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STUDYING BLOCKING EFFECT FOR MANY PARTICLES
DIFFUSION IN ONE-DIMENSIONAL DISORDERED LATTICE
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Abstract. The diffusion of many particles in one-dimensional disordered lattice has been studied
using Monte-Carlo method with periodic boundary conditions. We focus on the influence of ener-
getic disorder and number of particle on diffusivity. The site and transition energies are adopted
in accordance to Gaussian distribution. We consider two type lattices: the site disordered lattice
(SD); transition disordered lattice (TD). In particular, the blocking effect concerning existence
of many particles has been clarified under different temperature and energetic conditions. The
simulation results reveal F-effect and τ -effect which affect the diffusivity. As increasing number of
particles, the diffusion coefficient DM decreases for both lattices due to F-effect is stronger than
τ -effect. The blocking effect is strongly expression as increasing number of particles. For both
lattices the blocking effect is almost independent on the temperature.

I. INTRODUCTION

The diffusion of particles (atom, molecular and ion) in disordered systems (thin-film,
amorphous materials, polymers and glasses) has been widely studied for recent decades
and received wide attention by many research centres which relates to the field of fuel
cells, membrane technology, nano devices [1-10]. Experimental investigations have shown
that diffusion in disordered systems has a lot of specific properties such as a strong re-
duction of the asymptotic diffusion coefficients, anomalous frequency dependence of the
conductivity, dispersive transport, etc. The explanation of the diffusion processes in dis-
ordered materials has been a challenge to theory. In this work, we probe the diffusion of
particles in one-dimensional lattice with site and transition disorders using Monte-Carlo
(MC) simulation and analytical method. The particle-particle interaction plays its own
role which is interesting and intensively investigated [11-14], but they have no essential re-
lation to the role of energetic disorder and event shadows its influence. Hence, the lattices
with non-interacting particles are employed here, and both aspects: energetic disorder
and blocking effect, have been studied in two separate systems: the lattice SD where the
transition energies are constant but site energies are adopted in accordance to Gaussian
distribution [15], and lattice TD that conversely, the transition energies are adopted in
accordance to Gaussian distribution and site energies are kept constant.

II. CALCULATION METHOD

Let us consider the hoping of particles between sites in one-dimensional disordered
lattice. Each site is characterized by its energy Ei. Hoping of particle to neighboring sites
i-1 and i+1 is described by transition energy Ei,i−1 and Ei,i+1. The transition and site
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energies are assigned to each site in a random way from a given distribution Gaussian
distribution:

p(E) =
1

σ
√

2π
exp(

−(Ex − µ)2

2σ2
) (1)

To simply the energy is adopted in accordance to the standard Gaussian distribution with
the parameter is given by:

p(E) =
1√
2π
exp(

−(Ex)2

2
); with

∫ 5

−5
p(E) = 1 (2)

Here the letter x may be s or t corresponding to the site or transition energy, respectively.
Once the particle presents at site i, its probability to hop into neighboring site i+1 is
given by

pi,i+1 =
−(Ei,i+1β)

(Ei,j+1β) + Ei,j−1β
(3)

The jump which carries the particle out of site i, is a Poisson process with averaged delay
time

τi =
2τ0exp(−Eiβ)

exp(−Ei,i+1β) + exp(−Ei,i−1β)
(4)

where τ0 is frequency period; β = 1/kBT;kB is Boltzmann constant, and T temperature.
The time τi in fact is the mean residence time of particle on site i. The Monte-Carlo (MC)
method is developed mostly for the stationary state and simple form, it does not involve
the time. Hence we employed a MC scheme called ”residence time” method which can be
found elsewhere in [16, 17]. In this method each MC step leads to hop of particle, but
random sampling determines the time that particle spent on site i where it visits. After
construction of the lattice the sites are filled with Np particles by randomly choosing their
coordinates and avoiding double occupancy. The elementary five steps are:
1/ determine the duration of particle’s residence on the current site i by

tij = −τilnR (5)

Initially, a list of time thopj, j=1, 2,...Np is determined by equation (5).
2/ select a particle j based on the list thopj. The particle performing next hop is one that
has the earliest time from this list;
3/ select the hop direction of the particle j (to left or right site) according to probability
pi,i+1 (see Eq. (3))
4/ move the particle j into corresponding neighboring site if this site is non-occupied.
Otherwise the particle remains at current site i ;
5/ the time thopj is added to

thopj = thopj − τilnR (6)

Where R is random number in interval [0,1]. The total duration of the trajectory is given
by sum performed along MC steps tn=

