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Abstract. The relative magnetoresistance (RMR) in quantum wells with parabolic potential (QWPP)
in the presence of magnetic field under the influence of electromagnetic wave is theoretically stud-
ied based on a set of quantum kinetic equations for the electron phonon system. Analyzing the
analytical expressions obtained, we see that the RMR depends on the intensity of electromagnetic
waves , the magnetic field B, the frequency of the radiation and the relaxation time of carrier.
Comparing with the results obtained in case of bulk semiconductors, we see the influence of finite-
size effects on the relative magnetoresistance.

I. INTRODUCTION

Nowadays, the study of the low-dimensional systems are increasingly interested [5-
8], in particular, the electrical, magnetic and optical properties of the systems such as :
the absorption of electromagnetic waves, the amplification of confined acoustic phonons
and the Hall effect are of great interest. These results show us that there are some
significant differences from the bulk semiconductor [1-4]. The RMR is also one of them.
In this report, the calculation of the RMR in the QWPP in the presence of magnetic field
under the influence of electromagnetic wave is carried out by using the quantum kinetic
equation method that brings the high accuracy and the high efficiency. Comparing the
results obtained in this case with in the case of the bulk semiconductors, we see some
differences. We also estimate numerical values for a GaAs/GaAsAl quantum well.

II. THE RELATIVE MAGNETORESISTANCE IN QUANTUM WELLS
WITH PARABOLIC POTENTIAL IN THE PRESENCE OF

MAGNETIC FIELD UNDER THE INFLUENCE OF
ELECTROMAGNETIC WAVE

Consider a quantum well with parabolic potential subjected to a crossed electric

field
−→
E1 = (0, 0, E1) and magnetic field

−→
B = (0, B, 0). If the confinement potential is

assumed to take the form V(z) = mω2
0(z − z0)2/2π, then the single-particle wave function

and its eigenenergy are given by :

ψ(~r) =
1

2π
ei

~k⊥~rψ(kx, z), (1)
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εN (kx) = ~ωp(N +
1

2
) +

1

2m∗
[~2k2x − (

~kxωc + eE1

ωp
)2], (2)

where m and e are the effective mass and charge of conduction electron, respectively,
k⊥ = (kx, ky) is its wave vector in the (x,y) plan; z0 = (~kxωc +eE1)/mω

2
p); ω2

p = ω2
0 +ω2

c ,
ω0 and ωc are the confinement and the cyclotron frequencies, respectively, and

ψm(z − zo) = Hm(z − zo) exp(−(z − zo)2/2), (3)

with Hm(z) being the Hermite polynomial of mth order. In the presence of an EMW with

electric field vector
−→
E =

−→
E0 sin Ωt (where E0 and Ω are the amplitude and the frequency

of the EMW, respectively), the Hamiltonian of the electron-acoustic phonon system in the
above mentined QWPP in the second quantization presentation can be written as follows:

H =
∑
N, ~kx

εN
(
~kx −

e

~c
~A(t)

)
a+
N, ~kx

aN, ~Kx
+
∑
~q

~ω~qb
+
~q b~q+

+
∑

N,N ′, ~kx,~q

CN,N ′(~q)a+
N ′, ~kx+ ~qx

a
N, ~kx

(b~q + b+−~q) +
∑
~q

φ(~q)a+
N, ~kx+ ~qx

a
N, ~kx

, (4)

where a+
N,
−→
kx

and a
N,
−→
kx

( b+−→q and b−→q ) are the creation and the annihilation operators

of electron (phonon), |N,
−→
kx > and |N,

−→
kx + −→qx > are electron states before and after

scattering; ~ω−→q is the energy of an acoustic phonon; φ(q) is the scalar potential of a

crossed electric field
−→
E1; CN,N ′(~q) is the electron-phonon interaction constant.

