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THERMODYNAMIC PAIRING AND ITS INFLUENCE
ON NUCLEAR LEVEL DENSITY
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Abstract. Thermodynamic properties and level densities of some selected even-even nuclei such
as 56Fe, 60Ni, 98Mo, and 116Sn are studied within the Bardeen-Cooper-Schrieffer theory at finite
temperature (FTBCS) taking into account pairing correlations. The theory also incorporates the
particle-number projection within the Lipkin-Nogami method (FTLN). The results obtained are
compare with the recent experimental data by Oslo (Norway) group. Pairing correlations are found
to have significant effects on nuclear level density, especially at low and intermediate excitation
energies.

I. INTRODUCTION

Pairing correlations have important effects on the physical properties of atomic
nuclei such as the binding and excitation energies, collective motions, rotations, level
densities, etc. [1]. The finite-temperature Bardeen-Cooper-Schrieffer (BCS) theory [2]
(FTBCS theory), a theory of superconductivity, has been widely employed to describe
the pairing properties of finite systems such as atomic nuclei (see e.g. Refs. [3, 4]). The
FTBCS theory predicts a collapsing of pairing gap at a given temperature TC or the
so-called critical temperature, which can be estimated as TC ≈ 0.568∆(0) [∆(0) is the
pairing gap at zero temperature T = 0] [4]. Consequently, there appears a sharp phase
transition from the superfluid region, where the paring gap is finite, to the normal one,
where the pairing gap is zero (the so-called SN phase transition). This prediction is in
very good agreement with the experimental findings in infinite systems such as metallic
superconductors. However, when applying to finite small systems such as atomic nuclei or
small metallic grains, the FTBCS theory fails to describe the pairing properties of these
systems. One of the reason is due to the violation of the particle-number conservation
within the FTBCS theory. This conservation is negligible in infinite systems but it is
significant in the finite ones. A simple method to resolve the particle-number problem of
the FTBCS theory is to apply the particle-number projection (PNP) proposed by Lipkin-
Nogami (LN) [5]. The LN method is an approximate PNP before variation, which has been
widely used in nuclear physics. The goal of this work is to apply the FTBCS theory as well
as the FTBCS with Lipkin-Nogami PNP to describe the thermodynamic properties and
level densities of some selected even-even nuclei (the numbers of neutrons N and protons
Z are even) such as 56Fe, 60Ni, 98Mo, and 116Sn.
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II. FORMALISM

We considers a pairing Hamiltonian [6]

H =
∑

k

εk(a
†
kak + a†−ka−k)−G

∑
kk′

a†ka
†
−ka−k′ak′ (1)

which describes a system of N particles with single-particle energy εk interacting via a
constant monopole force G. Here a†k and ak denote the particle creation and annihilation
operators. The subscripts k are used to label the single-particle states |k,mk > in the
deformed basis with the positive single-particle spin projections mk, whereas the subscripts
−k denote the time-reversal states |k,−mk >.

II.1. FTBCS equations

The FTBCS equations are derived based on the variational procedure to minimize
the Hamiltonian HBCS = H − λN̂ , where N̂ =

∑
k

(
a†kak + a†−ka−k

)
is the particle-

number operator and λ is the chemical potential. At finite temperature, the minimization
procedure is proceeded within the grand canonical ensemble (GCE) average [7]. The
FTBCS equations for the paring gap ∆ and particle number N have the form as:

∆ = G
∑

k

τk; N = 2
∑

k

ρk,

τk = ukvk(1− 2nk); ρk = (1− 2nk)v2
k + nk, (2)

u2
k =

1
2

(
1 +

εk − λ−Gv2
k

Ek

)
; v2

k = 1− u2
k,

Ek =
√

(εk − λ−Gv2
k)

2 + ∆2,

where the quasiparticle occupation number nk is given in terms of the Fermi-Dirac distri-
bution of free quasiparticle nk = 1

1+eβEk
. The total (internal) energy EFTBCS and entropy

SFTBCS of the system are then given as

EFTBCS(T ) = 2
∑

k

εkρk −
∆2

G
−G

∑
k

v4
k(1− 2nk), (3)

