Proc. Natl. Conf. Theor. Phys. 35 (2010), pp. 250-254

FLAVOR SYMMETRY AND NEUTRINO MIXING

PHUNG VAN DONG

Institute of Physics, VAST, 10 Dao Tan, Ba Dinh, Hanoi

Abstract. We give a review of flavor symmetries recently proposed as a leading candidate in solving the tribimaximal neutrino-mixing form. We show how these symmetries work by taking concrete examples: A_4 symmetry in the standard model and $3-3-1$ model.

I. WHY FLAVOR SYMMETRY?

Neutrinos Come in at Least Three Flavors

The Neutrino Revolution $(1998 - \cdots)$

An sample of neutrino oscillation (flavor changing) is $\nu_{\mu} \longrightarrow \nu_{\tau}$ in atmosphere. Remark: Neutrinos have nonzero masses and mixing!

Neutrino Mixing

When $W^+ \longrightarrow l^+_{\alpha} + \nu_{\alpha}$ $(l_{\alpha} \equiv e, \mu, \text{ or } \tau, \text{ and } \alpha \equiv e, \mu, \text{ or } \tau)$, the produced neutrino field (ν_{α} —neutrino of flavor α) is $\nu_{\alpha} = \sum_i U_{\alpha i} \nu_i$, where ν_i is neutrino of definite mass m_i (*i* = 1, 2, 3). The neutrino mixing matrix $U \equiv (U_{lL})^{\dagger} U_{\nu L} = O_{23} \times O_{31} \times O_{12}$ is given in terms of Euler-angles parametrization.

The Current Experiment [PDG2010]

$$
\triangle m_{21}^2 = (8.0 \pm 0.3) \times 10^{-5} \text{ eV}^2, \qquad |\triangle m_{32}^2| = 1.9 \text{ to } 3.0 \times 10^{-3} \text{ eV}^2
$$

\n
$$
\sin^2(2\theta_{12}) = 0.86(+/-)(0.03/0.04), \qquad \theta_{12} \simeq 34^o
$$

\n
$$
\sin^2(2\theta_{23}) > 0.92, \qquad \text{best fit } \theta_{23} \simeq 45^o
$$

\n
$$
\sin^2(2\theta_{13}) < 0.19
$$

There are two kinds of hierarchies, "normal" or "inverted", depending on the sign of $\triangle m_{32}^2$ positive or negative, respectively.

Tribimaximal Mixing [Harrison-Perkins-Scott2002]

$$
U_{\rm HPS} = \left(\begin{array}{ccc} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{array} \right)
$$

- (1) This form is strongly supported by the experiment because almost its values are the best fits from the current data.
- (2) In the last decade a large portion of the neutrino theories has been devoted to derive it, but how?

Ma Connection

$$
U_{\rm HPS} \sim \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}^{\dagger} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}
$$

The first factor is Cabibbo-Wolfenstein (CW) matrix $(\omega = e^{2\pi i/3})$; the second one is Ma connection.

- (1) The CW matrix contains a residual symmetry Z_3 , while the Ma connection term has 2-3 reflection symmetry Z_2 with zero 1-2 and 1-3 mixing.
- (2) The $U_{\rm HPS}$ can be obtained if there is an appropriate symmetry among flavors containing the residual subgroups Z_2 , Z_3 and non-Abelian.

II. NON-ABELIAN DISCRETE SYMMETRIES

Flavor Symmetry—Group S_3

The simplest group (but fails) is S_3 —the symmetry group of an equilateral triangle, which is also the permutation group of 3 objects.

Flavor Symmetry—Group A_4

If the underline symmetry contains an 3 irreducible rep. responsible for three families, the simplest of which (successful) is A_4 — the symmetry group of a tetrahedron, which is also the group of even-permutations of 4 objects.

Flavor Symmetry—Group S_4

In some models, S_4 —the symmetry group of a cube, which is also the permutation group of 4 objects, is required.

III. SOME MODELS WITH S_3 , A_4

S_3 Model

The S_3 is the smallest non-Abelian discrete group. It has 6 elements in 3 equivalence classes, with the irreducible representations $1, 1',$ and 2 . Class $[C_1] : (1)(2)(3); [C_2]$: $(123), (321); [C_3] : (1)(23), (2)(13), (3)(12).$ The fundamental multiplication rule is

$$
\underline{2} \otimes \underline{2} = \underline{1}(12 + 21) \oplus \underline{1}'(12 - 21) \oplus \underline{2}(22, 11).
$$

Let $(\nu_i, l_i) \sim \underline{2}, l_i^c \sim \underline{2}, (\phi_1^0, \phi_1^-) \sim \underline{1}, (\phi_2^0, \phi_2^-) \sim \underline{1}',$ then

$$
M_l = \begin{pmatrix} 0 & f v_1 + f' v_2 \\ f v_1 - f' v_2 & 0 \end{pmatrix} = \begin{pmatrix} m_{\mu} & 0 \\ 0 & m_{\tau} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
$$

Let $\xi_i = (\xi_i^{++}, \xi_i^{+}, \xi_i^{0}) \sim 2$ (with $u_1 = u_2$) and $\xi_0 = (\xi_0^{++}, \xi_0^{+}, \xi_0^{0}) \sim 1$,

$$
\mathcal{M}_{\nu} = \begin{pmatrix} hu_1 & h_0u_0 \\ h_0u_0 & hu_2 \end{pmatrix} = \begin{pmatrix} a & b \\ b & a \end{pmatrix}
$$

= $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a+b & 0 \\ 0 & a-b \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$

Thus

$$
U = (U_{lL})^{\dagger} U_{\nu L} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}
$$

i.e. maximal $\nu_{\mu} - \nu_{\tau}$ mixing responsible for the atmospheric neutrinos may be achieved, despite having a diagonal \mathcal{M}_l with $m_\mu \neq m_\tau$.