∑
tij . The mean time between two consequent

jumps equals tjumpy=〈tn〉/n
During simulation the mean square displacement 〈x2n〉 is obtained by averaging over many
runs. Correlation factor Fy is defined in term of the slope of the dependence 〈x2n〉 vs. n.
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Once given a time 〈tn〉 that is the averaged duration of n MC steps, the diffusion coefficient
can be calculated according to

Dy =
a2

2

Fy

τjumpy
(7)

Here a is spacing between nearest neighboring sites; τjumpy=〈tn〉/n is the mean time
between two consecutive hops. The letter y may be S, M or C corresponding to single-
particle, many-particle and crystal case, respectively. The crystal case corresponds to
the lattice where site and transition energies are constant. The simulation has conducted
for two types of one-dimensional lattices consisting of 4000 sites with periodic boundary
conditions. The values of parameters used for calculation are the same for all simulations:
ξ=σβ , β = 1/kBT;ξ is dimensionless and varies in the interval from 0.2 to 2. The averaged
number of hops per particle is n = 1000; The number of particles is varies varies interval
from 1 to 120 particles. In order to attain a good statistic all quantities is obtained by
averaging over 106 MC samplings.

III. RESULT AND DISCUSSION

III.1. The single-particle case

Figure 1 shows the factor FS , the ratio τjumpS/τjumpC , DS/DC as function of tem-
perature. For SD lattice one finds the correlation factor FS does not depend on temper-
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Fig. 1. The dependence of τjumpS/τjumpC , correlation factor FS and ln(DS/DC)
on temperature for SD, TD lattices

ature and is approximately equal to 1, the time τjumpS/τjumpC increases as temperature
decreases (i.e. ξ increases). Furthermore, comparing to TD lattice the correlation factor
decreases strongly as temperature decreases and the time τjumpS/τjumpC of SD lattice is
significantly larger than one of TD lattice indicating the specific properties of trapping
model (SD) in comparison with hoping model (TD). The result of diffusion coefficient is
also presented in figure 1. The simulated results showed that the ratio DS/DC decreases
with temperature. The ratio DS/DC of TD lattice is very close to one of SD lattice if
both lattices have the same temperature interval from 0.2 to 1.4 and identical distribution
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of barriers although the character of particles motion in them is quite different. However,
in the low temperature interval ( ξ > 1.2) this result is not true.

III.2. Many - particles case

Table 1. The diffusion quantities for many-particles at ξ = 1.4 and n = 1000.
Here n is averaged number of hops per particle; nhigh, nlow are the averaged num-
ber of visit to site with high and low energy, respectively; nhigh + nlow = n; nuns
is number of unsuccessful jumps; τMC = τjumpM/τjumpC .

Lattice N nhigh nlow nuns nuns/n FM τMC DM/DC

1 699.43 301.57 0 0 1.001 2.648 0.376
10 698.7 301.4 0.42 0.00042 0.938 2.588 0.358
20 699.97 300.08 0.92 0.00092 0.874 2.559 0.338

SD 40 702.49 297.54 1.92 0.00192 0.764 2.506 0.302
60 705.15 294.87 2.98 0.00298 0.672 2.457 0.271
80 707.53 292.49 4.06 0.00406 0.595 2.417 0.244
120 712.39 287.62 6.36 0.00636 0.473 2.337 0.200
1 - - 0 0 0.169 0.397 0.446
10 - - 2.25 0.00225 0.166 0.380 0.439
20 - - 4.76 0.00476 0.160 0.377 0.427

TD 40 - - 9.79 0.00979 0.152 0.377 0.403
60 - - 14.87 0.01487 0.143 0.377 0.381
80 - - 19.88 0.01988 0.136 0.378 0.361
120 - - 29.77 0.02977 0.122 0.377 0.324

