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Abstract. The analytic expressions of thermodynamic quantities such as the Helmholtz free en-
ergy, the internal energy, the entropy, the molar specific heats under constant volume and under
constant pressure, etc. of molecular cryocrystals of N2 type with fcc structure are obtained by the
statistical moment method and the self-consistent field method taking account of the anharmonicity
in lattice vibrations and molecular rotational motion. Numerical results for molecular cryocrystals
of N2 type ( α−N2, α− CO) are compared with the experimental data.

I. INTRODUCTION

Molecular crystals, comprising a vast and comparatively scarcely investigated class
of solids, are characterized by a diversity of properties. Up to now only solidified noble
gases have systematically been investigated and this is due to the availability of the rele-
vant theoretical models and to the ease of comparing theories with experimental results.
Recently experimental data have been obtained for simple non-monoatomic molecular
crystals as well, which in turn has stimulated the appearance of several theoretical papers
on that subject. This paper deals with the analysis of thermodynamic properties of the
group of non-monoatomic molecular crystals including solid N2 and CO that have similar
physical properties. These crystals are formed by linear molecules and in their ordered
phase, the molecular centres of mass are situated at the site of fcc pattern, the molecular
axes being directed the four spatial diagonals of a cube (space group Pa3). The character-
istic feature of the intermolecular interaction in such crystals is that the non-central part
of the potential results from quadrupole forces and from the part of valency and dispersion
forces having the analogous angular dependence as quadrupole forces, and further, that
dipole interaction either does not exist (N2) or is negligible (CO) to influence the majority
of thermodynamic properties. In addition, all crystals considered have a common feature,
namely their intrinsic rotational temperatures B = ~2/2I (I is the momentum of inertia
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of the corresponding molecule) are small compared to the energy of non-central interac-
tion. In the low-temperature range, it is reasonable to apply an assumption successfully
used by the authors [1, 2] that translational motions of the molecular system are indepen-
dent. As shown [3] there are two types of excitations in molecular crystals phonons and
librons and furthermore, the thermodynamic functions can be written as a sum of two in-
dependent terms corresponding to each subsystem. In such a treatment, the translational
orientational interaction leads to a renormalization of the sound velocity and of the libron
dispersion law only. The investigation of the librational behavior of molecules is usually
carried out within the framework of the harmonic approximation. However, anharmonic
effects for the thermodynamic properties are essential at temperatures substantially lower
than the orientational disordering temperature. The effect of molecular rations in N2 and
CO crystals not restricted by the assumption of harmonicity of oscillations has been cal-
culated numerically in the molecular field approximation by Kohin [4]. Full calculations
on thermodynamic properties of molecular crystals of type N2 are given by the statistical
moment method (SMM) in [5, 6] and by self-consistent field method (SCFM) in [9]. In
[7], the low temperature heat capacity at constant volume of the molecular crystals of
type N2 is studied by combining the SMM and the SCFM. This paper represents fur-
ther investigations of anharmonic effects of lattice vibrations and molecular rotations on
other thermodynamic properties (such as the free energy, the energy, the entropy, the heat
capacity at constant pressure, etc) of the crystals of type N2.

II. THEORY

Using SMM, only taking account of lattice vibration, the vibrational free energy of
crystals with fcc structure is approximately determined by the following expression [8]:
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where kB is the Boltzmann constant, T is the absolute temperature, m is the mass of
particle at lattice node, ω is the frequency of lattice vibration,k, γ1 and γ2 are the param-
eters of crystal depending on the structure of crystal lattice and the interaction potential
between particles at nodes, ϕi0 is the interaction potential between the ith particle, and
the 0th particle, uiα is the displacement of ith particle from equilibrium position in the
direction α and N is the number of particles per mole or the Avogadro number. This for-
mula permits to find the free energy at temperature T if knowing the value of parameters
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k, γ1 and γ2 at temperature T0 (for example T0 = 0 K). If T0 is not far from T , then we
can see that the vibration of a particle around a new equilibrium position (corresponding
to T0 ) is harmonic. Therefore, the vibrational free energy of crystal is that of N harmonic
oscillators:

Ψvib ≈ 3N
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Using SCFM, only taking account of molecular rotation, the rotational free energy
of crystals with fcc structure in pseudo-harmonic approximation (when U0η/B ≥ 1 or

T/
√

(U0Bη) ≤ 1) is determined by [9]:
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where U0 is the barrier, which prevents the molecular rotation at T = 0 K, B = ~2/2I is
the intrinsic rotational temperature or the rotational quantum or the rotational constant
and η is the ordered parameter In classical approximation (when T/

