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Abstract. In this paper, the analytic expression for nonlinear absorption power (NAP) in a doped
semiconductor superlattice (DSSL) is obtained by using the operator projection technique in case
of electron-optical phonon scattering. We have obtained nonlinear optically detected electrophonon
resonance (NODEPR) condition as a function of well width and concentration of the donor impu-
rities. Anomalous behaviors of the NODEPR spectrum such as the splitting of NODEPR peaks for
two photon absorption process are discussed. From the graphs of the NAP, we obtain the NODEPR
linewidth as profiles of curves. Computational results show that the NODEPR linewidth increases
with temperature T , and with the donor impurities nD, and decreases with the period d of a DSSL.
The contribution of two-photon absorption process to absorption power is smaller than one of one
photon process.

I. INTRODUCTION

The linewidth, including ODEPR linewidth, is one of good tools for investigating
scattering mechanisms of carriers. The vast majority of works on the linewidth has been
done on the transport properties of semiconductors. To investigate the effects of various
scattering processes, absorption linewidth have been measured in various kind of semicon-
ductors, such as quantum wells [1, 2, 3, 4, 5], quantum wires [6, 7, 8, 9, 10], and quantum
dots [11]. The linewidth has been studied both in theoretical works [1, 2, 3, 4, 5, 6, 7, 8,
9, 10] and in experimental works [11, 12]. Most of these results show that the linewidth
increases with temperature and decreases with system’s size.

The study of the electrophonon resonance (EPR) effects is very important in un-
derstanding transport phenomena in semiconductor, and hence the EPR phenomena in
low-dimensional systems has generated considerable interest in the recent years in 3D
semiconductor systems [13], in quantum wells [14, 15], in quantum wires [16, 17], and
quantum dots [18]. These articles have demonstrated the the splitting of ODEPR peaks
and appearance or disappearance of the EPR and ODEPR peaks due to the selection rules
[15]. But the study of the ODEPR linewidth remains an open problem.

Recently, our group [19, 20] has developed the theory of Lee and co-works [21] on
the nonlinear optical conductivity due to electron-phonon interacting in semiconductor in
the presence of electromagnetic waves. In previous papers, we have obtained expression
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of nonlinear absorption power in which the two photon process is included, and have ob-
tained nonlinear absorption linewidth in rectangular quantum wires [19] and in cylindrical
quantum wires [20].

In this paper, we expand the results of one of our previous papers [20] to investigate
the linear and nonlinear ODEPR linewidth in DSSL. The present work is fairly different
in comparison to the previous results because the ODEPR effect is taken into account and
the results can be applied to optically detect the resonant peaks. We know, the linewidth
are defined by the profile of curves describing the dependence of absorption power P (ω)
on the photon energy or frequency [22, 23]. Firstly, we obtain the analytical expression
of linear and nonlinear absorption power in which the two photon process is included.
Then, from the graph of the absorption power as a function of photon energy we obtain
nonlinear ODEPR linewidth as a profiles of curves. The dependence of the nonlinear
ODEPR linewidth on temperature T , the concentration of the donor impurities nD, and
period d of the DSSL is discussed. Finally, the results are compared to previous theoretical
and experimental results.

II. NONLINEAR ABSORPTION POWER IN DSSL

The superlattice potential in DSSL is created solely by using the spatial distribution
of the charge. A substantial improvement in spatial (on an atomic scale) monitoring of
the doping during film growth by means of molecular-beam epitaxy enabled the growth
of doped superlattices-periodic alternation of thin layers of GaAs of the n (GaAs:Si)-and
p (GaAs:Be)-types, separated in many cases by layers of intrinsic GaAs. We consider a
DSSL, in which the electron gas is confined by a superlattice potential along the z direction
(the axis of the superlattice) and in which electrons are free on the x−y plane. The motion
of an electron is confined in each layer of the DSSL and its energy spectrum is quantized
into discrete levels in the z direction. The electron state, |α〉, is defined by the quantum

number n in the z direction and the wave vector ~k⊥ on the x− y plane perpendicular to

z-axis, |α〉 = |n,~k⊥〉, ~k
2 = k2

⊥
+ k2z [24].

