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SOME INTERESTING PROPERTIES OF WHILE HOLE
IN THE VECTOR MODEL FOR GRAVITATIONAL FIELD
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Abstract. There is a strange macro object existing in the vector model for gravitational field,
called while hole, it appears after the black hole disappear and has many strange properties. In
this paper we show some its interesting properties and point out a object similar to it in universe.

I. WHILE HOLES IN THE VECTOR MODEL FOR GRAVITATIONAL
FIELD

In the vector model for gravitational field, we assume that gravitational field is
a vector field, its source is the gravitational mass of matter. Along with the energy-
momentum tensor of matter, this vector field contributes to warp the space-time by the
following equation ([1]).

Rµν −
1
2
gµνR− gµνΛ = −8Gπ

c4
TMg.µν + ωTg.µν (1)

where TMg,µν is the energy - momentum tensor of matter. Tg,µν is the energy-momentum
tensor of the gravitational field. From this equation, we have obtained a metric around a
non rotating, non charged spherically symmetric object as follows ([2], [3]):
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We put ω
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c4
and rewrite the line element(2)
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We calculate radii r1,r2 for a body whose mass equals to Solar mass and for a galaxy
whose mass equals to the mass of our galaxy with ω′ ≈ −0.06

• with Mg = 2× 1030kg: r1 ≈ 30m, r2 ≈ 3km.
• with Mg = 1011 × 2× 1030kg: r1 ≈ 3× 109km, r2 ≈ 3× 1011km.
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Thus, because of gravitational collapse, firstly at the radius r2 a body becomes a black hole
but then at the radius r1 it becomes visible. Therefore, this model predicts the existence
of a new universal body after a black hole.

II. PROPERTIES OF WHILE HOLES

II.1. Surface vibrations of while holes

In this section, we shall give a crucial approximation of the surface vibration of
while hole. Let us consider an object with gravitational mass Mg which shrinks very close
to the radius r1( the object became a black hole!). At the boundary of r1, under the
influence of the force pulling into the center and the force pushing out from the center
at the same time with approximate magnitude, the surface of body will vibrates. The
equation of motion of mass m is: From the metric (3) we have
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With the effective potential

ϕg = (−GMg

r
+ 0.03

G2M2
g

c2r2
) (6)
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Due to
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we have
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The equation(10)determines the motion of a material element m at the surface of
the object. Because of object just throbbing around the sphere surface with the radius r1,
we can set

r = r1 + δr (11)
Retaining only the first degree of small parameter, we have two the following equations:
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and

ω2 = r−3
1 (

3b

r1
− 2a) (15)

Because of two forces pulling and pushing are roughly equal at the surface r1, r1 changes
very slowly, we will consider it later. From equation(13), we see that the surface of the
sphere r1 takes a harmonic oscillation with angle frequency almost constant by (15). Thus
the sphere r1 that we call the while hole will be throbbing like a variable star

II.2. The red shift and the blue shift of while holes

A special property of while holes in the model is the gravitational red shift due to
gravity of while holes. The formula of the gravitational red shift Z in General Theory of
Relativity is ([5]):

Z =
λe − λo

λe
=

√
g00(o)√
g00(e)

− 1 = (1− rS

r
)−1/2 (16)

where

rS =
2GM

c2
(17)

is the Schwarzschild radius and
r = rrource (18)

is the radius of the source
rreceiver →∞ (19)

is the distance from source to observer. In this model, the formula of the gravitational red
shift Z is:

Z = (1− rS

r
+ 0.015

r2
S

r2
)−1/2 − 1 (20)

From the formula(20), we have:
a/the domain I- normal object:

r :∞→r2 (21)

with red shift
Z : 0→ +∞ (22)

b/the domain II-black hole:
r : r2→r1 (23)

c/the domain III- while hole
r : r1→r0 (24)

with red shift
Z : +∞→ 0 (25)

d/ the domain IV - a while hole
r : r0→0 (26)

with blue shift
Z : 0→ −1 (27)
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III. RADIAL MOTION OF A PARTICLE INTO A WHILE-BLACK HOLE

We this section we shall consider radial motion of a particle into a while- black hole.
We consider a particle falling radially into the central body with the particle having a
velocity vector ofv1 = dx/ds. Since the particle falls in radially, we can take v2 = v3 = 0.
The motion can be described by the geodesic equation

dvµ

ds
+ Γµ

νσvνvσ = 0 (28)

which reduces to, for the case we are considering

dv0

ds
= −Γ0

νσvνvσ = −g00Γ0,νσvνvσ = −2g00Γ0,10v
0v1 (29)

From
Γµ,νσ = (gµν,σ + gµσ,ν − gνσ,µ)/2 (30)
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so (28 ) become
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0 dx1
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= −g00 dg00
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v0 (32)

Due to g00 = 1/g00, so we finally get

g00
dv0
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+
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ds
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d(g00v
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= 0 (33)

This integrates to
g00v

0 = k (34)
with k is an integration( the value of g00 where the particle starts to fall). From

ds2 = gµνdxµdxν (35)

We have
1 = gµνv

µvν = g00(v0)2 + g11(v1)2 (36)
Multiplying this equation by g00, we obtain

g00 = (g00)2(v0)2 + g00g11(v1)2 (37)

We have from(3) :
g00g11 = −1 (38)

Substituting this and (34) into (37), we get

k2 − (v1)2 = g00 = 1− rS/r + 0.015(rS)2/r2 (39)

from which we obtain

(v1)2 = k2 − 1 + rS/r − 0.015(rS)2/r2 (40)

For a falling body v1 < 0, hence

(v1) = −
√

(k2 − 1 + rS/r − 0.015(rS)2/r2)1/2 (41)
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Fig. 1. The graph of eν : black hole starts from r2 → r1, while hole starts from
r1 → 0

Now, we consider dt/dr

dt

dr
=

dx0/ds

dx1/ds
=

v0

v1
(42)

and from(34) we have

v0 = k/g00 = k/(1− rS/r + 0.015(rS)2/r2) (43)

so

dt/dr = v0/v1 = −k(1− rS/r + 0.015(rS)2/r2)−1(k2 − 1 + rS/r − 0.015(rS)2/r2)−1/2

(44)
Let us now suppose the particle is close to the critical radius r2, so we set r =

ε + r2,with ε small, and let us neglect ε2. Then

dt = −1.0467r2
dr

r − r2
(45)

This integrates to
t = −1.0467r2ln (r − r2) + C (46)

Thus, as r → r2 and t→∞, and the particle takes an infinite time to reach to the radius r2.
In this model the surface defined by r = r2 is called the event horizon with r2 = 0.985rS .
When the particle falling into the while hole, the domain III and IV r : r1 → 0, we have
also the result as follows

t = −0.0513r1ln (r1 − r) + C (47)

where r1 = 0.1532rS Thus, the particle take also a finite time to reach to the radius zero
and an infinite time to reach to the radius r1!

The graph of eν is showed in figure 1
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Fig. 2. The graph of z as a function of r . A while hole with m = mSun has the
radii as follows: r0 = 0.045km; r1 = 0.04596km; r2 = 2.9543km, rS = 3km

IV. DISCUSSION AND CONCLUSION

With the strange properties of the while holes as above discussion, what can the
candidates of while holes be ? In our opinion, the candidates of while holes can just be
quasars! Quasars have the properties as follows([5])

- Quasars have the high red shift,
- Quasars have the sizes are small by observed data,
- Quasars have the variation of the brightness in the optical domain and the x-ray

domain.
- Quasars have only the red shift but have no the blue shift. A more detailed research

of the problem shall do in the future.
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