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ENTANGLEMENT IN FERMI GAS AND BCS SYSTEMS
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Abstract. Besides being of fundamental interest, entanglement is an important resource in quan-
tum communication and information processing. The properties of the entanglement in many-body
systems have attracted much attention recently. Using separability conditions in the form of in-
equalities derived by Hillery and coworkers [1, 2], we explore the bipartite entanglement in nonin-
teracting Fermi gas and Bardeen-Cooper-Schrieffer (BCS) superconducting systems at zero tem-
perature. It is shown that these inequalities can detect entanglement between two particles within
an electron pair in the ground state of a BCS system. In the case of Fermi gases, entanglement
may be found below some upper bound on the interparticle distance.

I. INTRODUCTION

One of the most striking aspects of quantum mechanics is the superposition principle
which has no counterpart in classical physics. A direct consequence of this principle is the
entanglement of physical states, which has proven to be a valuable resource in quantum
information processing. Detection, classification, and quantification of entanglement have
been subjects of intense research in the recent years. However, determining whether or
not a state is entangled remains a formidable task. Methods such as the Peres-Horodecki
positive partial transpose condition, entanglement witnesses, and hierarchies of entangle-
ment conditions exist (see, for example, [3] for a review), but are not always straightfor-
ward to apply. Quantum entanglement may lead to further insight into the physics of
many-body systems [3]. Tripartite entanglement of a noninteracting Fermi gas has been
investigated using parameterized entanglement witnesses [4] and many-body entanglement
in one-dimensional noninteracting ultracold atomic Fermi gases has been explored using
entanglement entropy [5]. In the BCS system, bipartite entanglement between a pair of
modes with two opposite wave vectors ±k has been studied using the concurrence [6] and
the partial transpose condition [7].

In recent work [1, 2], Hillery and coworkers have proposed two inequalities which
can be used to detect the presence of entanglement in a bipartite system∣∣⟨A†B

⟩∣∣2 > ⟨A†AB†B
⟩
, (1)∣∣⟨AB

⟩∣∣2 > ⟨A†A
⟩⟨
B†B

⟩
, (2)

where A(B) is an operator on the Hilbert space of the first(second) subsystem. These
(sufficient) conditions have been applied to spin systems in [8] and extended to multipartite
systems in [9]. It has been shown in particular that the multipartite version can detect
entanglement in generalized Greenberger-Horne-Zeilinger states while the existing spin
squeezing inequalities cannot [9].
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In this communication, we report some preliminary results of our investigation on
the bipartite entanglement in the noninteracting Fermi gas and the BCS superconducting
system at zero temperature. The task is to find suitable operators A and B such that
the conditions (1) and (2) are satisfied. For Fermi gases, we establish an upper bound for
the interparticle distances within which entanglement may be detected by (1). For the
BCS system, we show that the inequalities (1) and (2) provide a means of entanglement
detection more simple and straightforward than the entanglement witnesses and entropy
used in [4, 5].

II. ENTANGLEMENT IN THE FERMI GAS

Consider a system of N noninteracting spin-1/2 fermions in a box of volume Ω.
By the Pauli exclusion principle, at most two particles, one with spin up and one with
spin down, can occupy the same momentum state k. In the ground state at absolute
zero temperature, the energy levels are filled from the bottom up until all N particles are
accommodated. The occupied orbitals may be represented as points inside a sphere in k
space. The energy (momentum) at the surface of the sphere is the Fermi energy εF (Fermi
momentum kF ). The ground state of the system can be written as [10]

|Φ0⟩ = c†1c
†
2c

†
3...c

†
k...c

†
kF

|Φvac⟩
=

∣∣111213...1N0N+1...0...
⟩

(3)

where |Φvac⟩ is the vacuum state in which no particles are present, c† and c are fermion
operators, and the states are numbered in order of increasing energy. The annihilation of
a particle at position x is represented by the field operator

Ψ(x) =
∑
i

ciφi(x), φi(x) =
1√
Ω
e−ikix, (4)

where φi(x) is a one-particle eigenfunction. We shall explore the entanglement between
two particles at different positions in the state (3) by using the field operators (4).

Let us begin with the inequality (1). A possible choice of A and B is

A = Ψ(x) =
∑
i

ciφi(x), B = Ψ(x′) =
∑
j

cjφj(x
′). (5)

Then

⟨Φ0|A†B|Φ0⟩ = ⟨Φ0|
∑
i,j

c†icjφ
∗
i (x)φj(x

′)|Φ0⟩

=

N∑
i=1

φ∗
i (x)φi(x

′)

=
1

Ω

N∑
i=1

eiki(x−x′). (6)
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To calculate the sum in Eq. (6), we convert it into an integral∑
k

→ Ω

(2π)3

∫
d3k. (7)

Going over to the spherical coordinate system and fixing the z-axis along the line connect-
ing the two positions (x− x′), we obtain

⟨Φ0|A†B|Φ0⟩ =
1

(2π)2

∫
dθ sin θ

∫ kF

0
dkk2 exp[−ik|x− x′| cos θ]

