramagnetic susceptibility of the metal seems to be independent
on temperature. Comparing with experiments, in the presence of the deformation, our
results look better than ones evaluated from equation of Pauli. Increasing temperature
leads to the decimation of the paramagnetic susceptibility. That behavior one more affirms
the advantages of the q-deformation contribution in evaluating the paramagnetic suscep-
tibility if one compares to that observed in bulk paramagnetic susceptibility. Without the
q-deformation contribution, our result return to the Pauli theory to describe paramagnetic
susceptibility in the metal [5].
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