In this paper, we will deal with bulk (3-dimensional) phonons; therefore, the electron-
optical phonon interaction constant takes the forms [25]

|C~q|
2 =

e2~ωLO

2ǫ0Ω

(

1

χ∞

−
1

χ0

)

q2
⊥

(q2
⊥
+ q2d)

2
. (1)

Here, e is the charge of electron, ~ωLO is the energy of LO-phonon, ǫ0 is the permittivity
in vacuum, Ω is the volume of the system, χ0 and χ∞ are the static and the high frequency
dielectric constants, respectively, and qd is the reciprocal of the Debye screening length.
The electron form factor, Mn,n′(qz), is given as [26]

Mn,n′(qz) =

s0
∑

j=1

∫ d

0

eiqzzΦn(z − jd)Φn′(z − jd)dz, (2)

where d and s0 are the period and the number of periods of the DSSL, respectively. Φn(z)
is the eigenfunction of the electron in an individual potential well.
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The energy spectrum of an electron in the DSSL for the state |α〉 takes the form
[27, 28, 29]

En(~k⊥) =
~
2k2

⊥

2m∗
+ (n+ 1/2)~ωp =

~
2k2

⊥

2m∗
+ En, (3)

with ωp = (4πe2nD/m
∗ǫ0)

1/2 is the plasma frequency. Here, m∗ is the effective mass of
the electron, nD is the concentration of the donor impurities, and En are the energy levels
of an individual well.

When an electromagnetic wave characterized by a time-dependent electric field of
amplitude E0 and angular frequency ω is applied, the absorption power P (ω) delivered
to the system is given by P (ω) = (E2

0/2)Re{σ(ω)} [30, 31]. Here, σ(ω) is the optical
conductivity tensor. Utilizing the general expression for the nonlinear conductivity that is
presented by Lee et al. [21], the nonlinear absorption power at the subband edge (k⊥ = 0)
in DSSL is given by the following set of expressions

Re{σNLn(ω)} = Re{σzz(ω)}+ E0Re{σzzz(ω)}. (4)

In Eq. (4), the first- and the second- term correspond to the linear and nonlinear terms
of the conductivity tensor, given as follow, respectively.

Re{σzz(ω)} = e
∑

n,n′

|(z)n,n′ ||(jz)n,n′ |
(fn′,0 − fn,0)B0(ω)

(~ω −∆En′,n)2 + [B0(ω)]2
, (5)

Re{σzzz(ω)} = e2
∑

n,n′,n”

|(z)n,n′′ |(fn′,0 − fn,0)

(~ω −∆En′,n)2 + [B0(ω)2]

×

{

|(z)n”,n||(jz)n′,n”|

(2~ω −∆En′,n”)2 + [B1(ω)2]

× [(~ω −∆En′,n)B1(ω) + (2~ω −∆En′,n”)B0(ω)]

+
|(z)n′,n”||(jz)n”,n|

(2~ω −∆En”,n)2 + [B2(ω)2]

× [(~ω −∆En′,n)B2(ω) + (2~ω −∆En”,n)B0(ω)]

}

, (6)

where ∆En′,n = En′(0) − En(0) with En(0), En′(0) and En”(0) are the energy of the
electron in the initial, final, and intermediate states, respectively; fn,k⊥ is the Fermi-Dirac
distribution function of electron with energy En(k⊥); |(z)n,n′ | and |(jz)n,n′ | are the matrix
elements of the position- and current-operator, respectively. For calculating the nonlinear
absorption power of electromagnetic wave in DSSL we use the following matrix elements

|(z)n,n′ | = |In,n′ | =

∣
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∣
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|(jz)n,n′ | = |Jn,n′ | =
e~

m∗

∣

∣

∣

∣

∣

∣

s0
∑

j=1

∫ d

0

Φn(z − jd)
∂

∂z
Φn′(z − jd)dz

∣

∣

∣

∣

∣

∣

. (8)



124 HUYNH VINH PHUC, LUONG VAN TUNG, LE DINH, TRAN CONG PHONG

Here, we have used jz = (ie~/m∗)∂/∂z.