√
U0Bη � 1 , the

rotational free energy has the form [9]:
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where Ψrot is the rotational free energy of the system of non-interaction rotators and is one
of angles determining the position of symmetric axe of molecular field for the coordinate
system of crystal. In self-consistent libron approximation (SCLM), the rotational free
energy of crystal becomes [9]:
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Taking account of both lattice vibration and molecular rotation, the total free energy of
crystal is the sum of the vibrational free energy and the rotational free energy:

Ψ = Ψvib + Ψrot . (6)
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The energy of crystal lattice in pseudo-harmonic approximation has the form:
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The entropy of crystal lattice in pseudo-harmonic approximation has the form:

S =
E −Ψ

T
= Svib + Srot

Svib = −kB
(
∂Ψ

∂θ

)
V

= Sovib +
3NkBθ

k2

[γ1
3

(4 +X + Y 2)− 2γ2XY
2
]
,

where :

X = xcothx;Y =
x

sinhx
;Sovib = 3NkB [xcothx− ln(2sinhx)]

and :

Srot =
Erot −Ψrot

T
= −2NkBln[4sinh(

ε

2T
)]− NkB

T
(T

∂ε

∂T
− ε)coth(

ε

2T
) +

+
3NkBU0BT

2ε2
[1 +

3B

ε
coth(

ε

2T
)]{ ε

2T 2
(T

∂ε

∂T
− ε)[1− coth2(

ε

2T
)]−

− ∂ε
∂T

(
ε

2T
)} . (8)

The isothermal compressibility and the thermal expansion coefficient are only determined by SMM as in
[8]. The molar heat capacity at constant volume in pseudo-harmonic approximation is determined by the
following expressions [7]:
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The molar heat capacity at constant volume in pseudo-harmonic approximation is determined by the
following expression [8]:

CP = CV +
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2

2
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III. NUMERICAL RESULTS AND DISCUSSION

In order to apply the theoretical results in Section 2 to molecular cryocrystals of nitrogen type, we
use the Lennard-Jones (LJ) potential:

ϕ(r) = 4ε1

[(σ
r

)12
−
(σ
r

)6]
, (11)

where ε1/kB = 95.05K;σ = 3.698 × 10−10m for α − N2; ε1/kB = 110K;σ = 3.59 × 10−10m for α − CO
[5]. In the approximation of two first coordination spheres, the crystal parameters are given by:
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where α is the nearest neighbour distance at temperature T . The LJ potential has a minimum value
corresponding to the position r0 = σ 6

√
2 ≈ 1.2225σ However, since there is interaction of many particles, the

nearest neighbour distance α0 in the lattice is smaller than r0. It is equal to α0 = r0 6
√
A12/A6 ≈ 1.0902σ

where A6 and A12 are the structural sums and they have the values A6 = 14.454;A12 = 12.132 for
a fcc crystal [8]. From the above mentioned results, we obtain the values of crystal parameters at 0
K. From that, we calculate the nearest neighbour distances of the lattice, the vibrational free energy
and other thermodynamic quantities (the entropy, the energy, the isothermal compressibility, the thermal
expansion coefficient, the molar heat capacities at constant volume and at constant pressure,etc. in different
temperatures by SMM as in [5]. The values of B,U0 and the values of η at various temperatures are given
in Tables 1- 3 [9].

Table 1. Values of B and U0 for crystals of N2 type

Crystal α−N2 α− CO
B(K) 2.8751 2.7787

U0(K) 325.6 688.2

Table 2. Values of η at various temperatures for α−N2

T(K) 0 10 15 20 24 28 30 32 34

η 0.8633 0.8617 0.8544 0.8404 0.8244 0.8038 0.7916 0.7778 0.7621

Table 3. Values of η at various temperatures for α− CO

T(K) 0 10 20 30 36 42 52 56 60

η 0.9100 0.9099 0.9060 0.8942 0.8832 0.8690 0.8364 0.8188 0.7973

The temperature dependences of the thermodynamic quantities (the free energy, the entropy, the
energy, the molar heat capacity at constant volume, the molar heat capacity at constant pressure) for
molecular cryocrystals of nitrogen type calculated by SMM and SCFM are represented in Figures.1-5. In
comparison with experiments, the heat capacity calculated by both SMM and SCFM is better than the
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heat capacity calculated by only SMM or only SCFM. Both the lattice vibration and the molecular rotation
have important contributions to thermodynamic properties of molecular cryocrystals of nitrogen type.

Fig. 1. Vibrational free en-
ergy, rotational free energy
and total free energy at var-
ious temperatures for crys-
tals of N2 type

Fig. 2. Vibrational energy,
rotational energy and total
energy at various tempera-
tures for crystals of N2 type

Fig. 3. Vibrational en-
tropy, rotational entropy
and total entropy at various
temperatures for crystals of
N2 type

Fig. 4. Heat capacities at
constant volume and at
constant pressure in dif-
ferent temperatures for N2

crystal
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Fig. 5. Heat capacities at constant volume and at constant pressure in different
temperatures for CO crystal
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