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Abstract. The parametric resonance of acoustic and optical phonons in a Compositional Semi-
conductor superlattice with non-degenerative electron gas in the presence of a laser field is theoret-
ically predicted by using a set of quantum transport equations for the phonons. Dispersions of the
resonant phonon frequency and the threshold amplitude of the field for parametric amplification of
the acoustic phonons are obtained. If they are obtained, then they are also estimated for realistic
semiconductor models.

I. INTRODUCTION

It is well known that in the presence of an external electromagnetic field (EEF),
an electron gas becomes non-stationary. When the conditions of parametric resonance
(PR) are satisfied, parametric interactions and transformations (PIT) of the same kind
of excitations, such as phonon-phonon, plasmon-plasmon, or of different kinds of excita-
tions, such as plasmon-phonon, will arise; i.e., energy exchange processes between these
excitations will occur [1]. The PIT of acoustic and optical phonons has been considered in
bulk semiconductors and in quantum wells [2, 3]. The physical picture can be described as
follows: due to the electron-phonon interaction, propagation of an acoustic phonon with
a frequency ωq⃗ is accompanied by a density wave with the same frequency. When an EEF
with frequency is presented, a charge density waves (CDW) with a combination frequency
ωq⃗ ± ℓΩ (ℓ = 1, 2, 3...) will appear. If among the CDW there exists a certain wave having
a frequency which coincides, or approximately coincides, with the frequency of the optical
phonon, νq⃗, optical phonons will appear. These optical phonons cause a CDW with a
combination frequency of νq⃗ ± ℓΩ, and when νq⃗ ± ℓΩ ∼= ωq⃗, a certain CDW causes the
acoustic phonons mentioned above. The result of the study shows that the PIT can speed
up the damping process for one excitation and the amplification process for another exci-
tation, namely acoustic phonons are amplified while optical phonon are declined or it can
be on the contrary. For low-dimensional semiconductors, there have been several works
on the generation and amplification of acoustic phonons [5]. However, in our opinion, the
energy exchange processes between two different kinds of phonons in superlattices, which
are driven by a PR of a two-phonon kind, have not yet been reported. It should be noted
that the mechanism for PIT is different from that for phonon amplification under a laser
field [6] and from PR of a defect mode [7].
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In Ref. 3 and 4, we have studied the PIT in a quantum well and in a doper Com-
positional superlattice (DSSL) with non-degenerative electron gases. In order to continue
the ideas of Refs. 2 and 3, the purpose of this paper is to also study the parametric
resonance of acoustic and optical phonons, but in a Compositional Semiconductor super-
lattice (CSSL). The electron gas is assumed to be non-degenerate. Because the analytic
calculation process in the present paper is similar that in Ref. 3 and the main differences
are expressions of form factor and energy spectrum of electron in the models, only a brief
description of the calculation will be given in this paper. In Sec. II, we introduce the
dispersion equation obtained from the quantum transport equations for phonons. In Sec.
III, we present results of an analytical approximation for the resonant acoustic phonon
frequency and the threshold amplitude of the field for parametric amplification of acoustic
phonons. Conclusions are shown in Sec. IV.

II. GENERAL DISPERSION EQUATION

The superlattice potential in CSSLs is created solely by the spatial distribution of
the charge. The substantial improvement in the spatial (in an atomic scale) monitoring
of the doping during film growth by means of molecular-beam epitaxy enabled growing
Compositional Semiconductor superlattices-periodic alternation of thin (∼ 1−2 nm) layers
of (GaAs− AlxGa1−xAs). We consider a CSSL, in which the electron gas is confined by
a superlattice potential along the z direction (the axis of the superlattice) and electrons
are free on the x − y plane. It is well known that the motion of an electron is confined
in each layer of the CSSL and that its energy spectrum is quantized into discrete levels
in the z direction. The electron state, α, is defined by the quantum number n in the z

direction and the wave vector k⃗⊥ on the x− y plane perpendicular to z-axis, α = (n, k⃗⊥),

k⃗2 = k⃗2⊥ + k2z .
A laser field irradiates the sample in the z direction, the electric field of the laser wave

polarized in the x−y plane, E⃗ = E⃗0 sinΩt (E⃗0 and Ω are the amplitude and the frequency

of the laser field, respectively). The vector potential of the field is A⃗(t) = A⃗0 cosΩt.
If the Frohlich electron-acoustic and optical phonon interaction potential is used, the
Hamiltonian for the system of the electrons and the acoustic and optical phonons in the
laser field is: H(t) = H0(t) +He−ph, in which:

H0(t) =
∑
α

εα(t)a
+
αaα +

∑
q⃗

~ωq⃗b
+
q⃗ bq⃗ +

∑
q⃗

~νq⃗c+q⃗ cq⃗, (1)

He−ph =
∑
q⃗

∑
α′,α

Gnn′(q⃗)a+α′aα(bq⃗ + b+−q⃗) +
∑
q⃗

∑
α′,α

Dnn′(q⃗)a+α′aα(cq⃗ + c+−q⃗). (2)

where εα(t) ≡ εn

(
k⃗⊥ − (e/c~)A⃗(t)

)
, εn(k⃗⊥) ≡ εα, εα and a+α are the energy spectrum

and the creation operator of an electron for state α, b+q⃗ (c+q⃗ ) is the creation operator of

an acoustic (optical) phonon for energy ~ωq⃗ (~νq⃗). In this paper, we will deal with bulk
(3-dimensional) phonons; therefore, the electron-acoustic and -optical phonon interaction
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constants take the forms Gnn′(q⃗) = Gq⃗Mnn′(qz), Dnn′(q⃗) = Dq⃗Mnn′(qz), where [10]

|Gq⃗|2 =
~qξ2

2ρvaV
, |Dq⃗|2 =

e2~νq⃗
2V q2

(
1

χ∞
− 1

χ0

)
. (3)

Here, V , ρ, va, and ξ are the volume, the density, the acoustic velocity, and the deformation
potential constant, respectively; χ0 and χ∞ are the static and high-frequency dielectric
constants, respectively. The electron form factor, Mnn′(qz), is written as [11]

Mnn′(qz) =

s0∑
j=1

∫ d

0
eiqzzΦn(z − jd)Φn′(z − jd)dz, (4)

where d is the period of CSSL and s0 is the number of period of CSSL, Φn(z) is the
eigenfunction of the electron for an individual potential well.

In most cases, the interaction between the neighboring quantum wells in the CSSL
can be neglected, i.e., the dependence of the energy on the wave vector kz can be neglected.
The energy spectrum of an electron in the CSSL for the state α takes the form [12, 13]

εn(k⃗⊥) =
~2k2⊥
2m

+
~2π2n2

2md2
−∆ncos(kzd) =

~2k2⊥
2m

+ εn(kz), (5)

where m and e are the effective mass and the charge of the electron, respectively, and εn
are the energy levels of an individual well.

In order to establish a set of quantum transport equations for acoustic and optical
phonons, we use the general quantum distribution functions for the phonons, ⟨bq⃗⟩t and

⟨cq⃗⟩t, where ⟨ψ⟩t denotes a statistical average at the moment t: ⟨ψ⟩t = Tr(Ŵ ψ̂) (Ŵ is
the density matrix operator, Tr denotes the trace). Using Hamiltonian H(t) and realizing
operator algebraic calculations as in Ref. 3, we obtain a set of coupled quantum transport
equations. The equation for the acoustic phonons is

∂

∂t
⟨bq⃗⟩t + iωq⃗⟨bq⃗⟩t =

1

~2
∑

n,n′ ,⃗k⊥

+∞∑
s,s′=−∞

Js(λ)Js′(λ)e
i(s−s′)Ωt

[
fn(k⃗⊥ − q⃗)− fn′(k⃗⊥)

]

×
∫ t

−∞

(
|Gnn′(q⃗)|2

[
⟨bq⃗⟩t′ + ⟨b+−q⃗⟩t′

]
+Gnn′(−q⃗)Dnn′(q⃗)

