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Abstract. The functional approach of Popov Fedotov is applied to a quantum antiferromagnetic
Heisenberg spin - 1

2
model in the presence of an in plane magnetic field. We calculate the ground

state energy, sublattice and uniform magnetization. We find that the quantum fluctuation is
enhanced as the magnetic field increases at the intermediate field strength.

I. INTRODUCTION

The spin S = 1
2 antiferromagnetic Heisenberg model on a triangular lattice has

attracted particular interest because its small spin, low dimensionality and geometrical
frustration can anhance quantum fluctuations and lead to a rich phase diagram [1]. An
interesting field of study is that of the behavior of frustrated quantum magnetic systems
in the presence of external magnetic field [2, 4]. This topic has become more important by
the experimental discovery of exotic properties for the approximately isotropic material
Cs2CuBr4 and the anisotropic Cs2CuCl4 [3, 4]. Obviously, the behavior of quantum
magnets in aspect in their potential technological application. From a theoretical view-
point, competition between magnetic field geometrical frustration and small spin provides
a difficult challenge to the physicicts. Several methods such as analytical studies using spin
wave theory [5-7] and numerical studies using exact diagonalization [8, 9], coupled cluster
method [10, 11], density matrix renormalization group [12] and variation approaches [13]
have been used. However, a clear understanding of the model has not been achieved. For
an analytical approachs to the spin model, the non- canonical commutation relations of
spin operators pose a severe difficulty because the standerd many-body method based on
the Wicks theorem. In order to circumvent this difficulty one represents the operators
in terms of canonical operator of either bosonic or fermionic character. However, this
mapping extends the Hiltbert space into unphysical sectors, which have to be removed by
imposing a constraint the method proposed by Popov-Fedotov enables one to enforce the
constraint exactly within an analytical calculation by introducing an imaginary chemical
potential [14]. Motivated by the above mentioned experimental and theoretical works,
in this report we focus on the spin 1

2 antiferromagnetic Heisenberg model on a triangular
lattice in the presence of in plane external magnetic field by Popov-Fedotov functional
intergral approach.
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II. THE MODEL AND FORMALISM

The antiferromagnetic Heisenberg model on a triangular lattice in the presence
paper is described by the Hamiltonian:

H = J
∑
⟨i,j⟩

S⃗iS⃗j −
∑
i

B⃗S⃗i (1)

where S⃗i is a spin located at site i and the summation ⟨ij⟩extends over all nearest neighbor
pairs. The magnetice field is applied along the z axis i.e B⃗ = (0, 0, B).

We know that the classical ground states of the system at zero external field (B = 0)
takes a well known planar structure with nearest neighbouring spins aligning at angles of
to each others. We choose the z-x plane of a fixed global coordinate system to decribe the
magnetic order. Supposing that in the classical ground states a spin at site i is directed
along some unit vector, we choose this classical spin orientation as local z direction which
may very from site to site.

Then the relation between the spin S⃗i in the local coordinate system and the spin S⃗i in
the global coordinate system is given by:

S
′x
i = Sx

i cos θi + Sz
i sin θi

S
′y
i = Sy

i

S
′z
i = Sx

i sin θi + Sz
i cos θi

(2)

where θi is the angle between the local z and the global z axis. In the zero field case, the
classical ground state consists of three sublattice A,B,C with an angle of 120o between
the sublattice spin, i.e we have θA = 0; θB = 2π/3 and θC = 4π/3. As the magnetic field is
applied along the global z- axis, the spins on sublattices B and C are expected to rotate
toward the z- axis by the same angle and the angle is determined variationnally and is
given by:

cos θ = B−3J
6J ,B ≤ Bc = 9J

cos θ = 1, B ≥ Bc
(3)

The classical ground state energy is found to be:

Ecl = −B2N

18J
− 3

2
JNS2;B ≤ Bc (4)

Respectively the classical uniform magnetization is given by:

Mz =
B

9J
N (5)

Now we rewrite the Hamiltonian (1) in the new spin coordinate (2) as:

H = −1

2

∑
⟨ij,αβ⟩

Jαβ
ij Sα

i S
β
j −B

∑
i

(Sz
i cos θi − Sx

i sin θi) (6)
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Here primes are dropped. The couppling constants are given by:
Jyy
ij = −J

Jxx
ij = Jzz

ij = −J cos (θi − θj)

Jxz
ij = −Jzx

ij = J sin (θi − θj)

Jxy
ij = Jyx

ij = Jyz
ij = Jzy

ij = 0

(7)

