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Abstract. The acoustoelectric current in a rectangular quantum wire (RQW) with an infinite
potential is calculated by using the quantum kinetic equation for the distribution function electrons
interacting with internal and external phonons. The analytic expression for the acoustoelectric
current in the RQW with an infinite potential is obtained. The dependence of the acoustoelectric
current on the temperature of the system T , the acoustic wave number q and the parameters of the
RQW with an infinite potential are obtained. The theoretical results are numerically evaluated,
plotted and discussed for the specific RQW with an infinite potential GaAs. The results are
compared with those for normal bulk semiconductors and quantum well to show the differences.

I. INTRODUCTION

Recent, there have been more and more interests in studying the behavior of low-
dimensional system, such as superlattices, quantum wells, quantum wires and quantum
dots. In particular, in quantum wires, the motion of electrons is restricted in two di-
mensions, so that they can flow freely in one dimension. The confinement of electron in
these systems changes the electron mobility remarkably. This results in a number of new
phenomena, which concern a reduction of sample dimensions. In particular differ consid-
erably from those in the bulk semiconductor, electron-phonon interaction and scattering
rates [1], acoustic-electromagnetic wave interaction [2].

It is well known that the propagation of the acoustic wave in conductors is accom-
panied by the transfer of the energy and momentum to conduction electrons which may
give rise to a current usually called the acoustoelectric current, in case of an open circuit
called acoustoelectric effect. This leads to the emergence of a longitudinal acoustoelectric
effect, i.e., a stationary electric current running in a sample in the direction opposite to
that of the wave. The study of acoustoelectric effect in bulk materials has received a lot
of attention [3-5]. Recently, there have been growing interests in investigating this effect
in mesoscopic structures [6, 7]. Especially, in recent time the acoustoelectric effect was
studied in both a one dimensional channel [8] and in a finite-length ballistic quantum
channel [9, 10]. In addition, the acoustoelectric effect was measured by an experiment in
a submicron-separated quantum wire [11], in a carbon nanotube [12] and this effect was
also studied in the cylindrical quantum wire (CQW) with an infinite potential [13].

However, the acoustoelectric current in the RQW with an infinite potential has
not been studied yet. Therefore, the purpose of this work is to examine this current
in the RQW with an infinite potential. In this paper, we present a calculation of the
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acoustoelectric current in a RQW with an infinite potential by using the quantum kinetic
equation for the distribution function of electrons interacting with internal and external
phonons. We assume the deformation mechanism of electron-acoustic phonon interaction.
We have obtained the acoustoelectric current in the RQW with an infinite potential. The
dependence of the expression for the acoustoelectric current on acoustic wave numbers,
the temperature and the width of the RQW has been shown. Numerical calculations are
carried out for GaAs RWQ to clarify our results.

II. THE QUANTUM KINETIC EQUATION FOR ELECTRONS IN THE

PRESENCE OF AN ULTRASOUND

Let us suppose that the acoustic wave of frequency ωq is propagating along the
RQW with an infinite potential axis (Oz) and the magnetic field is oriented along the
Ox axis. We consider the most realistic case from the point of view of a low-temperature
experiment, when ωq/η = vs|q|/η ≪ 1 and ql ≫ 1, where vs is the velocity of the acoustic
wave, q is the acoustic wave number and l is the electron mean free path. The compatibility
of these conditions is provided by the smallness of the sound velocity in comparison with
the characteristic Fermi velocity of electrons.

When the magnetic field is applied in the x-direction, in case the vector potential
is chose A = −zH, the eigenfunction of an unperturbed electron is expressed as follows:
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where a and b are, respectively, the cross-sectional dimensions along x- and y-directions,
n,N are the subband indexes, L is the length of the wire, and ~p = (0, 0, pz) is the electron
momentum vector along z-direction. The electron energy spectrum takes the form:

εn,N
~pz

=
~p2z
2m

+
π2~2

2m

(

n2

a2
+
N2

b2

)

. (2)

If the conditions ωq/η = vs|q|/η ≪ 1 and ql ≫ 1 are satisfied, a macroscopic approach
to the description of the acoustoelectric effect is inapplicable and the problem should
be treated by using quantum mechanical methods. We also consider the acoustic wave
as a packet of coherent phonons. Therefore, first we have to first find the Hamiltonian
describing the interaction of the electron-phonon system in the RQW with an infinite
potential, which can be written in the secondary quantization representation as follows:
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bulk acoustic wave, ρ is the mass density of the medium, S = ab is the surface area, Λ is the
deformation potential constant, a+n,N,~pz

(an,N,~pz) is the creation (annihilation) operator of

the electron, respectively, and b~q is the annihilation operator of the external phonon. |n,~k〉
(|n′, ~k + ~q〉) is electron state before (after) interaction, Un,N,n,N is the matrix element of

the operator U = exp(iqy − klz), kl =
√

q2 − (ωq/vl)2 is the spatial attenuation factor of
the potential part of the displacement field. Using Eq.(1) it is straightforward to evaluate
the matrix elements of the operator U . The result is Un,N,n,N = 4exp(−klL)/L.