From the quantum kinetic equation for electron in single scattering time approximation
and the electron distribution function, using the Hamiltonian in the Eq.(4), we find :

∂f
N, ~kx

∂t
+
(e ~E1

~
+ ωc[ ~kx,~h]

)∂fN,kx

∂ ~kx
=

2π

~
∑
N ′,~q

|CN,N ′(~q)|2
+∞∑

l=−∞
J2
l (αqx)×

×
{

[f
N ′, ~kx+ ~qx

(1−f
N, ~kx

)(1+N~q)−fN, ~kx
(1−f

N ′, ~kx+ ~qx
)N~q]δ

(
εN ′(kx+qx)−εN (kx)−~ω~q−l~Ω

)
+

+[f
N ′, ~kx− ~qx

(1−f
N, ~kx

)N~q−fN, ~kx
(1−f

N ′, ~kx− ~qx
)(1+N~q)]δ

(
εN ′(kx−qx)−εN (kx)+~ω~q−l~Ω

)}
.

(5)

The frequency of the acoustic phonon is low so we can skip ω−→q in the delta function in
the Eq.(5). Considering the distribution of phonons to be symmetric, in the presence of
the magnetic field, the Eq.(5) has the following form :

∂f
N, ~kx

∂t
+
(e ~E1

~
+ ωc[ ~kx,~h]

)∂fN,kx

∂ ~kx
=

2π

~
∑
N ′,~q

|CN,N ′(~q)|2(2N~q + 1)

+∞∑
l=−∞

J2
l (αqx)×

× (f
N ′, ~kx+ ~qx

− f
N, ~kx

)δ
(
εN ′(kx + qx)− εN (kx)− l~Ω

)
. (6)

For simplicity, we limit the problem to case of l = −1, 0, 1. If we mutiply both sides

of the Eq.6 by (e/m)
−→
kxδ(ε − εN (kx)), carry out the summation over N and kx and use
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J2
0 (αqx)≈ 1− (αqx)2/2, we obtain :

~R(ε)

τ(ε)
+ ωc[~h, ~R(ε)] = ~Q(ε) + ~S(ε), (7)

where
~R(ε) =

∑
N, ~kx

e

m∗
~kxfN, ~kx

δ(ε− εN (kx)), (8)

~S(ε) = − 2πe

4~m∗
∑
N ′,~q

|CN,N ′(q)|2(2N~q + 1)(αqx)2
∑
N, ~kx

(f
N ′, ~kx+ ~qx

− f
N, ~kx

) ~kx×

×
[
2δ
(
εN ′(kx+qx)−εN (kx)

)
−δ
(
εN ′(kx+qx)−εN (kx)−~Ω

)
−δ
(
εN ′(kx+qx)−εN (kx)+~Ω

)]
,

(9)

~Q(ε) = − e

~m∗
∑
N, ~kx

~kx(~F ,
∂f

N, ~kx

∂ ~kx
)δ(ε− εN (kx)), (10)

with ~F = e ~E1 − OεF − ε−εN (kx)
T OT .

Expressing ~R(ε) in term of ~Q(ε), ~S(ε) after some computation steps, we obtain the ex-
pression for conductivity tensor :

σim =
e

m∗
τ(εF )

1 + ω2
c τ

2(εF )

{
aoδik+bob1

τ(εF )

1 + ω2
c τ

2(εF )

[
δik−ωcτ(εF )εiklhl+ω

2
c τ

2(εF )hihk

]
+

+ bob2
τ(εF − ~Ω)

1 + ω2
c τ

2(εF − ~Ω)

[
δik − ωcτ(εF − ~Ω)εiklhl + ω2

c τ
2(εF − ~Ω)hihk

]
+

+ bob3
τ(εF + ~Ω)

1 + ω2
c τ

2(εF + ~Ω)

[
δik − ωcτ(εF + ~Ω)εiklhl + ω2

c τ
2(εF + ~Ω)hihk

]}
, (11)

where

ao =
∑
N

eLx

π~
√

∆oθ(∆o), (12)

bo =
∑
N,N ′

eLx

4π2m∗
ξ2kBT

ην2
e2E2

o

~4Ω4

eE1ωc

~ω2
o

I(N,N ′), (13)

b1 =
∑
N,N ′

4

√
∆o

∆1
(∆o + 3∆1)θ(∆o)θ(∆1)− 2

√
∆o

∆2
(∆o + 3∆2)θ(∆o)θ(∆2)−

−
√

∆o

∆3
(∆o + 3∆3)θ(∆o)θ(∆3) + 2

∆2
o −∆2

1√
∆o∆1

θ(∆o)θ(∆1), (14)

b2 =
∑
N,N ′

∆2
1 −∆2

4√
∆4∆1

θ(∆4)θ(∆1), (15)
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b3 =
∑
N,N ′

