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Abstract. Spontaneous symmetry breaking in the electroweak theory is investigated at finite
temperature and non-zero chemical potential. We consider two sceneries µ2 > m2 > 0 and
m2 < 0 ≤ µ2. The dispersion relations and critical temperature are determined in the case of
negative m2 and all non-zero coupling constants. It is shown that the chemical potential affects
significantly on the phase transition and the condensated matter.

I. INTRODUCTION

Weinberg-Salam-Glashow theory is well known as a unification of weak and electro-
magnetic interactions. In this model the SU(2)× SU(1) symmetry group is the minimal
one [1, 2]. However, the theory is only renormalizeable by Higgs mechanism, where the non
- abelian gauge invariance is broken spontaneously (t’ Hooft 1971) [3, 4]. This is the firsts
realistic gauge theory that describes the experimental data with high accuracy. Further-
more, the mechanism of spontaneous symmetric breaking provides a good investigation of
Bose - Einstein condensation [5, 6].

Our main aim is to present in detail the electroweak theory without fermions at
finite temperature and non-zero chemical potential basing on the thermal field theory
[7, 8]. In this connection, it is possible to consider our work as being complementary to
result previously at zero temperature and the U(1) coupling constant g′ = 0 [7, 9].

This paper is organized as follow. In Section II the formalism is introduced in the
presence of non-zero chemical potential µ and a source term IνB

ν . Section III is devoted
to the scenarios 0 < m2 < µ2. In Section IV the scenarios m2 < 0 ≤ µ2 is investigated. In
section V the critical temperature in the electroweak theory is derived. Our conclusions
are summarized in Section VI.

II. FORMALISM

We start from the Higgs sector of Lagrangian density in the electroweak theory
basing on SU(2)× SU(1) symmetry

L = [(Dµ − iµδ0µ)Φ]+ (Dµ − iµδ0µ)Φ−m2Φ+Φ−λ
(
Φ+Φ

)2− 1
4
F a

µνF
aµν− 1

4
BµνB

µν (1)
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where µ is chemical potential, the coupling constant λ > 0.

Dµ = ∂µ − igAa
µ

τa

2
− ig′Y Bµ

F a
µν = ∂µAa

ν − ∂νA
a
µ + gεabcA

b
µAc

ν

Bµν = ∂µBν − ∂νBµ

Here a, b, c = 1, 2, 3; µ, ν = 0, 1, 2, 3.
It is well known, the potential

V (Φ+Φ) = − (
µ2 −m2

)
Φ+Φ + λ(Φ+Φ)2 (2)

is minimum at these values of scalar field

Φ0 = 0

or Φ+
0 Φ0 =

µ2 −m2

2λ
= φ2

0 =
v2

2
(3)

If µ2 < m2 the solution stable is Φ0 = 0, if µ2 > m2 it is stable at Φ+
0 Φ0 = φ2

0

Introducing a source term JνB
ν into the Lagrangian (1), i.e

L → L + JνB
ν (4)

where Jν = J0δ0ν , < Bν >= 0.
The Lagrangian density (4) becomes

L = (∂µΦ)+(∂µΦ) + iµ
[
Φ+(∂0Φ)− (∂0Φ+)Φ

]
+

+
1
4

(
gτaA

a
µ + g′Bµ

)
Φ+

(
gτaA

aµ + g′Bµ
)
Φ +

+ i
[
∂µΦ+

(
gτaA

a
µ + g′Bµ

)
Φ− Φ+

(
gτaA

aµ + g′Bµ
)
∂µΦ

]
+

− µΦ+
(
gτaA

a
0 + g′B0

)
Φ + (µ2 −m2)Φ+Φ +

− λ(Φ+Φ)2 − 1
4
F a

µνF
aµν − 1

4
BµνB

µν + JνB
ν (5)

The equations of motion for scalar field Φ, gauge fields Bµ and Aµ , respectively,
take the forms

−DµDµΦ + µ
(
gτaA

a
0 + g′B0

)
Φ + (µ2 −m2)Φ− 2λ(Φ+Φ)Φ = 0 (6)

∂µBµν +
1
2
ig′

[
(DµΦ)+Φ− Φ+(DµΦ)

]− Jν = 0 (7)

∂µF a
µν + gεabcA

µbF c
µν + ig

[
Φ+ τa

2
∂νΦ− ∂νΦ+ τa

2
Φ

]
+

g2

2
Aa

νΦ
+Φ+2gµδν0Φ+ τa

2
Φ = 0 (8)

The vacuum expectation value of gauge field Aµ is determined from Eqs (3) and (6)