Quantity B0(ω) in Eq. (5) is the imaginary part of damping function, Γαβ
0 (ω̄),

which is given in Eq. (3.15) of Ref. [21]. The sum over ~q and intermediate state |n”, 0〉
are transformed into the integral, and realizing the calculations, we obtain

B0(ω) =
e2~ωLO

2ǫ0(fn′,0 − fn,0)

1

2q2d

×
∑

n”

{

|Mn′,n”|
2 [(1 +Nq)fn”,0(1− fn,0)−Nqfn,0(1− fn”,0)] δ(Y

+
n,n”)

+ |Mn′,n”|
2 [Nqfn”,0(1− fn,0)− (1 +Nq)fn,0(1− fn”,0)] δ(Y

−

n,n”)

+ |Mn,n”|
2
[

(1 +Nq)fn′,0(1− fn”,0)−Nqfn”,0(1− fn′,0)
]

δ(Y +
n′,n”)

+ |Mn,n”|
2
[
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]

δ(Y −

n′,n”)
}

, (9)

where n” is the quantum number of immediate states, respectively, and we have denoted

Y ±

n,n′ = ~ω − (En − En′)± ~ωLO. (10)

Quantities B1(ω) and B2(ω) in Eq. (6) are the imaginary part of nonlinear damping
functions, which derived in Eqs. (4.20)-(4.23) of Ref. [21]. From these equations, doing
the same calculations as for B0(ω), we obtain

B1(ω) =
e2~ωLO

2ǫ0(fn′,0 − fn,0)

1

2q2d

×
{
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2
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where we have denoted

Z±

n,n′ = 2~ω − (En − En′)± ~ωLO. (13)

Inserting Eqs. (9), (11) and (12) into Eqs. (5) and (6), we obtain the analytic expression
of linear (Re{σzz(ω)}) and nonlinear term (Re{σzzz(ω)}) of conductivity tensor. We can
see that, Re{σzzz(ω)} includes two photon process. Finally, inserting Eqs. (5) and (6) into
Eq. (4), we obtain the real part of the nonlinear conductivity tensor Re{σNLn(ω)}. We
have obtained an expression for the absorption power in DSSL, however, delta functions
in the expression for B0(ω), B1(ω) and B2(ω) results in the divergence of Bi(ω) when
Y ±

n,n′ = 0 or Z±

n,n′ = 0. To avoid this we replace the delta functions by Lorentzians [32]

δ(Y ±

n,n′) =
1

π

~γ±n,n′

(Y ±

n,n′)2 + ~2(γ±n,n′)2
(14)

where γ±n,n′ is the inverse relaxation time. Using Eq. (A6) from Ref. [32], we have

(γ±n,n′)
2 =

1

~2

(
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1

2
±

1

2

)

e2~ωLO

2πǫ0Ω

(

1

χ∞

−
1

χ0

)

1

2q2d
|Mn,n′ |2. (15)

We can see that these analytical results appear very involved. However, physical
conclusions can be drawn from graphical representations and numerical results, obtained
by adequate computational methods.

III. NUMERICAL RESULTS AND DISCUSSIONS

It is clearly seen from Eqs. (11) and (12) that B1(ω) and B2(ω) diverge whenever
the arguments in the Delta functions equal to zero. From these conditions, we have

2~ω ± (n− n′)~ωp ± ~ωLO = 0. (16)

The Eq. (16) is the NODEPR condition in DSSL. When the NODEPR conditions are
satisfied, in the course of scattering events, the electrons in the state |n〉 could make
transitions to one of the other state |n′〉 by absorbing two photon of energy ~ω during the
absorption and/or emitting of a LO phonon of energy ~ωLO. In the absence of incident
photon (ω → 0), Eq. (16) reduces to

(n− n′)~ωp = ~ωLO. (17)

This is the electrophonon resonance (EPR) condition [33, 34] in DSSL. We can see that,
EPR is the specific case of ODEPR in the absence of incident photon.