The electronic form factor, In,N,n,N , is written as [15] follows:
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here n, n′ (N , N ′) is the position (radial) quantum number, qx, qy is wave vector.
In order to establish the quantum kinetic equation for electrons in the presence

of an ultrasound, we use equation of motion of statistical average value for electrons

i~
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t
, where 〈X〉t means the usual thermodynamic average

of operator X and fn,N,~pz(t) = 〈a+n,N,~pz
an,N,~pz〉t is the particle number operator or the

electron distribution function.
Using Hamiltonian in Eq.(3) and performing operator algebraic calculations, we

obtain a quantum kinetic equation for the electron. This can be formulated as follows:
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with Nq being the external phonon number, Nk is the internal phonon number and δ is
the Kronecker delta symbol.

Solving the Eq.(5), we find
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where τ is momentum relaxation time.

III. ANALYTICAL EXPRESSION FOR THE ACOUSTOELECTRIC

CURRENT

The density of the acoustoelectric current is generally given by:

j =
e

π~

∑
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∫

V~pzfn,N,~pzdpz, (7)

here V~pz is the average drift velocity of the moving charges.
Substituting Eq.(6) into Eq.(7) and we linearize the equation by replacing fn,N by

fF . With fF = [1−exp(β(ε−εF ))]−1 is the Fermi-Dirac distribution function, β = 1/kBT ,
kB is Boltzmann constant, T is the temperature of the system and εF is the Fermi energy.
By carrying out manipulations we obtained an expression for the acoustoelectric current
as follows
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with
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The Eq.(8) is the acoustoelectric current in a RQW with an infinite potential. We can
see that the dependence on the frequency ω~q is nonlinear. These results are different from
those obtained in bulk semiconductor [5] and in the CQW with an infinite potential [13].

IV. NUMERICAL RESULTS AND DISCUSSIONS

To clarify the results that have been obtained, in this section, we consider the acous-
toelectric current in a GaAs RQW with an infinite potential. This quantity is considered
as a function the frequency ω~q of ultrasound, the temperature of system T , and the pa-
rameters of the RQW with an infinite potential. The parameters used in the numerical
calculations are as follow: τ = 10−12s; Λ = 13.5eV ; a = b = 100Å;W = 104Wm−2; ρ =
5320kgm−3; vs = 5370ms−1;ω~qz = 109s−1; vl = 2 × 103ms−1, vt = 18 × 102ms−1;m =
0.067me, me being the mass of free electron.
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Figure 1: The dependence of the
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Figure 2: The dependence of the

acoustoelectric current on the width of the

RQW.

Figure 1 gives the dependence of the acoustoelectric current on the temperature T
of the RQW with the acoustic wave number q = 1.20 × 107m−1, q = 3.20 × 107m−1 and
q = 5.20 × 106m−1. The result shows the different behavior from results in the quantum
well [14]. As in the quantum well, in the RQW with an infinite potential the acoustoelectric
current is non-linear, but in the RQW the value of the acoustoelectric current strongly
decreases with the temperature in a small value range.



162 NGUYEN VAN NGHIA, DINH QUOC VUONG, NGUYEN QUANG BAU

In the figure 2, we show the dependence of the acoustoelectric current on the width
of the RQW with the temperature T = 100K, T = 150K and T = 200K. The value of
the acoustoelectric current decreases as the width of the RQW increases.

V. CONCLUSIONS

In this paper, we have theoretically investigated the possibility of the acoustoelectric
current in the RQW with an infinite potential. We have obtained analytical expressions
for the acoustoelectric current in the RQW for the quantum limit case. We find strong
dependences of acoustoelectric current on the acoustic wave number q, the temperature T
and the width of the RQW. The result shows that the cause of the acoustoelectric current
is the existence of partial current generated by the different energy groups of electrons,
and the dependence of the electron energy due to momentum relaxation time.

The numerical result obtained for GaAs RQW with an infinite potential shows the
dependence of the acoustoelectric current on the width of the RQW is reduced in the low
temperature region. The dependence of the acoustoelectric current on the temperature
of the system is significantly reduced in the low temperature region and the current is
approximately constant in the high temperature region. This dependence is different in
comparison with that in quantum well [14]. The results show a geometrical dependence of
the acoustoelectric current due to the confinement of electrons in RQW with an infinite
potential.
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