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ON A PHASE TRANSITION OF BOSE GAS
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Abstract. The Cornwall-Jackiw-Tomboulis (CJT) effective action at finite temperature is applied
to study the phase transition in Bose gas. The effective potential, which preserves the Goldstone
theorem, is found in the Hartree-Fock (HF) approximation. This quantity is then used to consider
the equation of state (EOS) and phase transition of the system.

I. INTRODUCTION

Nowadays, the research of phase transition has become one of the most topical fields
in both theoretics and experiment since it is closely related to quantum field theory, funda-
mental particle physics, condensed matter physics, and cosmology. However, around the
critical points of phase transition, many properties of physical systems have an anomalous
alteration, that is difficult for observation in perturbation series. Accordingly, interest in
finding and developing an adequate formalism, which provides a reliable description of
critical phenomena have been growing in several recent years. As was pointed out in [1],
the CJT effective action is most suited for this purpose.

In this paper, basing on the CJT effective action approach, we reconsider the phase
transition at high temperature of Bose Gas. The paper is organized as follows. In section
II, the CJT effective action at finite temperature is calculated and renormalized. Sec-
tion III is devoted to determining several important physical properties of system. The
conclusion and discussion are given in section IV.

II. EFFECTIVE POTENTIAL IN HF APPROXIMATION

Let us begin with the Bose gas given by the Lagrangian

£ = φ∗
(

−i ∂
∂t
− ∇

2

2m

)

φ− µφ∗φ+
λ

2
(φ∗φ)2 (1)

where µ represents the chemical potential of the field φ, m the mass of φ atom, and λ the
coupling constant. In the tree approximation the condensate density φ2

0 corresponds to
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local minimum of the potential. It fulfills

−µφ0 +
λ

2
φ3

0 = 0, (2)

yielding (for φ 6= 0)
φ2

0

2
=
µ

λ
. (3)

Now let us focus on the calculation of effective potential in HF approximation. At
first the field operator φ is decomposed

φ =
1√
2
(φ0 + φ1 + iφ2). (4)

Inserting (4) into (1) we get, among others, the interaction Lagrangian

£int =
λ

2
φ0φ1(φ

2
1 + φ2

2) +
λ

8
(φ2

1 + φ2
2)

2,

and the inverse propagator in the tree approximation

D−1
0 (k) =

(

~k2

2m − µ+ 3λ
2
φ2

0 −ω
ω

~k2

2m − µ+ λ
2
φ2

0

)

. (5)

From (3) and (5) it follows that

E = +

√

√

√

√

(

~k2

2m
+ λφ2

0

)

~k2

2m
, (6)

which is the Bogoliubov dispersion relation for Bose gas in the broken phase.
For small momenta equation (6) reduces to

E ≈ +k
√

λφ2
0

2m
, (7)

associating with Goldstone boson due to U(1) breaking.
Next the CJT effective potential is calculated in the HF approximation [2]. The

propagator is expressed in the form [3],

D−1 =

(

~k2

2m +M1 −ω
ω

~k2

2m +M2

)

.

Following closely [4] we arrive at the CJT effective potential V CJT
β (φ0, D) at finite tem-

perature in the HF approximation

V CJT
β (φ0, D) = −

µ

2
φ2

0 +
λ

8
φ4

0 +
1

2

∫

β
tr

{

lnD−1(k) +D−1
0 (k;φ0)D − 11

}

+
3λ

8

[
∫

β
D11(k)

]2

+
3λ

8

[
∫

β
D22(k)

]2

+
λ

4

[
∫

β
D11(k)

][
∫

β
D22(k)

]

. (8)
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Here
∫

β
f(k) = T

∞
∑

n=−∞

∫

d3k

(2π)3
f(ωn,~k).

Starting from (8) we obtain, respectively,

a - The gap equation

µ− λ

2
φ2

0 − Σ1 = 0. (9)

b- The Schwinger-Dyson (SD) equation

D−1 = D−1
0 (k;φ0) + Σ, (10)

where

Σ =

(

Σ1 0
0 Σ2

)

, (11)

and

Σ1 =
3λ

2

∫

β
D11(k) +

λ

2

∫

β
D22(k), Σ2 =

λ

2

∫

β
D11(k) +

3λ

2

∫

β
D22(k)

M1 = −µ+
3λ

2
φ2

0 +Σ1, M2 = −µ+
λ

2
φ2

0 +Σ2. (12)

The explicit form for propagator comes out from combining (9) and (10),

D−1 =

(

~k2

2m − µ+ 3λ
2
φ2

0 +Σ1 −ω
ω

~k2

2m − µ+ λ
2
φ2

0 +Σ2

)

