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Abstract. The analytic expression of molar heat capacity under constant volume of molecular
cryocrystals of nitrogen type with hcp structure is obtained by the statistical moment method and
the self-consistent field method taking account of the anharmonicity in lattice vibrations and molec-
ular rotational motion. Numerical results for molecular cryocrystals of N2 type (β-N2,β-CO) are
compared with experiments.

I. INTRODUCTION

The study of heat capacity for molecular cryocrystals of nitrogen type is carried out
experimentally and theoretically by many researchers. For example, the heat capacity of
solid nitrogen is measured by Giauque and Clayton [1], Bagatskii, Kucheryavy, Manzhelii
and Popov [2]. The heat capacity of solid carbon monoxide is determined by Clayton and
Giauque [3], Gill and Morrison [4]. Theoretically, the heat capacity of solid nitrogen and
carbon monoxide is investigated by the Debye heat capacity theory, the Einstein heat ca-
pacity theory, the self-consistent phonon method (SCPM), the self-consistent field method
(SCFM), the pseudo-harmonic theory and the statistical moment method (SMM) [5, 6,
7]. In [5, 6] the heat capacities at constant volume and at constant pressure of β−N2 and
β−CO crystals are calculated by SMM only taking account of lattice vibration and the
obtained results only agreed qualitatively with experiments. The heat capacity at constant
volume of crystals of N2 type in pseudo-harmonic approximation is considered by SCFM
only taking account of molecular rotations [8]. In this report we study the heat capacity
at constant volume of α−N2 and α−CO crystals in pseudo-harmonic approximation by
combining SMM and SCFM taking account of both lattice vibrations and molecular rota-
tions. In section 2, we derive the heat capacity at constant volume for crystals with hcp
structure taking into account lattice vibrations by SMM and for crystals of N2 type taking
into account molecular rotations by SCFM. Our calculated vibrational and rotational heat
capacities for β−N2 and β−CO crystals are summarized and discussed in section 3.
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II. THEORY

2.1. The heat capacity at constant volume of crystals with hcp structure by
SMM.

The displacement of a particle from equilibrium position on direction x (or direction
y) is given approximately [6] by:
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Here kB is the Boltzmann constant, T is the absolute temperature, m is the mass of
particle at lattice node, ωx is the frequency of lattice vibration on direction x (or y),
kx, kxy and γ are the parameters of crystal depending on the structure of crystal lattice
and the interaction potential between particles at nodes, ϕi0 is the interaction potential
between the ith particle and the 0th particle and uiαis the displacement of ith particle
from equilibrium position on direction α(α = x, y, z).

The lattice constant on direction x (or y) is determined by a = a0 + ux0,where a0
is the distance a at temperature 0K and is determined from experiments.

The displacement of a particle from equilibrium position on direction z approxi-
mately is as follows [6]:
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Here ωz is the frequency of lattice vibration on direction z and kz, τ1, τ2 and τ3 also are
the parameters of crystal.

The lattice constant on direction z is determined by c = c0 + uz0,where c0 is the
distance c at temperature 0K and is determined from experiments.
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The free energy of crystals with hcp structure has the form [6]:
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Applying the Gibbs-Helmholtz relation and using (3), we find the expression for the energy
of crystal
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where:
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The vibrational molar heat capacity at constant volume is determined by [6]:
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2.2. The heat capacity at constant volume of crystals with hcp structure by
SCFM.

Using SCFM, only taking account of molecular rotation, the rotational free energy of
crystals with fcc and hcp structures in pseudo-harmonic approximation (when U0η/B >>
1 or T/

√
U0Bη << 1)is determined by [7]:
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where U0is the barrier, which prevents the molecular rotation at T = 0 K, B = ~2/(2I)is
the intrinsic rotational temperature or the rotational quantum or the rotational constant.
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The rotational molar heat capacity at constant volume in pseudo-harmonic approximation
is determined by the following expression [7]:
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The total molar heat capacity at constant volume in pseudo-harmonic approximation is
determined by the following expression:
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III. NUMERICAL RESULTS AND DISCUSSION

In order to apply the theoretical results in Section 2 to molecular cryocrystals of nitrogen
type, we use the Lennard-Jones (LJ) potential
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where ε1/kB = 95.1 K, σ = 3.708.10−10m for β−N2; ε1/kB = 100.1 K, σ = 3.769.10−10m
for β−CO [6]. In the approximation of two first coordination spheres, the crystal param-
eters are given by [6]:
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where a is the nearest neighbour distance (or the lattice constant on direction x or y)
at temperature T. The LJ potential has a minimum value corresponding to the posi-
tion r0 = σ 6

√
2 ≈ 1.2225σ. However, since there is interaction of many particles, the

nearest neighbour distance a0 in the lattice is smaller than r0. It is equal to a0 =
r0

6
√
A12/A6 ≈ 1.0865σ, where A6 and A12 are the structural sums and they have the

values A6 = 14.1601, A12 = 11.648 for a hcp crystal [6]. From the above mentioned
results, we obtain the values of crystal parameters at 0 K. From that, we calculate the
nearest neighbour distances of the lattice, the vibrational molar heat capacities at constant
volume in different temperatures by SMM as in [5, 6]. The values of B,U0 and the values
of η at various temperatures are given in Tables 1, 2 and 3. Our calculated results for
the lattice constant a and the molar heat capacities CvibV , CrotV , CV for β−N2and β−CO
crystals are shown in Figures 1-3. In comparison with experiments, the heat capacity
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calculated by both SMM and SCFM is better than the heat capacity calculated by only
SMM or only SCFM. Both the lattice vibration and the molecular rotation have impor-
tant contributions to thermodynamic properties of molecular cryocrystals of nitrogen type.

Table 1. Values of B and U0 for β−N2and β−CO crystals

Crystal β−N2 β−CO

B(K) 2.8751 2.7787

U0(K) 325.6 688.2

Table 2. Values of η at various temperatures for β−N2crystal

T (K) 36 38 40 42 44 45.354

η 0.8633 0.8617 0.8544 0.8404 0.8244 0.8038

Table 3. Values of η at various temperatures for β−CO crystal

T (K) 62 64 66 68

η 0.9100 0.9099 0.9060 0.8942

Figure 1. Nearest neighbour distances a at various temperatures
for β−N2 and β−CO crystals



185

Figure 2. Heat capacities at constant volume Cvib
V , Crot

V , CV

in different temperatures for β−N2 crystal

Figure 3. Heat capacities at constant volume Cvib
V , Crot

V , CV

in different temperatures for β−CO crystal
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