[
⟨cq⃗⟩t′ + ⟨c+−q⃗⟩t′

])
× exp

(
i

~

[
εn(k⃗⊥ − q⃗)− εn′(k⃗⊥) + s~Ω

]
(t′ − t)

)
dt′. (6)

Here fn(k⃗⊥) is the distribution function of electrons in the state (n, k⃗⊥), Js(λ) is the Bessel

function, and λ = e(q⃗⊥.E⃗0)/(mΩ2).
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From Eq. (6) we can obtain an equation for the Fourier transformation Bq⃗(ω) of
⟨bq⃗⟩t:

(ω − ωq⃗)Bq⃗(ω) =
2

~2
∑
n,n′

∞∑
ℓ=−∞

|Gnn′(q⃗)|2
ωq⃗Bq⃗(ω − ℓΩ)

ω − ℓΩ+ ωq⃗
Pℓ(q⃗, ω)

+
2

~2
∑
n,n′

∞∑
ℓ=−∞

Gnn′(−q⃗)Dnn′(q⃗)
νq⃗Bq⃗(ω − ℓΩ)

ω − ℓΩ+ νq⃗
Pℓ(q⃗, ω), (7)

where we have put

Pℓ(q⃗, ω) =

∞∑
s=−∞

Js(λ)Js+ℓ(λ)Γq⃗(ω + sΩ), (8)

Γq⃗(ω + sΩ) =
∑
k⃗⊥

~
[
fn′(k⃗⊥)− fn(k⃗⊥ − q⃗)

]
εn′(k⃗⊥)− εn(k⃗⊥ − q⃗)− ~(ω + sΩ)− iδ

. (9)

It can be noted that Γq⃗(ω + sΩ) is the polarization operator of the electron distribution
function in the n-th miniband [14] and the quantity δ is infinitesimal and appears due to
the assumption of an adiabatic interaction of the EEF.

Repeating above proses we can also obtain an equation for the Fourier transforma-
tion B+

−q⃗(ω) of ⟨b+−q⃗⟩t and relative expression between Bq⃗(ω) and B+
−q⃗(ω). In the same

way, but for optical phonons, we obtain a similar equation in which ωq⃗, Bq⃗(ω), Bq⃗(ω−ℓΩ),
Gnn′(q⃗), Dnn′(q⃗), and νq⃗ are replaced with νq⃗, Cq⃗(ω), Cq⃗(ω − ℓΩ), Dnn′(q⃗), Gnn′(q⃗), and
ωq⃗, respectively. In the equations, Bq⃗(ω) and Cq⃗(ω) are the Fourier transformations of
⟨bq⃗⟩t and ⟨cq⃗⟩t, respectively. In these coupled equations, the first terms describe the inter-
action between phonons that belong to the same kind (acoustic-acoustic or optical-optical
phonons) while the second terms describe interaction between phonons that belong to dif-
ferent kinds (acoustic-optical phonon). We can put ℓ = 0 in the first terms of the coupled
equations because we are now focusing on the PIT of the acoustic and optical phonons.
Solving the set, we obtain a general dispersion equation for the PIT of the acoustic and
optical phonons: [

ω2 − ω2
q⃗ −

2

~2
∑
n,n′

∣∣Gnn′(q⃗)
∣∣2ωq⃗P0(q⃗, ω)

]
×

[
(ω − ℓΩ)2 − ν2q⃗ − 2

~2
∑
n,n′

∣∣Dnn′(q⃗)
∣∣2νq⃗P0(q⃗, ω − ℓΩ)

]

=
4

~4
∑
n,n′

+∞∑
ℓ=−∞

∣∣Gnn′(q⃗)
∣∣2∣∣Dnn′(q⃗)

∣∣2ωq⃗νq⃗Pℓ(q⃗, ω)Pℓ(q⃗, ω − ℓΩ) (10)