= −
k3F
2π2

1

(∆x)2

{
cos∆x− 1

∆x
sin∆x

}
, (8)

where the dimensionless distance ∆x = kF |x − x′| has been introduced. Note that the
upper limit of the k-integral is kF because the system is in the ground state. Next we
calculate the right hand side of (1)

⟨Φ0|A†AB†B|Φ0⟩ = ⟨Φ0|
∑
i,j,i′j′
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†
i′cj′φ

∗
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∗
i′(x
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= ⟨Φ0|
∑
i,i′

c†icic
†
i′ci′φ

∗
i (x)φi(x)φ

∗
i′(x
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+⟨Φ0|
∑
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c†ici′c
†
i′ciφ

∗
i (x)φi′(x)φ

∗
i′(x

′)φi(x
′)|Φ0⟩

=
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φ∗
i (x)φi(x)φ

∗
i′(x

′)φi′(x
′) +

N∑
i=1

∞∑
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φ∗
i (x)φi′(x)φ

∗
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=

(
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i=1

1

Ω

)2

−
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N∑
i=1

φ∗
i (x)φi(x

′)

∣∣∣∣∣
2

, (9)

where going from the third equation to the fourth, we have rewritten the sum over i′ in
the second term as

∑∞
i′=N+1 ... =

∑∞
i′=1 ... −

∑N
i′=1 ... and made use of the relationship∑∞

i=1 φi(x)φ
∗
i (x

′) = δ(x − x′). The delta function vanishes δ(x − x′) = 0 because the
particles under consideration are located at different positions. Next we convert the sums
in Eq. (9) into integrals in accordance with Eq. (7). The first (self-energy) term can be

found to be equal to
(

k3F
2π2

1
3

)2
, whereas the second (correlation) term is nothing else rather

than |⟨Φ0|A†B|Φ0⟩|2 [cf. Eq. (6)]. Then

⟨Φ0|A†AB†B|Φ0⟩ =
k6F
4π4

{
1

9
− 1

(∆x)4

(
cos∆x− 1

∆x
sin∆x

)2
}
. (10)

Combining (1), (8), and (10) yields the following condition on the interparticle distance

1

(∆x)4

(
cos∆x− 1

∆x
sin∆x

)2

>
1

18
. (11)
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The above inequality contains oscillating functions of ∆x and it is impossible to extract
from it a transparent analytical relationship for ∆x. We can, however, examine the limits.
For very large distances ∆x → ∞, the left hand side tends to zero and the inequality
cannot be satisfied. That is, no entanglement can be detected for well separated particles.
When ∆x → 0, making Taylor expansions of the trigonometric functions, it can be found
that the left hand side tends to 1/9, which is larger than the value of 1/18 on the right hand
side. This means there may be a range of moderate distances where the entanglement is
detectable. Exact numerical evaluation of (11) (not shown) yields a maximal interparticle

distance ∆r
<∼ 1.8 for which an entanglement detection may be possible.

It is noteworthy that the choice of A = Ψ†(x), B = Ψ†(x′) gives rise to divergences of
the type

∑∞
i=N+1

1
Ω = 1

2π2

∫∞
kF

dkk2 in the self-energy term. The choices of A = Ψ†(x), B =

Ψ(x′), and A = Ψ(x), B = Ψ†(x′) are also not interesting because for these ⟨Φ0|A†B|Φ0⟩ =
0. With respect to the second inequality (2), if one picks A = Ψ(x), B = Ψ(x′) or
A = Ψ†(x), B = Ψ†(x′), the left hand side vanishes ⟨Φ0|AB|Φ0⟩ = 0, whereas if one picks
A = Ψ†(x), B = Ψ(x′), or A = Ψ(x), B = Ψ†(x′), divergences arise.

III. ENTANGLEMENT IN THE BCS SYSTEM

When conduction electrons interact with the lattice vibrations, they are scattered
from one state k to another k′. The coupling between electrons and virtual phonons causes
a slight attraction between two electrons, leading to the creation of Cooper pairs. The
electron pairs have an energy slightly lower than the Fermi level and leave an energy gap
above them. For temperatures such that the thermal energy is less than the band gap,
the material exhibits zero resistivity. By eliminating the phonon operators and dropping
the repulsive interaction, one obtains the effective electron-electron Hamiltonian [10]

Hred =
∑

εk(c
†
kck + c†−kc−k)− V

∑
c†k′c

†
−k′c−kck. (12)

This so-called BCS reduced Hamiltonian operates within the subspace of Cooper pairs
k + k′ = 0, which here are assumed to have antiparallel spins. The ground state of the
system is

|Φg⟩ =
∏
k

(uk + vkc
†
kc

†
−k)|Φvac⟩, (13)

where for convenience the filled Fermi sea is redefined as the vacuum state |Φvac⟩ and uk,
vk are real constants satisfying u2k + v2k = 1.