< Aa
0 >= 0 (9)

The current J0 is derived from Eq (7) and the condition < B0 >= 0

J0 = 2g′µφ2
0 (10)



82 PHAN HONG LIEN, DO THI HONG HAI

By shifting the scalar field by

Φ → Φ =
(

0
φ0

)
+

1√
2

(
0
χ

)
=

1√
2

(
0

χ + v

)
(11)

where φ0 is the new ground state expectation value

φ0 =

√
µ2 −m2

2λ
=

v√
2

(12)

and χ is a real field (Higgs), which leads to the spontaneous breaking of symmetry. As it
well known, the gauge fields are usually defined by

W (±)
µ =

1√
2

(
A1

µ ∓A2
µ

)
(13)

Zµ = W 3
µ = W 3µ =

gA3
µ − g′Bµ

(g2 + g′2)1/2
= cosθA3

µ − sinθBµ (14)

Aµ =
gBµ + g′A3

µ

(g2 + g′2)1/2
= sinθA3

µ + cosθBµ (15)

where θ is the Weinberg angle, tgθ = g′/g.
Define two new coupling constants

gW = g
g

(g2 + g′2)1/2
= gcosθ (16)

e = g
g′

(g2 + g′2)1/2
= gsinθ (17)

gW is just gauge coupling constant, a e is the electric charge.
The masses of gauge bosons W , Z are given by

m2
W =

1
2
g2φ2

0 =
1
4
g2v2 =

(
g2
W + e2

) v2

4
(18)

m2
Z =

g2 + g′2

2
φ2

0 =

(
g2
W + e2

)2

g2
W

v2

4
(19)

m2
W

m2
Z

=
g2
W

g2
W + e2

(20)

i.e the SU(2) symmetry breaking effect leads to mass different between the charge and
neutral gauge bosons, W±

µ and Zµ.
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The complete Lagrangian (5) that includes the Higgs sector and gauge part reads

L =
1
2
∂µχ∂µχ− i

2
µ

[
(∂0χ

+)χ− χ+(∂0χ)
]
+

1
2
(µ2 −m2)(v + χ)2 +

− λ

4
(v + χ)4 +

1
4
µv2

[
g2
W + e2

gW
Z0 + 2eA0

]
χ +

+
1
2
W (+)

µ

(
2gµν − ∂µ∂ν + m2

W

)
W (−)

ν +

+
1
2
Zµ

(
2gµν − ∂µ∂ν + m2

Z

)
Zν +

1
2
Aµ (2gµν − ∂µ∂ν)Aν +

+
g2
W

2

(
Zµ ∧W (−)

ν

) (
Zµ ∧W ν(+)

)
+

− g2
W + e2

4

(
W (+)

µ ∧W (−)
ν

)(
Wµ(+) ∧W ν(−)

)
+

− i

2
gW

(
∂µW (+)

ν − ∂νW
(+)
µ

)(
Zµ ∧W ν(+)

)
+

+
i

2
gW

(
∂µW (−)

ν − ∂νW
(−)
µ

)(
Zµ ∧W ν(−)

)
+

+
i

2
gW (∂µZν − ∂νZµ)

(
W (+)

µ ∧W (−)
ν

)
+

+ ie
[
F (+)

µν

(
Aµ ∧W ν(+)

)]
+

[
F (−)

µν

(
Aµ ∧W ν(−)

)]
+

+
ie

2
Gµν

(
Wµ(+) ∧W ν(−)

)
+

e2

2

(
Aµ ∧W (+)

ν

)(
Aµ ∧W ν(−)

)
(21)

where

F (±)
µν = ∂µW (±)

ν − ∂νW
(±)
µ ∓ igW

(
Zµ ∧W (∓)

ν

)
(22)

µ = µ− 1
2
(g2 + g′2)1/2Zµ = µ− 1

2
g2
W + e2

gW
Zµ (23)

m2 = m2 +
g2

2
W (+)

µ W (−)
µ = m2 +

g2
W + e2

2
W (+)

µ W (−)
µ (24)

Let us consider in detail two scenarios m2 > 0 and m2 < 0, the chemical potential
µ play role as a parameter acting on the breaking of symmetry.