In clarify the obtained results we numerically calculate the nonlinear absorption
power PNLn(ω) for a DSSL. The nonlinear absorption power is considered as a func-
tion of the photon energy. For our numerical results, we use the n-i-p-i superlattice of
GaAs:Si/GaAs:Be with the parameters [27, 28, 35, 36]: m∗ = 0.067m0 with m0 being the
electron rest mass, a LO-phonon energy ~ωLO = 36.25 meV, s0 = 100, E0 = 105 V/m;
n = 0, n′ = 1, n” = 0 and 1.

Figure 1 describes the dependence of nonlinear absorption power on the photon
energy at nD = 1023 m−3, correspond to ∆E1,0 = (1 − 0)~ωp = 161.32 meV. From the
figure, we can see six peaks, each of ones satisfies a different transition. Three peaks
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Fig. 1. Left: Nonlinear absorption power PNLn(ω) as function of photon energy
at T = 300 K, d = 20 nm, nD = 1023 m−3.

Fig. 2. Right: Nonlinear absorption power PNLn(ω) as a function of the photon
energy with different values of the concentration of the donor impurities nD. The
solid, dashed, and dotted lines are for nD = 1023 m−3, 0.8 × 1023 m−3, and
0.6× 1023 m−3, respectively. Here, T = 300 K, d=20 nm.

1a, 1b and 1c correspond to the values ~ω = 36.25 meV, 125.07 meV and 197.57 meV,
respectively, describe the transitions of electron due to the distribution of one photon
absorption process. Three peaks 2a, 2b and 2c correspond to the values ~ω = 18.13
meV, 62.53 meV and 98.78 meV, respectively. These peaks describe the transitions of
electron due to the distribution of two photon absorption process. We make these peaks
clear as follow: The peaks 2a satisfies the condition 2~ω = ~ωLO. Therefor, this peak
describes intraband transition. Two peaks 2b and 2c satisfy the NODEPR conditions
2~ω± = ∆E1,0 ± ~ωLO or 2~ω± = 161.32 ± 36.25 meV, and the distance between two
peaks is twice the LO-phonon energy.

Figure 2 describes the dependence of PNLn(ω) on the photon energy with different
values of the concentration of the donor impurities nD. From Eq. (3), because ∆En,n′ =

(n−n′)~ωp, with ωp =
√

4πe2nD

ǫ0m∗ , decreases with nD decreasing. So that, when nD decreases

the resonant peaks shifts to the left (the small region of photon energy). This is because
of the decreasing of ∆En,n′ when the concentration of the donor impurities nD decreases,
consequently, the photon energy that satisfies the ODEPR condition decreases. In the
following, we use peak 2c to investigate NODEPR linewidth in DSSL.

Figure 3 describes the dependence of PNLn(ω) on the photon energy with different
values of temperature T at d = 20 nm, nD = 1023 m−3, corresponds to ∆E1,0 = 161.32
meV. From the figure we can see that, all peaks locate at the same position ~ω = 98.78
meV, corresponding to the NODEPR condition 2~ω = ∆E1,0 + ~ωLO = 161.32 + 36.25
meV, and is independent of T . From these curves, using profile method presented in our
previous paper [19], we obtain the temperature dependence of the NODEPR linewidth’ as
shown in Fig. 4.
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Fig. 3. Left: Nonlinear absorption power PNLn(ω) as a function of the photon
energy with different values of temperature T . The solid, dashed, and dotted lines
are for T = 250 K, 300 K, and 350 K, respectively. Here, d = 20 nm, nD = 1023

m−3.

Fig. 4. Right: Dependence of NODEPR linewidth on temperature T at d = 20
nm, nD = 1023 m−3.

Figure 4 shows that the NODEPR linewidth increases with temperature T . This
behavior is in agreement with linear theoretical results of Kang et al. [2], Li and Ning
[4] and experimental results of Unuma et al. [12] in quantum well. Because, as tempera-
ture increases, the probability of electron-phonon scattering increases, so that NODEPR
linewidth rises.
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Fig. 5. Left: Nonlinear absorption power PNLn(ω) as a function of the photon
energy with different values of the concentration of the donor impurities nD. The
solid, dashed, and dotted lines are for nD = 1023 m−3, 0.9 × 1023 m−3, and
0.8× 1023 m−3, respectively. Here, T = 300 K, d = 20 nm.