III. CONDITION FOR PARAMETRIC AMPLIFICATION

The solution to the general dispersion equation, Eq. (10), is complicated; therefore,
we limit our calculation to the case of the first order resonance (ℓ = 1), in which ωq⃗ ±
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νq⃗ = Ω. We also assume that the electron-phonon interactions satisfy the condition

|Gnn′(q⃗)|2 |Dnn′(q⃗)|2 << 1. In these limitations, if we write the dispersion relations for
acoustic and optical phonons as ωac(q⃗) = ωa + iτa and ωop(q⃗) = ω0 + iτ0, we obtain the
resonant acoustic phonon modes

ω
(±)
± = ωa +

1

2

[
(va ± v0)∆q − i(τa + τ0)±

√
[(va ∓ v0)∆q − i(τa − τ0)]

2 ± Λ2

]
(11)

where va and ωa (v0 and ω0) are the group velocity and the renormalization (by the
electron-phonon interaction) frequency of the acoustic (optical) phonon, respectively, ∆q =
q − q0, q0 being the wave number for which the resonance is maximal, and

Λ =
2

~2
∑
n,n′

|Gnn′(q⃗)| |Dnn′(q⃗)|P1(q⃗, ωq⃗). (12)

In Eq. (11), the signs (±) in the sub-script of ω
(±)
± correspond to the signs (±)

in front of the root and the signs (±) in the superscript of ω
(±)
± correspond to the other

sign pairs. These signs depend on the resonance condition ωq⃗ ± νq⃗ = Ω. For instance, the

existence of a positive imaginary part of ω
(−)
+ implies a parametric amplification of the

acoustic phonon. In such cases that λ << 1, the maximal resonance, and q = q⊥, qz = 0,
we obtain

F = Im[ω
(−)
+ ] =

1

2

[
−(τa + τ0) +

√
(τa − τ0)2 + |Λ|2

]
, (13)

where τa and τ0 are imaginary parts of frequencies of acoustic and optical phonons, they
take forms

τa = − 1

~2
∑
nn′

|Gnn′(q⃗)|2 γ(ωq⃗) (14)

τ0 = − 1

~2
∑
nn′

|Dnn′(q⃗)|2 γ(νq⃗), (15)

|Λ| =
λ

~2
∑
nn′

|Gnn′(q⃗)| |Dnn′(q⃗)|
{
[θ(ωq⃗)− θ(ωq⃗ − Ω)]2 + [γ(ωq⃗)− γ(ωq⃗ − Ω)]2

}1/2
,(16)

with

γ(ω) =
C1.S.d.m

3/2

4π
√
2πβ~2q

eβ(εF−εn′ )
[
1− eβ~ω

]
exp

[
− mβ

2~2q2
[εn′n(ω)]

2
]
, (17)

θ(ω) =
SmeβεF

2πβ~
e−βεn′ − e−βεn

εn′n(ω)
. (18)

where β = 1/(kBT ), kB being the Boltzmann constant and T the temperature of the
system, εF is the Fermi level, S is the area of the sample, and

εn′n(ω) = ε0(n
′ − n)− ~ω − ~2q2/(2m); C1 =

∫ π
d

−π
d

eβ∆n cos kzddkz. (19)
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From Eq. (13), the condition for the resonant acoustic phonon modes to have a
positive imaginary part leads to |Λ|2 > 4τaτ0. Using these conditions and Eqs. (15)-(16)
yields the threshold amplitude for the EEF for non-degenerate electron gas:

E0 > Eth =
2mΩ2

eq

√
γ(ωq⃗)γ(νq⃗)√

[θ(ωq⃗)− θ(ωq⃗ − Ω)]2 + [γ(ωq⃗)− γ(ωq⃗ − Ω)]2
. (20)

Equation (20) means that the parametric amplification of the acoustic phonons is achieved
when the amplitude of the EEF is higher than some threshold amplitude.