, (13)

which clearly show that the Goldstone theorem fails in the HF approximation. In order
to restore it, we use the method developed in [5], adding a correction ∆V to V CJT

β

Ṽ CJT
β = V CJT

β +∆V CJT
β , (14)

with

∆V CJT
β =

xλ

2
[P 2

11 + P 2
22 − 2P11P22]

Paa =

∫

β
Daa, (a = 1 or 2). (15)

It is easily checked that choosing x = −1/2 we are led to effective potential Ṽ CJT
β

Ṽ CJT
β (φ0, D) = −µ

2
φ2

0 +
λ

8
φ4

0 +
1

2

∫

β
tr

{

lnD−1(k) + [D−1
0 (k;φ0)D]− 11

}

+
λ

8
P 2

11 +
λ

8
P 2

22 +
3λ

4
P11P22, (16)
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which obeys three requirements imposed in [5]: (i) it restores the Goldstone theorem in
the broken symmetry phase, (ii) it does not change the HF equations for the mean fields,
and (iii) it does not change results in the phase of restored symmetry.

From (16), instead of (9), (12) and (13), we get:
a- The gap equation

−µ+ λ

2
φ2

0 +Σ
∗

2 = 0. (17)

At critical temperature we have φ0 = 0, and Eq. (17) give µ = Σ
∗

2, which manifest exactly
the Hugenholz - Pines theorem [6].

b- The SD equation

D−1 = D−1
0 (k;φ0) + Σ

∗, (18)

in which

Σ∗ =

(

Σ∗

1 0
0 Σ∗

2

)

=

(

λ
2
P11 +

3λ
2
P22 0

0 3λ
2
P11 +

λ
2
P22

)

Combining (17) and (18) we get the form for inverse propagator

D−1 =

(

~k2

2m +M∗

1 −ω
ω

~k2

2m +M∗

2 ,

)

.

in which

M∗

1 = −µ+
3λ

2
φ2

0 +Σ
∗

1, M∗

2 = −µ+
λ

2
φ2

0 +Σ
∗

2. (19)

Owing to (17) M ∗

2 vanishes in broken phase and

D−1 =

(

~k2

2m +M∗

1 −ω
ω

~k2

2m

)

. (20)

It is obvious that the dispersion relation related to (20) reads

E =

√

√

√

√

~k2

2m

(

~k2

2m
+M∗

1

)

−→
√

M∗

1

2m
k as k → 0,

which express the Goldstone theorem. Due to the Landau criteria for superfluidity [7]
the idealized Bose gas turns out to be superfluid in broken phase and speed of sound in
condensate is given by

C =

√

M∗

1

2m
.
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Ultimately the one-particle-irreducible effective potential Ṽβ(φ0) is read off from (16) with
D fulfilling (18),

Ṽβ(φ0) = −µ
2
φ2

0 +
λ

8
φ4

0 +
1

2

∫

β
tr lnD−1(k) +

1

2

(

−M∗

1 − µ+
3λ

2
φ2

0

)

P11

+
1

2

(

− µ+
λ

2
φ2

0

)

P22 +
λ

8
P 2

11 +
λ

8
P 2

22 +
3λ

4
P11P22. (21)

Since Ṽ CJT
β (φ0, D) and Ṽβ(φ0) contain divergent integrals, corresponding to zero temper-

ature contributions, we must proceed to the regularization. To this end, we make use of
the dimensional regularization by performing momentum integration in d = 3− ε dimen-
sions and then taking ε→ 0. The regularized integrals then turn out to be finite [8]. We
therefore find the effective potentials consisting of only finite terms.

III. PHYSICAL PROPERTIES

III.1. Equations of state

Let us now consider EOS starting from the effective potential. To this end, we begin
with the pressure defined by

P = − Ṽ CJT
β (φ0, D)

∣

∣

∣

at minimum
, (22)

from which the total particle density is determined

ρ =
∂P

∂µ
.