III. FIRST SCENARIO: m2 > 0, e = g′ = 0

In this case g = gW , mW± = mW0 = 1
2gv. If µ2 < m2 the SU(2)× U(1)Y × SU(3)

symmetry is exact, the theory is relativistic. If µ2 > m2 > 0, the U(1)Y symmetry is
broken. Take the ansatz as follow

W
(+)
3 = W

(−)
3 = I 6= 0, Z0 = W

(3)
0 = K 6= 0

W
(±)
1,2 = W

(±)
0 = W

(3)
1,2 = W

(3)
3 = 0 (25)
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In the Mean Field Approximation (MFA), where all field derivates had been setting
to zero, the effective potential becomes

V = −g2

2

(
Z0 ∧W

(−)
3

)(
Z0 ∧W 3(+)

)
+

+
g2

4

(
W

(+)
i ∧W

(−)
j

)(
W i(+) ∧W j(−)

)
+

− 1
2

[(
µ− 1

2
gZ0

)2

−
(

m2 +
1
2
g2W

(+)
3 W

(−)
3

)]
(v + χ)2 +

+
λ

4
(v + χ)2

= −g2I2K2 −
(

µ− gK

2

)2

φ2 +
(

m2 +
g2I2

2

)
φ2 + λφ4 (26)

The physical processes satisfies the stationary condition at φ = φ0

∂V

∂I |φ=φ0

= 0,
∂V

∂K |φ=φ0

= 0,
∂V

∂φ |φ=φ0

= 0

which leads to the system of equations
(

K2 − 1
2
φ2

0

)
I = 0 (27)

(
2I2 +

1
2
φ2

0

)
K =

µ

g
φ2

0 (28)

[(
µ− 1

2
gK

)2

−m2 − 1
2
g2I2 − 2λφ2

0

]
φ0 = 0 (29)

For µ2 > m2 ( i.e v > 0), the ground state expectation value φ0 > 0, I 6= 0, Eq.
(27) yields

K =
√

2
2

φ0 > 0 (30)

Substituting (30) into Eq. (29), we have

(µ2 −m2) +
(

g2

4
− 2λ

)
φ2

0 −
3gµ

2
√

2
φ0 = 0 (31)

It’s solution reads

φ0 =
1√

2(8λ− g2)

[√
(g2 + 64λ)µ2 − 8(8λ− g2)m2 − 3gµ

]
(32)

For g2 ≤ 8λ the potential has minimum at the solution stable φ0. At the critical
value µ = m there is a second order phase transition.
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IV. SECOND SCENARIO: m2 < 0 ≤ µ2

We focus on the dynamics in the second case m2 < 0 in the presence of chemical
potential µ ≥ 0. Here, it is well known, the symmetry is broken spontaneously SU(2) ×
U(1)Y → U(1)EM .

Let us consider the effective potential in MFA. It is defined from the Lagrangian (1)

V = −LMFT .

IV.1. Case g 6= 0 and g′ = 0, φ0 = const

Firstly we consider a homogenous ground state solution with φ0 being constant,
which does not break the rotational in variance, i.e

W (±)
a = 0, Za = 0, χ0 = 0, A0 = 0 (33)

In this case, due to definition in (17) g′ = 0 implies e = 0. Therefore

g =
(
g2
W + e2

)1/2 = gW (34)

m2
W = m2

Z =
1
2
g2φ2

0 (35)

The effective potential in MFA takes the form

V = −1
2
g2
W

(
Z0 ∧W

(−)
0

)(
Z0 ∧W 0(+)

)
+

+
1
4
g2
W

(
W

(+)
0 ∧W

(−)
0

)(
W

(+)
0 ∧W 0(−)

)
+

− (
µ2 −m2

)
φ2

0 + λφ4
0 (36)

where

µ = µ− 1
2
gZ0 (37)

m2 = m2 +
1
2
g2W

(+)
0 W

(−)
0 (38)

The equations of motion become
(
i∂0W

(+)
0 + 2µW

(+)
0

)
φ0 = 0 (39)

∂V

∂Z0
= g

(
1
2
gZ0 − µ

)
φ0 = 0 (40)

∂V

∂W
(±)
0

=
1
2
g2φ2

0W
(±)
0 = 0 (41)

and
∂V

∂φ0
=

[(
µ− g

2
Z0

)2
−m2 − 2λφ2

0 −
i

2
g∂0Z0 +

g2

2
W

(+)
0 W

(−)
0

]
φ0 = 0 (42)
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It is easily to find the symmetry solution φ0 = 0 and other solutions of system of
Eqs (40) - (42)

Z0 =
2µ

g
(43)

W
(±)
0 = 0 (44)

and

φ0 = −m2

2λ
; Z0 =

2µ

g
; W

(±)
0 = 0 (45)

i.e the ground state expectation values of vector fields are well determined physical quan-
tities.The solutions (45) is shown that spontaneous U(1)Y symmetry breaking exits only
for negative m2.