SFTBCS(T ) = −2
∑

k

[nklnnk + (1− nk)ln(1− nk)]. (4)

II.2. FTBCS equations with Lipkin-Nogami particle-number projection (FTLN
equations)

The FTLN equations are obtained by carrying out the variational calculations
(within the GCE) to minimize the Hamiltonian HLN = H − λ1N̂ − λ2N̂

2, namely by
adding a second order of the particle number operator N̂2 into the Hamiltonian. As the
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result, the FTLN equations for the pairing gap and particle number have the form as [8]

∆ = G
∑

k

τk; N = 2
∑

k

ρk,

τk = ukvk(1− 2nk); ρk = (1− 2nk)v2
k + nk,

u2
k =

1
2

(
1 +

ε′k − λ−Gv2
k

Ek

)
; v2

k = 1− u2
k,

Ek =
√

(ε′k − λ−Gv2
k)

2 + ∆2; nk =
1

1 + eβEk
(5)

ε′ = εk + (4λ2 −G)v2
k; λ = λ1 + 2λ2(N + 1),

λ2 =
G

4

∑
k(1− ρk)τk

∑
k′ ρk′τk′ −

∑
k(1− ρ2

k)ρ
2
k

[
∑

k(1− ρk)ρk]
2 −

∑
k(1− ρ2

k)ρ
2
k

.

The FTLN total energy and entropy are then given as

EFTLN(T ) = 2
∑

k

εkρk −
∆2

G
−G

∑
k

v4
k(1− 2nk)− λ2∆N2, (6)

SFTLN(T ) = −2
∑

k

[nklnnk + (1− nk)ln(1− nk)], (7)

where ∆N2 =
∣∣∣∣〈N̂

〉2
−

〈
N̂

〉2
∣∣∣∣ is the particle-number fluctuation, whose explicit forms

can be found for example in Ref. [12].

II.3. Level density

Within the GCE, the density of state is calculated as ω(E∗) = eS

(2π)3/2D1/2 [9], where
S is the total entropy, which is the sum of the entropies for neutrons (N) and protons (Z),
and

D =

∣∣∣∣∣∣∣∣
∂2Ω
∂α2

N

∂2Ω
∂αN∂αZ

∂2Ω
∂αN∂β

∂2Ω
∂αZ∂αN

∂2Ω
∂α2

Z

∂2Ω
∂αZ∂β

∂2Ω
∂β∂αN

∂2Ω
∂β∂αZ

∂2Ω
∂β2

∣∣∣∣∣∣∣∣ , (8)

with α = βλ, and Ω being the logarithm of the grand partition function

Ω = ln
[
tr(e−βH)

]
= −β

∑
k

(εk − λ− Ek) + 2
∑

k

ln(1 + e−βEk)− β
∆2

G
. (9)

Finally, the level density is defined as ρ(E∗) = ω(E∗)

σ
√

2π
, where σ2 = 1

2

∑
k m2

ksech
2 1

2βEk is
the spin cut-off parameter. In the expressions of density of state as well as level density,
E∗ is the excitation energy, which is calculated by subtracting the ground-state (binding)
energy from the total energy of the system

E∗(T ) = E(T )− Eg.s(T = 0), (10)

where Eg.s is the ground-state (binding) energy, which is the sum of the FTBCS or FTLN
energy at T = 0 plus the corrections due to the Wigner EWigner and deformation energies
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Fig. 1. Pairing gaps ∆ (neutron and proton), total (neutron + proton) excitation
energy E∗, total heat capacity C, and total entropy S as functions of temperature
T for 56Fe, 60Ni, 98Mo, and 116Sn. In Figs 1. (a), (e), (i) and (n) the thin and
thick dashed lines denote the neutron pairing gaps ∆N , whereas the thin and
thick dash dotted lines stand for the proton pairing gaps ∆Z . Here the thin lines
show the results obtained within the FTBCS, whereas the thick lines present the
FTLN results. In Figs. 1 [(b) - (d)], [(f) - (h)], [(j) - (m)] and [(o) - (q)] the thin
dashed and thick dash dotted lines depict the FTBCS and FTLN total (neutron
+ proton) results, respectively.