Taking into account the fact that derivative of Ṽ CJT
β (φ0, D) with respect to its argument

vanishes at minimum we get

ρ = −
∂V CJT

β

∂µ
=
φ2

0

2
+
P11

2
+
P22

2
. (23)

Hence, the gap equation (17) becomes

µ = λρ+ λP11, (24)

Combining Eqs. (19), (22) and (23) together produces the following expression for the
pressure

P =
λ

2
ρ2 − 1

2

∫

β
tr lnD−1k)− λ

2
P 2

11 + λ ρ P11. (25)

The free energy follows from the Legendre transform

E = µρ− P,

and reads

E =
λ

2
ρ2 +

1

2

∫

β
tr lnD−1(k) +

λ

2
P 2

11. (26)

Eqs. (25) and (26) constitute the EOS governing all thermodynamical processes, in par-
ticular, phase transitions of the system.
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To proceed further it is interesting to consider the high temperature regime, T/µÀ
1. Introducing the effective chemical potential

µ = µ− Σ∗

2,

the gap equation (17) can be rewritten as

λ

2
φ2

0 = µ1,

which yield

φ2
0

2
=
µ

λ
. (27)

Eq. (27) resemble (3) with µ replaced by µ.
It is evident that the symmetry breaking at T = 0 is restored at T = Tc if

φ2
0 = 0.

Using the high temperature expansions of all integrals appearing in Vβ and related quan-
tities, we find the critical temperature Tc

Tc = 2π

[

µ

2m3/2λζ(3/2)

]2/3

. (28)

and the pressure to first order in λ for temperature just below the critical temperature

P =
λ

2
ρ2 +

m3/2ζ(5/2)

2
√
2π3/2

T 5/2 +
m3λ[ζ(3/2)]2

16π3
T 3,

which is the well-known result of Lee and Yang for Bose gas [9] without invoking the
double counting subtraction as was done in Ref. [10].
Based on the formula

E = − ∂

∂β
[βP (µ)]µ, β = 1/T,

the high temperature behaviour of the free energy density is also derived in the same
approximation

E = −1
2
λρ2 − 3m

3/2λρζ(3/2)

4
√
2π3/2

T 3/2 +
3m3/2ζ(5/2)

4
√
2π3/2

T 5/2 +
m3λ[ζ(3/2)]2

8π3
T 3.

Next the low temperature regime, T/µ ¿ 1, is concerned. Basing on the low tem-
perature expansions of all quantities we are able to write the low temperature behaviour
of the equations for M ∗

1 as follows

M∗

1 = 2λρ−
2
√
2M

∗3/2
1 m3/2λ

3π2
− 2
√
2m3λπ2

15M
∗5/2
1

T 4

which require a self-consistent solution for M ∗

1 as function of density and temperature.
The first approximation we can choose is

M∗

1 ' 2λρ. (29)
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and we arrive at the low temperature dependence of chemical potential

µ = λρ+
4m3/2λ5/2ρ3/2

3π2
+

m3/2π2

60λ3/2ρ5/2
T 4,

and pressure

P =
λρ2

2
+
4m3/2λ5/2ρ5/2

5π2
+

π2m3/2T 4

36λ3/2ρ3/2
− m3T 4

45ρ
− 8m

3λ4ρ3

9π2
− π4m3T 8

7200λ4ρ5
. (30)

It is worth to mention that Eq. (30) does not coincide with [10] because several T -
dependent terms were missed in that work. Accordingly we get the equation for free
energy

E = µρ− P =
λρ2

2
+
8m3/2λ5/2ρ5/2

15π2
− π2m3/2T 4

90λ3/2ρ3/2
+
m3T 4

45ρ
+
8m3λ4ρ3

9π4
+

π2m3T 8

7200λ4ρ5
.

III.2. Numerical study

In order to get some insight to the phase transition of the Bose gas, let us choose
the model parameters, which are close to the experimental settings, namely

λ = 10−11eV −2, µ = 10−11 eV, = 80 GeV.

Solving self-consistently the gap and the SD equations (17), (18) and (19) we obtain the
T dependence of M∗

1 given in Fig. 1 and φ0 shown in Fig. 2. As is seen from these figures
the symmetry restoration takes place at Tc ' 300 nK and phase transition is second order.
This statement is confirmed again in Fig. 3, providing the evolution of Vβ [φ0, T ] with
respect to φ0.
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Fig. 1. The T dependence of M∗

1 .



ON A PHASE TRANSITION OF BOSE GAS 69

100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T HnKL

Φ 0
IeV3�2 M

Fig. 2. The T dependence of φ∗0.
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Fig. 3. The φ0 dependence of Vβ [φ0, T ] at several values of T around Tc.

IV. CONCLUSION AND OUTLOOK

Due to growing interest of phase transition we considered a non-relativistic model
of idealized Bose gas. We have obtained the effective potential in the HF approximation,
which is renormalized and respects Goldstone theorem.The expression for pressure, which
depends on particles densities, was derived together with the free energy. The EOS ’s at
low and high temperatures were considered in detail, giving rise to the well-known formula
of Lee and Yang and other results for single Bose gas. It was indicated that the symmetry
restoration takes place at Tc ' 300 nK and phase transition is second order.
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