Following Popov-Fedotov [14], we represent the spin operators in terms of auxiliary fermions:

Sµ
i =

1

2

∑
σ,σ′

a+iα(σ
µ)αβaiβ (8)

where σµ (µ = x, y, z) - are Pauli matrices, and α =↑, ↓ is the spin index. The representa-
tion on (6) fullfills the comminication relations for the spin operators. However the Fock
space of the auxiliary fermions is spanned by the physical states |↑⟩i = a+i↑ |0⟩ ; |↓⟩i = a+i↓ |0⟩
and the unphysical states |0⟩ ; |2⟩i = a+i↑a

+
i↓ |0⟩ with |0⟩ being the vacuum. The fermionic

operators a+iα, aiα must satisfly the local constraint
∑
α
a+iαaiα = 1 in order to exclude the

unphysical states. Note that the constraint has to be enforced on each site i indepen-
dently. This prohibit an infinite order resummation of the perturbation series in J . The
problem can be evaded within a mean field like treatment of the constraint, where the
local constraint is replace by the thermal average:∑

α

⟨
a+iαaiα

⟩
= 1 (9)

The quation (7) is introduced into the Hamiltonian (1) through a chemical potential
µ, which is equal to zero due to the particle hole symmetry of (1). In the Popov-Fedotov
scheme an imaginary valued chemmical potential µ = iπ2T is introduced. One starts from
a grant canomical ensemble:

H̃ = H − µ
∑
i

a+iαaiα (10)

The contribution from the unphysical states |0⟩ and |2⟩ to the partition function Z is
proportional to: ∑

ni=0,2

ei
π
2 ni = 0 (11)

so the unphysical contributions from all sites cancel and only the physical states survive
in Z. We apply the standard integrant formulation for the Hamiltonian (8) of the spin
system in the Neel state in a similar way to [15-19]. To second order (one loop contribition)
in the fluctuations δφ⃗ of φ⃗i(τ) = φ⃗io(0) + δφ⃗i(τ) the effective action reads:

Seff [φ⃗] = S +
δSeff

δφα
i

δφα
i +

1

2

δ2S2
eff

δφα
i δφ

β
i

δφα
i δφ

β
i β (12)
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where φ⃗i are the Hubbard-Stratonovich auxiliary fields. The mean field action reads:

Smf =
β

2

∑
ij,αβ

(
J−1

)αβ
ij

[
(φα

io −Bα
i )

(
φβ
jo −Bβ

j

)]
−

∑
i

ln 2 cosh
β

2
φio (13)

where:
B⃗i = B (− sin θi, 0, cos θi) (14)

The local Hubbard-Stratonovich auxiliary fields φ⃗i can be related to the local mag-
netizations m⃗i as follows:

−→mi =
1

2

tanh βφio

2

φio
.Φio

∂B̃i

∂Bα
i

(15)

Φio = −B̃i +
∑
k

Ĵki

(
∂̄̃B

∂Bα
i

)
mα

i (16)

here we use the following notations:

Φio =

 φx
io + iφy

io
φx
io − iφy

io
φz
io



B̃i =

 Bx
i + iBy

i
Bx

i − iBy
i

Bz
i

 (17)

Φ̄io = (Φio)
T

B̃i =
(
B̃i

)T

The quantum fluctuation contribution is given by third term of eq (10) and can
be derived in the analogous way as in [23,24] and the detail calculations are not given
explicitly here. The quantum fluctuation contribution to the ground state energy is given
by:

Efl =

−1

2
+

1

3N

∑
k⃗∈BZ
α=1,2,3

ωα(k⃗)

 3NJS;B ≤ BC (18)

where ωα(k⃗) are the three modes of the spin wave excitations, which are eigenvalues of a
3x3 matrix. In the small B with the

√
3×

√
3 spin structure we can obtain the analytical

result. The sublattice magnetization is defined as the average spin component within the
same sublattice along its quantization axis:⟨

Sz′
Q

⟩
=

3

N

∑
i∈Q

⟨
Sz′
i

⟩
=

1

2
− ⟨∆SQ⟩, (Q = A,B,Csublattice) (19)
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and:

⟨∆SA⟩ = −1

2
+

1

24

∑
k⃗,α

2− γ(k)

ωα(k)
(20)

where γ(k) is the structure factor,

γ(k) =
1

6

∑
δ⃗

eik⃗δ⃗

with
⇀

δ are nearest neigbor vectors.
⟨∆SB⟩ = ⟨∆SC⟩ are given in the somehow similar form.