Fig. 6. Right: Dependence of NODEPR linewidth on the concentration of the
donor impurities nD at T = 300 K, d = 20 nm.
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Figure 5 describes the dependence of PNLn(ω) on the photon energy with different
values of the concentration of the donor impurities nD. The figure shows that, the maxima
appear at the photon value of ~ω = 98.78 meV, 94.64 meV, and 90.27 meV for nD = 1023

m−3, 0.9× 1023 m−3, and 0.8× 1023 m−3, respectively. As the concentration of the donor
impurities nD decreases, the peak position is shifted to the lower photon energy region.
Because, when the nD decreases, ∆E1,0 decreases, so the values of photon energy absorbed,
which correspond to the NODEPR condition 2~ω = ∆E1,0 + ~ωLO decreases. From the
figure, we obtain the concentration of the donor impurities dependence of the NODEPR
linewidth’s as shown in Fig. 6.

Figure 6 shows that, NODEPR linewidth increases with nD. This can be explained
that as nD increases, the plasma frequency ωp increases, the radius ℓp =

√

~/(m ∗ ωp) re-
duces, the confinement of electron increases, the probability of electron-phonon scattering
increases, so that linewidth rises.
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Fig. 7. Left: Nonlinear absorption power PNLn(ω) as a function of the photon
energy with different values of the periods of the DSSL d. The solid, dashed, and
dotted lines are for d = 10 nm, 20 nm and 30 nm, respectively. Here, T = 300 K,
nD = 1023 m−3.

Fig. 8. Right: Dependence of NODEPR linewidth on the periods of the DSSL d
at T = 300 K, nD = 1023 m−3.

Figure 7 describes the dependence of PNLn(ω) on the photon energy with different
values of d at T = 300 K, nD = 1023 m−3, corresponds to ∆E1,0 = 161.32 meV. From the
figure we can see that, all peaks locate at the same position ~ω = 98.78 meV, corresponding
to the NODEPR condition 2~ω = ∆E1,0+~ωLO = 161.32+36.25 meV, and is independent
of d. From these curves we obtain the periods of the DSSL dependence of the NODEPR
linewidth’ as shown in Fig. 8.

Figure 8 shows that, NODEPR linewidth decreases with the periods of the DSSL
d. This result is in agreement with theoretical results of Unuma et al. [1], and Kang’s
results [2] in quantum well. All of them show the decreasing of linewidth with system’s
size increasing. This can be explained that as the wire’s radius increases the confine-
ment of electron decreases, the probability of electron-phonon scattering decreases, so
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that NODEPR linewidth drops. However, the value of nonlinear linewidth in our result is
smaller than linear ones. It means that, the distribution of two photon absorption process
is smaller than one photon absorption process ones.

IV. CONCLUSION

So far, we have obtained analytic expression of nonlinear absorption power in DSSL
due to electron-LO-phonon interaction. We numerically calculated and plotted PNLn(ω)
for the n-i-p-i superlattice of GaAs:Si/GaAs:Be to clarify the theoretical results, and ob-
tained the NODEPR conditions.

Special attention is given to the behavior of the NODEPR spectrum, such as the
splitting of NODEPR peaks due to the selection rules. The peak splitting are satisfied the
NODEPR condition 2~ω ± (n− n′)~ωp ± ~ωLO = 0. As nD increases, the resonant peaks
shift to the small region of photon energy, but the distance between two NODEPR peaks
is always twice as much as the LO-phonon energy.

From the graphs of the nonlinear absorption power, we obtained NODEPR linewidth
as profiles of curves. Computational results show that the NODEPR linewidth increases
with temperature and concentration of the donor impurities, and decreases with periods
of the DSSL. The contribution of two photons absorption process to absorption power is
smaller than ones of one photon process. The results are clear in physical interpretation,
and agree with some previous results.
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