In case of many - particles, the blocking effect plays a relevant role. Unlike single-
particle case, some particles jumps in many-particles case are suppressed due to that a
number of sites are occupied, which does not lead to particles displacement. Obviously
the number of such jumps (unsuccessful hop) nuns increases with the number of particles.
Consequently, the mean square displacement and correlation factor FM decreased with
increasing number of particles. Table 1 presents the diffusion quantities for many-particles
case at ξ =1.4. The number nuns relates to the correlation factor FM . As increasing
number of particles the nuns/n increases 15.14 times for SD lattice and 13.23 times for TD
lattice, meanwhile the factor FM decreases for both SD (1.99 times) and TD (1.36 times)
lattices. This effect is denoted to F -effect. This effect can be explained as follows: since the
particles hop is unsuccessful, the probability that the particles hop in opposite direction
becomes bigger than one in original direction. This gives rise to increasing the number of
forward-backward hops and results in that FM is decreased and it decreases the diffusion
coefficient DM . Furthermore, for SD lattice the mean particles residence time for the site
with low energy is larger than one for site with high energy. Therefore, the occupied site
with low energy prevents other particles to jump into it by lager time than the occupied
site with high energy. As a result, due to blocking the averaged number of particles visit
to the site with low energy decreases with the number of particles. This in turn leads to
decreasing mean time between two consecutive hops τjumpM . This effect is called τ -effect.
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This second effect increases DM . For TD lattice the particle spent in average the same
time for each site. However, it prefers to surmount the saddle point with low transition
energy. Hence the particles jumps over the saddle point with low transition energy are
more frequent than ones over saddle point with high transition energy. As a result, due
to blocking the number of jumps over saddle point with low transition energy when the
number of particles is enough lager. This in turn increases time τjumpM . Nevertheless,
our simulation results show that τjumpM decreases (see Table 1). This can be explained
as follows: in the considered number of particles interval (from 10 to 120 particles) the
blocking effect is weekly for TD lattice due to the number of particles is not enough
large. As expected, the number nhigh and nuns increases monotonously as the number of
particles increases from 10 to 120. This gives rise to decreasing FM and τjumpM . However,
as shown table 1 the DM/DC decreases with number of particle for all considered lattices.
It implies that for 1D lattice first effect (F -effect) is stronger than second one (τ -effect).
Figure 2 shows that the dependence of correlation factor FM on temperature for SD and
TD lattices. Similar to in case of single-particle, for SD lattice the factor FM is independent
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Fig. 2. The dependence of correlation factor FM on temperature for SD, TD lattices

of temperature but for TD lattice the factor FM is strongly dependent of temperature and
decreases with temperature. To give additional insight into the many-particle effects we
studied the temperature dependence of quantity ln(DM/DC) shown in Figure 3. As shown
in this figure, the diffusion does not follow Arrhenius law for all cases. In accordance to
ref. [16] the Arrhenius behavior for diffusion in amorphous material is caused by the
compensation between site and transition disordered. This discrepancy may be related to
the finite energetic distribution used in [16]. To estimate the strength of blocking effect we
have calculated the ratio FM/FS , τjumpM/τjumpS , DM/DS which are shown in figure 4.
It can be seen that FM/FS decreases with different rate depending on the type of disorder
and number of particles. Meanwhile for TD lattice τjumpM/τjumpS is almost unchanged
or slightly increases with number of particles, for SD lattice its value strongly decrease at
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Fig. 3. The dependence of ln(DM/DC) on temperature for SD, TD lattices

=1.4; The DM/DS decreases with number of particles for both SD and TD lattice. As
such, increasing number of particles is accompanied with two effects: F -effect decreases
DM and τ -effect increases DM . However, for TD lattice F -effect is mainly but for SD
lattices F -effect is stronger than τ -effect. Figure 5 shows the temperature dependence of
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Fig. 4. The dependence of τjumpM/τjumpS , correlation factor FM/FSand
ln(DM/DS) on the number of particles for SD, TD lattices

FM/FS , τjumpM/τjumpS , DM/DS for SD and TD lattice. The dependence for FM/FS as
well as for τjumpM/τjumpS is quite different between SD and TD lattice. In the considered
temperature interval the ratio FM/FS decreases from 0.507 to 0.429 for SD lattice; whereas,
it increases from 0.513 to 0.927 for TD lattice. Despite that the factor FM as well as the
time τjumpM strongly depends on the temperature, the ratio DM/DS weakly changes in
the considered temperature interval. Therefore, the blocking effect weakly depends on the
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temperature.
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Fig. 5. The dependence of τjumpM/τjumpS , correlation factor FM/FSand
ln(DM/DS) on temperature for SD, TD lattices

IV. CONCLUSION

Monte-Carlo has been simulation carried out for the diffusion in one-dimensional
disordered lattices with Gaussian distributions of site and transition energies. The mainly
conclusions in this work can be done as follow:
1/ The simulation for many-particles case reveals two specific effects: F-effect and τ -effect.
As increasing number of particles, the diffusion coefficient DM decreases for SD and TD
lattices due to F-effect is stronger than τ -effect.
2/ The Arrhenius behavior is not observed for all considered lattices.
3/ We have demonstrated that blocking effect is strongly dependent number of particles
but is weakly dependent with the temperature. In the considered number of particles
interval (from 10 to 120 particles) the blocking effect in SD lattice is more expression than
TD lattices. The more number of particles is larger the more blocking effect is expression.
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