The uniform magnetization is along the external field orientation and can be written as:

⟨Sz⟩ = 1

3N

∑
i

⟨Sz
i ⟩ =

B

9J
− 1

3
⟨∆SA⟩ −

2

3
⟨∆SB⟩ cos θ (21)

III. DISCUSSIONS AND CONCLUSIONS

We have to evalute the Eq. (18) numerically to discuss the quantum corrections
to the ground state energy. It is clear from (4) that the classical ground state energy
decreases monotonically as the external magnetic field B increases. The numerical result
of Eq. (18) show that the quantum correction to the energy is very small. At T = 0 as
the magnetic fields B increases, the quantum fluctuation energy increases, for example, at

B = 0 :
Efl

3NJ = −0.055 and at B = 4J :
Efl

3NJ = −0.041 .

As regard to the quantum correction at T = 0 to the sublattice magnetization from
Eqs. (15-17); (20) we get that the sublattice magnetization ⟨∆SQ⟩ decreases, with increas-
ing the external magnetic field B and decreases more rapidly than ∆SB,∆SC , for example,
at B = 0: ∆SA = ∆SB = ∆SC = 0.27 and at B = 4J :[∆SA = 0.076;∆SB = ∆SC = 0.175
).

The numerical result from Eqs. (15-17) and (21) for the uniform magnetization
including the leading order quantum fluctuation show almost linearly increasing of the
uniform magnetization with the magnetic fields. At B = 0: ⟨Sz⟩ = 0 and at B = 4J :
⟨Sz⟩ = 0.170.

The above result at T = 0 are in agreement with the previous spin wave theory
of Gan et al [22]. The numerical calculation for T ̸= 0K is on the progress and will
be published elsewhere. On expected significant difference between the Popov-Fedotov
formalism with an exact local constraint and other approaches with a relaxed constraint
[23].

ACKNOWLEDGMENT

This work is supported by NAFOSTED Grant 103027809.



ANTIFERROMAGNETIC HEISENBERG SPIN 1
2
MODEL ON... 153

IV. REFERENCES

[1] T. Ono et al., J. Physic. Condens. Matter 16 (2004) 773 (S).
[2] Y. Fujii et al., J. Physic. Condens. Matter 19 (2007) 145237.
[3] H. Tsujii et al., Phys. Rev B 76 (2007) 060406 (R).
[4] N. A. Fortune et al., Phys. Rev. Lett. 102 (2009) 257201.
[5] J. Alicea, A. V. Chubukov, O. A. Starych, Phys. Rev. Lett. 102 (2009) 137201.
[6] O. A. Starych, L. Balent, Phys. Rev. Lett. 98 (2007) 077205.
[7] M. Y. Veillette, J. T. Chalker, Phys. Rev. B 74 (2006) 052402.
[8] A. Honecker et al., J. Phys. Condens. Matter 16 (2004) 749 (S).
[9] S. Miyahara et al., Physica B 378 (2006) 587.
[10] T. Pardini, R. Singh, Phys. Rev. B 77 (2008) 214433.
[11] D. J. Farnell et al., J. Physic. Cond. Matter 21 (2009) 406002.
[12] H. C. Jiang et al., Phys. Rev. B 79 (2009) 20409 (R).
[13] D. Heidarian, A. Paramekanti, Phys. Rev. Lett. 104 (2010) 015301.
[14] V. N. Popov, S. A. Fedotov, Sov. Phys. JETP 67 (1988) 535.
[15] O. Veits et al., J. France 4 (1994) 493.
[16] S. Tejima, A. Oguchi, J. Phys. Soc. Jpn. 64 (1995) 4922.
[17] S. Azakov et al., Int. J. Mod. Phys. B 14 (2000) 13.
[18] R. Dillenschneider, J. Richezt, Eur. Phys. J. B 49 (2006) 187.
[19] P. T. T. Nga et al., Comm. Phys. 19 (2009) 71.
[20] P. T. T. Nga, N. T. Thang, Comm. Phys. 20 (2010) 295.
[21] P. T. T. Nga, N. T. Thang, Proceeding of the 35th National Conference on Theoretical
Physics (2011) 175 - 182.
[22] J. Y. Gan et al., Phys. Rev. B 67 (2003) 144427.
[23] M. N. Kicelev, Int. J. Mod. Phys. B 20 (2006) 381.

Received 30-09-2011.