A⁴ Model [Ma2001,2009]

The A_4 has 12 elements in 4 equivalence classes, with the irreducible representations $\underline{1}, \underline{1}', \underline{1}'',$ and $\underline{3}$. Class $[C_1] : (1)(2)(3)(4); [C_2] : (1)(234), (2)(143), (3)(124), (4)(132); [C_3]$: $(1)(432), (2)(341), (3)(421), (4)(231); [C₄]: (12)(34), (13)(24), (14)(23).$ Let $\omega = \exp \frac{2\pi i}{3}$, the fundamental multiplication rule is

$$
\underline{3} \otimes \underline{3} = \underline{1}(11 + 22 + 33) \oplus \underline{1}'(11 + \omega^2 22 + \omega 33) \oplus \underline{1}''(11 + \omega 22 + \omega^2 33)
$$

$$
\oplus \underline{3}(23, 31, 12) \oplus \underline{3}(32, 13, 21)
$$

Let
$$
(\nu_i, l_i) \sim \underline{3}, l_i^c \sim \underline{1}, \underline{1}', \underline{1}'',
$$
 and $(\phi_i^0, \phi_i^-) \sim \underline{3}$ with $v_1 = v_2 = v_3$, then
\n
$$
\mathcal{M}_l = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix}.
$$
\nLet $\xi_0 = (\xi_0^{++}, \xi_0^+, \xi_0^0) \sim \underline{1}$ and $\xi_i = (\xi_i^{++}, \xi_i^+, \xi_i^0) \sim \underline{3}$ with $u_2 = u_3 = 0$,
\n
$$
\mathcal{M}_\nu = \begin{pmatrix} a & 0 & 0 \\ 0 & a & d \\ 0 & d & a \end{pmatrix} = U_\nu \begin{pmatrix} a+d & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & -a+d \end{pmatrix} U_\nu^T,
$$

where

$$
U_{\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & i \end{pmatrix}
$$

The neutrino mixing matrix is then

$$
U = (U_{lL})^{\dagger} U_{\nu L} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}
$$

i.e. tribimaximal mixing. This is the simplest such realization, which is consistent with only the normal hierarchy of neutrino masses $(m_1 < m_2 < m_3)$.

A⁴ 3-3-1 Model [Dong-Long-Soa-Hue2010]

Let $(\nu_i, l_i, N_i^c) \sim \underline{3}$ (with $L(N) = 0$), $l_i^c \sim \underline{1}, \underline{1}', \underline{1}'', \quad (\phi_i^+, \phi_i^0, \phi_i^+) \sim \underline{3}$ with $v_1 =$ $v_2 = v_3$, we get then

$$
\mathcal{M}_l = \frac{1}{\sqrt{3}} \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{array} \right) \left(\begin{array}{ccc} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{array} \right).
$$

Let the sextets $\sigma_0 \sim \underline{1}$ and $\sigma_i \sim \underline{3}$ with $u_2 = u_3 = 0$, the active neutrinos gain mass via a seesaw:

$$
\mathcal{M}_{\nu}^{\text{eff}} = \begin{pmatrix} b & 0 & 0 \\ 0 & a & d \\ 0 & d & a \end{pmatrix} = U_{\nu} \begin{pmatrix} a+d & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a+d \end{pmatrix} U_{\nu}^{T},
$$

where

$$
U_{\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & i \end{pmatrix}
$$

Again, the tribimaximal mixing is obtained. This realization is consistent with arbitrary hierarchy of neutrino masses, including normal or inverted.

254 PHUNG VAN DONG

IV. CONCLUDING REMARKS

With the application of the non-Abelian discrete symmetries such as A_4 , a plausible theoretical understanding of the tribimaximal form of the neutrino mixing matrix has been achieved.

REFERENCES

[PDG2010] K. Nakamura et al. (Particle Data Group), J. Phys. G 37 (2010) 075021. [Harrison-Perkins-Scott2002] P. F. Harrison, D. H. Perkins, W. G. Scott, Phys. Lett. B 530 (2002) 167. [Ma2001,2009] E. Ma, G. Rajasekaran, Phys. Rev. D 64 (2001) 113012; E. Ma, arXiv:0905.0221 [hep-ph]. [Dong-Long-Soa-Hue2010] P. V. Dong, L. T. Hue, H. N. Long, D. V. Soa, Phys. Rev. D 81 (2010) 053004.

Received 15-12-2010.