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FLAVOR SYMMETRY AND NEUTRINO MIXING
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Institute of Physics, VAST, 10 Dao Tan, Ba Dinh, Hanoi

Abstract. We give a review of flavor symmetries recently proposed as a leading candidate in
solving the tribimaximal neutrino-mixing form. We show how these symmetries work by taking
concrete examples: A4 symmetry in the standard model and 3− 3− 1 model.

I. WHY FLAVOR SYMMETRY?

Neutrinos Come in at Least Three Flavors

νe ← −−−−−−− → e
The known The corresponding

neutrino νµ ← −−−−−−− → µ charged-lepton
flavors flavors

ντ ← −−−−−−− → τ

The Neutrino Revolution (1998 – · · · )

An sample of neutrino oscillation (flavor changing) is νµ −→ ντ in atmosphere.
Remark: Neutrinos have nonzero masses and mixing!

Neutrino Mixing

When W+ −→ l+α +να (lα ≡ e, µ, or τ , and α ≡ e, µ, or τ), the produced neutrino
field (να—neutrino of flavor α) is να =

∑
i Uαi νi, where νi is neutrino of definite mass

mi (i = 1, 2, 3). The neutrino mixing matrix U ≡ (UlL)†UνL = O23 × O31 × O12 is given
in terms of Euler-angles parametrization.

The Current Experiment [PDG2010]

4m2
21 = (8.0± 0.3)× 10−5 eV2, |4m2

32| = 1.9 to 3.0× 10−3 eV2

sin2(2θ12) = 0.86(+/−)(0.03/0.04), θ12 ' 34o

sin2(2θ23) > 0.92, best fit θ23 ' 45o

sin2(2θ13) < 0.19
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There are two kinds of hierarchies, “normal” or “inverted”, depending on the sign of4m2
32

positive or negative, respectively.

Tribimaximal Mixing [Harrison-Perkins-Scott2002]
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(1) This form is strongly supported by the experiment because almost its values

are the best fits from the current data.
(2) In the last decade a large portion of the neutrino theories has been devoted to

derive it, but how?

Ma Connection
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The first factor is Cabibbo-Wolfenstein (CW) matrix (ω = e2πi/3); the second one is Ma
connection.

(1) The CW matrix contains a residual symmetry Z3, while the Ma connection
term has 2-3 reflection symmetry Z2 with zero 1-2 and 1-3 mixing.

(2) The UHPS can be obtained if there is an appropriate symmetry among flavors
containing the residual subgroups Z2, Z3 and non-Abelian.

II. NON-ABELIAN DISCRETE SYMMETRIES

Flavor Symmetry—Group S3

The simplest group (but fails) is S3—the symmetry group of an equilateral triangle,
which is also the permutation group of 3 objects.

Flavor Symmetry—Group A4

If the underline symmetry contains an 3 irreducible rep. responsible for three fami-
lies, the simplest of which (successful) is A4— the symmetry group of a tetrahedron, which
is also the group of even-permutations of 4 objects.
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Flavor Symmetry—Group S4

In some models, S4—the symmetry group of a cube, which is also the permutation
group of 4 objects, is required.

III. SOME MODELS WITH S3, A4

S3 Model

The S3 is the smallest non-Abelian discrete group. It has 6 elements in 3 equivalence
classes, with the irreducible representations 1, 1′, and 2. Class [C1] : (1)(2)(3); [C2] :
(123), (321); [C3] : (1)(23), (2)(13), (3)(12). The fundamental multiplication rule is

2⊗ 2 = 1(12 + 21)⊕ 1′(12− 21)⊕ 2(22, 11).

Let (νi, li) ∼ 2, lci ∼ 2, (φ0
1, φ
−
1 ) ∼ 1, (φ0

2, φ
−
2 ) ∼ 1′, then

Ml =

(
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=
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Let ξi = (ξ++
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Thus

U = (UlL)†UνL =
1√
2

(
1 −1
1 1

)
i.e. maximal νµ − ντ mixing responsible for the atmospheric neutrinos may be achieved,
despite having a diagonal Ml with mµ 6= mτ .

A4 Model [Ma2001,2009]

The A4 has 12 elements in 4 equivalence classes, with the irreducible representations
1, 1′, 1′′, and 3. Class [C1] : (1)(2)(3)(4); [C2] : (1)(234), (2)(143), (3)(124), (4)(132); [C3]:
(1)(432), (2)(341), (3)(421), (4)(231); [C4]: (12)(34), (13)(24), (14)(23). Let ω = exp 2πi

3 ,
the fundamental multiplication rule is

3⊗ 3 = 1(11 + 22 + 33)⊕ 1′(11 + ω222 + ω33)⊕ 1′′(11 + ω22 + ω233)

⊕3(23, 31, 12)⊕ 3(32, 13, 21)
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Let (νi, li) ∼ 3, lci ∼ 1, 1′, 1′′, and (φ0
i , φ
−
i ) ∼ 3 with v1 = v2 = v3, then

Ml =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 me 0 0
0 mµ 0
0 0 mτ

 .

Let ξ0 = (ξ++
0 , ξ+

0 , ξ
0
0) ∼ 1 and ξi = (ξ++
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0
i ) ∼ 3 with u2 = u3 = 0,

Mν =
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The neutrino mixing matrix is then

U = (UlL)†UνL =
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i.e. tribimaximal mixing. This is the simplest such realization, which is consistent with
only the normal hierarchy of neutrino masses (m1 < m2 < m3).

A4 3-3-1 Model [Dong-Long-Soa-Hue2010]

Let (νi, li, N
c
i ) ∼ 3 (with L(N) = 0), lci ∼ 1, 1′, 1′′, (φ+

i , φ
0
i , φ

+
i ) ∼ 3 with v1 =

v2 = v3, we get then

Ml =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 me 0 0
0 mµ 0
0 0 mτ

 .

Let the sextets σ0 ∼ 1 and σi ∼ 3 with u2 = u3 = 0, the active neutrinos gain mass via a
seesaw:

Meff
ν =

 b 0 0
0 a d
0 d a

 = Uν
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0 b 0
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UTν ,
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Again, the tribimaximal mixing is obtained. This realization is consistent with arbitrary
hierarchy of neutrino masses, including normal or inverted.
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IV. CONCLUDING REMARKS

With the application of the non-Abelian discrete symmetries such as A4, a plausible
theoretical understanding of the tribimaximal form of the neutrino mixing matrix has been
achieved.

REFERENCES

[PDG2010] K. Nakamura et al. (Particle Data Group), J. Phys. G 37 (2010) 075021.
[Harrison-Perkins-Scott2002] P. F. Harrison, D. H. Perkins, W. G. Scott, Phys. Lett. B 530 (2002) 167.
[Ma2001,2009] E. Ma, G. Rajasekaran, Phys. Rev. D 64 (2001) 113012; E. Ma, arXiv:0905.0221 [hep-ph].
[Dong-Long-Soa-Hue2010] P. V. Dong, L. T. Hue, H. N. Long, D. V. Soa, Phys. Rev. D 81 (2010) 053004.

Received 15-12-2010.