∆2
1 −∆2

5√
∆5∆1

θ(∆5)θ(∆1), (16)

∆o =
(eE1ωc

~ω2
o

)2−2m∗~ω3
p(N + 1

2)− e2E2
1 − 2m∗ω2

pεF

~2ω2
o

≈
2m∗ω2

p

~2ω2
o

(
εF −~ωp(N +

1

2
)
)
, (17)

∆1 =
2m∗ω2

p

~2ω2
o

(
εF − ~ωp(N

′ +
1

2
)
)
, (18)

∆2 =
2m∗ω2

p

~2ω2
o

(
εF + ~Ω− ~ωp(N

′ +
1

2
)
)
, (19)

∆3 =
2m∗ω2

p

~2ω2
o

(
εF − ~Ω− ~ωp(N

′ +
1

2
)
)
, (20)

∆4 =
2m∗ω2

p

~2ω2
o

(
εF − ~Ω− ~ωp(N +

1

2
)
)
, (21)

∆5 =
2m∗ω2

p

~2ω2
o

(
εF + ~Ω− ~ωp(N +

1

2
)
)
, (22)

The RMR is given by the formula :

∆ρ

ρ
=

σzz(H)σzz(0)

σ2zz(H) + σ2xz(H)
− 1, (23)

where σzz and σxz are given by the Eq.(11).
We see that it is easy for the RMR in Eq.(23) to come back to the case of the RMR in the
bulk semiconductor when the confinement frequency (ωo) reaches to zero. The Eq.(23)
shows the dependence of the RMR on the external fields, including the EMW. In the next
section, we will give a deeper insight into this dependence by carrying out a numerical
evaluation.

III. NUMERICAL RESULTS AND DISCUSSION

In order to clarify the mechanism for the RMR in QWPP in the presence of magnetic
field under the influence of electromagnetic wave, in this section, we will evaluate, plot
and discuss the RMR for a specific quantum well : AlAs/AlGaAs. The parameters used
in the calculations are as follows : εF = 50meV , χ0 = 12.9, χ∞ = 10.9, m = 0.067m0

with m0 is the mass of a free electron. For the sake of simplicity, we also choose N = 0,
N ′ = 1, τ = 10−12s.
Figure 1 shows the RMR as a function of the electromagnetic wave frequency (EMWF) in
a quantum well. When the EMWF is low enough, the RMR has a sharp drop. It remains
stable when the EMWF reaches a certain value. The RMR is also gets the different values
when the magnetic field changes. These dependences are different from the case of the
RMR in the bulk semiconductor published.
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Fig. 1. The dependence of the RMR on the frequency of laser radiation

IV. CONCLUSIONS

In this paper, we studied the influence of electromagnetic wave on the RMR in the
quantum well with parabolic potential in the presence of the magnetic field. The electron-
phonon interaction is taken into account at low temperatures, and the electron gas is
nondegenerate. We obtain the analytical expression of the RMR in the quantum well.
We see that the RMR in this case depends on some parameters such as : the intensity of
electromagnetic waves, the magnetic field B, the frequency of the radiation, the relaxation
time of carrier, the temperature and the parameters of the quantum well. We estimate
numerical values and graph for a GaAs/GaAsAl quantum well to see clearly the nonlinear
dependence of the RMR on the electromagnetic wave frequency. Looking at the graph, we
see that the RMR gets the negative values. The more the electromagnetic wave frequency
and the magnetic field increase, the more the RMR decreases. When the electromagnetic
wave frequency reaches a certain value, the RMR will reach the saturation value. There
are some differences from the case of the RMR in the bulk semiconductor. Based on this
idea, we can put forward a capability about changing the functions of low-semiconductor
materials, that may be applied for electronics.
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