To explore the entanglement between particles in the ground state (13), let us begin
with particles within a Cooper pair. Apparent choices of A and B are

A = cq, B = c†−q (14)

A = c†q, B = c−q, (15)

A = cq, B = c−q, (16)

A = c†q, B = c†−q. (17)

For the first inequality (1), the choice (14) is equivalent to (15) and the choice (16) is
equivalent to (17). Consider first (14). Using the state (13) and (14) in (1), we derive for
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the left hand side of (1)⟨
Φg|A†B|Φg

⟩
= ⟨Φg|c†qc

†
−q|Φg⟩

= ⟨Φ′
g|(uq + vqcqc−q)c

†
qc

†
−q(uq + vqc

†
qc

†
−q)|Φ′

g⟩

= ⟨Φ′
g|vqcqc−qc

†
qc

†
−quq|Φ′

g⟩
= vquq, (18)

where the notation |Φ′
g⟩ =

∏
k̸=q(uk + vkc

†
kc

†
−k)|Φvac⟩ has been introduced. Similarly for

the right hand side⟨
Φg|A†AB†B|Φg

⟩
= ⟨Φ′

g|(uq + vqcqc−q)c
†
qcqc−qc

†
−q(uq + vqc

†
qc

†
−q)|Φ′

g⟩
= 0, (19)

where we have used the Pauli exclusion principle to put c†−qc
†
−q|Φ′

g⟩ = 0. Eqs. (18) and
(19) indicate that the inequality (1) is satisfied, that is, the state is entangled, for arbitrary
nonvanishing values of vq and uq. It is remarkable that the presence of entanglement can
be detected after just a few simple steps. For the choice (16) [or equivalently (17)], it is
not difficult to verify that ⟨

Φg|c†qc−q|Φg

⟩
= 0. (20)

Therefore
⟨
Φg|A†B|Φg

⟩
= 0 and the inequality (1) cannot detect the presence of entan-

glement.
Next we go over to the inequality (2). It is not satisfied by choosing (14) since⟨

Φg|AB|Φg

⟩
=
⟨
Φg|cqc†−q|Φg

⟩
= 0 [cf. Eq. (20)]. It is also not satisfied by choosing A

and B as in Eq. (15) since
⟨
Φg|AB|Φg

⟩
=
⟨
Φg|c†qc−q|Φg

⟩
= 0. For the choice (16), we

have that ⟨
Φg|AB|Φg

⟩
= ⟨Φg|cqc−q|Φg⟩
= vquq (21)

[cf. Eq. (18)], and⟨
Φg|A†A|Φg

⟩
= ⟨Φg|c†qcq|Φg⟩

= ⟨Φ′
g|(uq + vqcqc−q)c

†
qcq(uq + vqc

†
qc

†
−q)|Φ′

g⟩

= ⟨Φ′
g|vqcqc−qc

†
qcqvqc

†
qc

†
−q|Φ′

g⟩
= v2q, (22)⟨

Φg|B†B|Φg

⟩
= ⟨Φg|c†−qc−q|Φg⟩
= v2q. (23)

Then the inequality (2) is satisfied if u2q > v2q. For the choice (17), it can be found

that
⟨
Φg|AB|Φg

⟩
= ⟨Φg|c†qc†−q|Φg⟩ = vquq, while

⟨
Φg|A†A|Φg

⟩
= ⟨Φg|cqc†q|Φg⟩ = u2q and⟨

Φg|B†B|Φg

⟩
= ⟨Φg|c−qc

†
−q|Φg⟩ = u2q, so that the inequality (2) is satisfied if v2q > u2q.

Thus with respect to this inequality, the two choices (16) and (17) complement each other.
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It is tempting to consider the entanglement between particles from different Cooper
pairs and the entanglement between different Cooper pairs. In the first case, we employ
the following single electron operators

A = cq(c
†
q), B = c†q’(cq’), (24)

A = cq(c
†
q), B = cq’(c

†
q’), (25)

while in the second case, we use the pair operators

A = bq(b
†
q), B = b†q’(bq’), (26)

A = bq(b
†
q), B = bq’(b

†
q’), (27)

where q ̸= q’ and bq is the pair annihilation operator bq = cqc−q. Unfortunately, for all
these choices, it has been found that neither the condition (1) nor the condition (2) can
detect entanglement.

In summary, we have tested different combinations of the operators A and B in the
inequalities (1) and (2) to find out which one can best reveal entanglement in the ground
state of the noninteracting Fermi gas and the BCS superconducting system. In the Fermi
gas system, it has been shown that entanglement may exist between two spatially separated
particles, with the interparticle distance being bounded from above. This bound has been
established. In the BCS system, the above mentioned inequalities have been shown to be
capable of detecting entanglement between particles in a Cooper pair with much less effort
as compared to the concurrence and the partial transpose condition used in earlier work.
Future work may include an investigation of the multipartite entanglement in Fermi gases,
which would allow for direct comparison with the existing literature. The case of nonzero
temperature may also be of interest.
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