To numerically estimate the threshold amplitude Eth for the parametric amplifi-
cation of acoustic phonons we use the superlattice GaAs − AlxGa1−xAs: Be with the
parameters as follows [10, 12]: ξ = 13.5 eV, ρ = 5.32 gcm−3, va = 5370 ms−1, εF = 50
meV, s0 = 100, d = 40 nm, χ∞ = 10.9, χ0 = 12.9, ∆ = 1.3 meV, m = 0.067m0, m0 being
the mass of free electron, and ~νq⃗ ≃ ~ν0 = 36.25 meV.
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Fig. 1. Threshold amplitude (kV.m−1) as a function of the wave number at tem-
perature of 100 K (dot line), 200 K (dashed line), and 300 K (solid line). Here,
the laser field frequency is Ω = 2 × 1014 Hz (on the left) and Ω = 4.0 × 1014 Hz
(on the right).

In Fig. 1, we show threshold amplitude, Eth, as a function of the wave number, for
three different temperatures. The figure shows that the curves have maximal values and
are non-symmetric around the maxima. This is due to the fact that a fixed EEF, with
an amplitude greater than the corresponding threshold amplitude, can induce parametric
amplification for acoustic phonons in two regions of the wave number corresponding to
the two signs in ωq⃗ ± νq⃗ = Ω. The maxima increases as the temperature increases. A
consequence of the non-symmetric behavior of the curves is that at fixed temperature (for
example, 77 K) an EEF having a small amplitude (for instance, smaller than 10 kVcm−1)
can amplify only acoustic phonons with wave numbers that are smaller than 0.85 × 106

cm−1, while an EEF having a large amplitude (for instance, large than 15 kVcm−1) can
amplify acoustic phonons with wave numbers that are either smaller than 0.9× 106 cm−1

or greater than 2.0× 106 cm−1. These characteristics are similar as in quantum well [3].
The dependence of the threshold amplitude on the temperature is presented in

figure 2. When the temperature is decreased, the threshold amplitude for parametric
amplification of acoustic phonons in which ωq⃗+νq⃗ = Ω decreases; the threshold amplitude,
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Fig. 2. Threshold amplitude (kVm−1) as a function of the temperature at the
wave number of 0.5×108 m−1 (dot line), 0.75×108 m−1 (dashed line), and 0.9×108

m−1 (solid line). Here, the laser field frequency is Ω = 2 × 1014 Hz (on the left)
and Ω = 4.0× 1014 Hz (on the right).

however, increases for the case of ωq⃗ − νq⃗ = Ω. We can see that the threshold amplitude
is sensitive to the temperature change and it is more sensitive to the temperature change
for the case in which the resonant frequency is smaller than it is for the case in which the
resonant frequency is larger (in Fig. 1, in the region to the left of the maximum, Eth is
more sensitive to temperature than it is in the region to the right of the maximum). We
can also realize that the threshold amplitude is saturable as the temperature increases.
This characteristic is also manifested in fig. 1 in which three lines for three different
temperatures are coincident as the wave number increases. The sensitivity of Eth to
temperature change, which is a behavior of acoustic phonons, is clearly present in this
mechanism. Saturability of Eth to temperature change in region of high temperature,
which is a behavior of optical phonons, can be explained by non-dispersion of optical
phonons.

IV. CONCLUSION

In this paper, we analytically investigate the possibility of parametric resonance of
acoustic and optical phonons in CSSL. We have obtained a general dispersion equation for
parametric amplification and transformation of phonons. However, an analytical solution
to the equation can only be obtained within some limitations. Using these limitations for
simplicity, we obtain dispersions of the resonant acoustic phonon modes and the threshold
amplitude of the field for acoustic phonon parametric amplification. Similarly to the
mechanism pointed out in previous papers for bulk semiconductors and for quantum wells,
parametric amplification for acoustic phonons in a doped superlattice can occur under the
condition that the amplitude of the external electromagnetic field is higher than some
threshold amplitude. Analytical expressions show that the threshold amplitude depends
on parameters of the field, material, and physical conditions.

Numerical results for the superlattice GaAs − AlxGa1−xAs:Be clearly show the
predicted mechanism. Parametric amplification for acoustic phonons and the threshold
amplitude depend on the physical parameters of the system and are sensitive to the tem-
perature at the region of low-temperature but having saturable characteristic at the region
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of high-temperature. These characteristics are similar as in quantum wells and maybe they
are common properties of quasi-two-dimensional systems.
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