Edef

Eg.s(T = 0) = EFTBCS(FTLN)
g.s (T = 0) + EWigner + Edef . (11)

Here, for simplicity EWigner and Edef are estimated from the Hartree-Fock-Bogoliubov
(HFB) calculations with Skyrme BSk14 interaction [10].

III. NUMERICAL RESULTS AND DISCUSSIONS

We carried out the numerical calculations for some selected even-even nuclei, namely
56Fe, 60Ni, 98Mo, and 116Sn. The single-particle energies are calculated within the axial
deformed Woods-Saxon (WS) potential including the spin-orbit and Coulomb interactions
[11]. The quadrupole deformation parameters β2 are chosen to be the same as that of
Ref. [12], namely β2 = 0.24 for 56Fe and β2 = 0.17 for 98Mo, whereas β2 for two spherical
nuclei 60Ni and 116Sn are equal to zero. All the single-particle levels with negative energies
(bound states) are taken into account. The pairing interaction parameters G are adjusted
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Fig. 2. Level density ρ as function of total excitation energy E∗ obtained within
the FTBCS (triangles), FTLN (crosses) and the case without pairing (∆ = 0)
(rectangles) versus the experimental data (full circles with error bars) for 56Fe
(a), 60Ni (b), 98Mo (c) and 116Sn (d). The values of ground-state (binding) energy
corrections EWigner + Edef are shown in the figures..

so that the pairing gaps for neutron and proton obtained within the FTLN at T = 0 fits
the experimental odd-even mass differences [13]. These values are GN = 0.312, 0.34, 0.193
and 0.17 MeV for neutrons and GZ = 0.437, 0.0, 0.314, 0.0 MeV for protons in 56Fe, 60Ni,
98Mo, and 116Sn, respectively.

Shown in Figs. 1 are the thermodynamic quantities such as pairing gaps ∆, excita-
tion energies E∗, heat capacities C, and entropies S obtained within the FTBCS (dashed
lines) and FTLN (dash dotted line) for four nuclei under consideration. The FTBCS gaps
(thin lines) are seen to decrease with increasing T and vanish at a given critical temper-
ature T = TC . As the result, there appears a sharp peak in the heat capacity C at TC ,
which is the signature of SN phase transition. Applying the PNP within the LN method
results the FTLN pairing gaps at T = 0 (thick lines) which are always higher than that of
the FTBCS. Consequently, the TC values obtained within the FTLN are higher than the
corresponding FTBCS ones. This feature means that the FTLN offers a pairing which is
stronger and more correct than the FTBCS. The difference between the thermodynamic
quantities obtained within the FTBCS and FTLN in light nuclei like 56Fe is stronger than
in heavy nuclei like 116Sn as seen in Figs. 1. This is well-known because of the fact that
the particle-number fluctuation in the light systems is usually stronger than in the heavy
ones.

Shown in Fig. 2 are the level densities obtained within the FTBCS and FTLN versus
the experimental data taken from Refs. [14, 15]. It is clear to see in this Fig. 2 that the level
densities obtained within the FTLN fit best the experimental data for all nuclei whereas
within those obtained within the FTBCS one overestimate the experimental data. The
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results obtained within the non pairing case (∆ = 0) are quite far from the experimental
data. The ground-state energy corrections by Wigner and deformation energies, which
shift up the total excitation energy E∗ toward the right direction to the experimental
data, are also important in present case. As the result, we can conclude that the pairing
correlations together with the particle-number conservation within the Lipkin-Nogami
method as well as the corrections for the ground-state energy due to the Wigner and
deformation effects are all important for the description of nuclear level density.

IV. CONCLUSION

In present paper, we apply the finite-temperature BCS (FTBCS) theory as well
as the FTBCS with the approximate PNP within the Lipkin-Nogami method (FTLN)
to describe the thermodynamic properties as well as level densities of several selected
even-even isotopes, namely 56Fe, 60Ni, 98Mo, and 116Sn. The results obtained show that
the pairing correlation together with the binding energy correactions due to Wigner and
deformation energies have significant effects on the nuclear level density, especially at low
and intermediate excitation energies.
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