Substituting (45) into (38), we obtain the effective chemical potential and the
squared mass, respectively

µ = 2µ, m2 = m2.

IV.2. Case g 6= 0 and g′ 6= 0, m2 < 0 ≤ µ2

In this case, the ground state (45) describes spontaneous breaking SU(2) × U(1)Y

to U(1)EM and preserve of rotational invariance.
The propagators for massive vector gauge boson is given by

Sµν(k) =
i

k2 −m2
W

[
gµν − (1− ξ)

kµkν

k2 − ξm2
W

]
(46)

Next we consider finite temperature by ”imagine time” formalism. The matrices
corresponding to (46) in t’Hooft - Feymann ξ = 1 takes the form

S−1
µν (k) =




[
ω2 −

(−→
k 2 + 1

2g2φ2
0

)]
gµν 2iµω

−2iµω
[
ω2 −

(−→
k 2 + 1

2g2φ2
0

)]
gµν


 (47)

It’s dispersion relations is determined from detS−1 = 0

ω± =

√
µ2 +

−→
k 2 +

1
2
g2φ2

0 ± µ (48)

In infrared it becomes

ω± '
√

µ2 +
1
2
g2φ2

0 ± µ (49)

That means the chemical potential leads to spliting the quantum masses of two charged
vector boson.

Similary, the inverse propagator of neutral gauge boson Zµ and photon Aµ is

G−1
µν (k) =




(
ω2 −−→k 2

)
gµν 2iµω

−2iµω
[
ω2 −

(−→
k 2 + m2

Z

)]
gµν


 (50)

where
m2

Z =
1
2
(g2 + g′2)φ2

0 =
1
4
(g2 + g′2)v2
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When k → 0, the equation detG−1
µν = 0 reads

detG−1(k) = ω4 − ω2(m2
Z − 4µ2) = 0 (51)

Their dispersion relations are

ω2
1,2 = m2

Z − 4µ2 = (mZ + 2µ)(mZ − 2µ) (52)

ω1 =
(g2 + g′2)1/2v

2
+ 2µ (53)

ω2 =
(g2 + g′2)1/2v

2
− 2µ (54)

V. PHASE TRANSITION IN THE ELECTROWEAK THEORY

We consider the scalar field in the presence of non - zero chemical potential and
temperature.

The equation of motion for φ reads

(µ2 −m2 − 4λφ2
0 − 3λχ2 − 1

4
g2W (+)

µ W (−)
µ +

g2 + g′2

8
Z2

µ + 2g′µBµ)φ = 0 (55)

When φ → φ0 it is shown [7] that all effective fields and chemical potential are very
smaller than the critical temperature TC .

When the quantum state is equilibrium, the fluctuations haven’t influences signif-
icant to physical properties of system. If the conditions charge, these fluctuations could
be spread and the quantum system becomes instable, then the phase transition leads it to
new stable properties.

At the transition temperature φ0 = 0, due to the finite temperature part of prop-
agators [10] one can determine the thermal average of squared scalar and gauge vector
fields

< χ2 >=
T 2

12
; < W 2

µi >=
T 2

8
(56)

Substituting (56) into (55), we obtain the critical temperature

T 2
C =

16(µ2 −m2)
16λ + 3g2 + g′2

or equivalently

T 2
C =

4(µ2 −m2)
2λ + e2(1 + 2cos2θ)/sin22θ

(57)

It is shown that the phase transition depends significantly on the chemical potential
and the electric charge.

VI. DISCUSSION AND CONCLUSION

In the above sections the Weinberg Salam Glashow without fermions is considered at
finite temperature and density. The dispersion relations are obtained, where the chemical
potential acts to mechanism of spontaneous breaking of symmetry and it leads to splitting
the quantum masses of vector bosons. The critical temperature has been directly derived
in the mean-field approximation. The phase transition is second order one.
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Linde [11] and Kapusta [7] have pointed out that at fixed temperature the conden-
sation of the W± mesons should occur at higher densities than the symmetry restoring
density. However, the finite density of charged fermions didnt affect on the results because
its interactions and electromagnetic one are different. Eventhough strong electromagnetic
could lead to the deconfinement Miransky [9] and other authors [12] have investigated a
similar model, which includes three massless vector boson Aa

µ and two doublets
(
K+,K0

)

and
(
K−,K0

)
.

Our next paper is intended to be devoted to the Weinberg Salam model including
both bosonic and fermionic parts and to numerical calculations at finite temperature and
density.

In conclusion, we would like to emphasize that the spontaneous symmetry violation
and symmetry restoration at high temperature depend on the dynamics of the theory that
is concerned with the physical processes.
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