
Proc. Natl. Conf. Theor. Phys. 35 (2010), pp. 183-188

THE NONLINEAR ACOUSTOELECTRIC EFFECT IN
A CYLINDRICAL QUANTUM WIRE WITH

AN INFINITE POTENTIAL

NGUYEN VAN NGHIA1,2, TRAN THI THU HUONG2

1Department of physics, Water Resources University
2Department of physics, Hanoi National University

NGUYEN QUANG BAU
Department of physics, Hanoi National University

Abstract. The nonlinear acoustoelectric effect in a cylindrical quantum wire with an infinite po-
tential is investigated by using Boltzmann kinetic equation for an acoustic wave whose wavelength
λ = 2π

q
is smaller than the mean free path l of the electrons and hypersound in the region ql � 1,

(where q is the acoustic wave number). The analytic expression for the acoustoelectric current Iac

is calculated in the case: relaxation time of momentum τ is constant approximation and degener-
ates electrons gas. The nonlinear dependence of the expression for the acoustoelectric current Iac

on the acoustic wave numbers q and on the intensity of constant electric field E are obtained. Nu-
merical computations are performed for AlGaAs/GaAs cylindrical quantum wire with an infinite
potential. The results are compared with the normal bulk semiconductors and the superlattices to
show the values of the acoustoelectric current Iac in the cylindrical quantum wire are different
than they are in the normal bulk semiconductors and the superlattices.

I. INTRODUCTION

When an acoustic wave is absorbed by a conductor, the transfer of the momentum
from the acoustic wave to the conduction electron may give rise to a current usually
called the acoustoelectric current, Iac, in the case of an open circuit, a constant electric
field. The study of acoustoelectric effect in bulk materials have received a lot of attention
[1-5]. Recently, there have been a growing interest in observing this effect in mesoscopic
structures [6-8]. The interaction between surface acoustic wave (SAW) and mobile charges
in semiconductor layered structures and quantum wells is an important method to study
the dynamic properties of low-dimensional systems. The SAW method was applied to
study the quantum Hall effects [9-11], the fractional quantum Hall effect [12], and the
electron transport through a quantum point contact [13, 14]. It has also been noted that
the transverse acoustoelectric voltage (TAV) is sensitive to the mobility and to the carrier
concentration in the semiconductor, thus it has been used to provide a characterization
of electric properties of semiconductors [15]. Especially, in recent time the acoustoelectric
effect was studied in both a one-dimensional channel [16] and in a finite-length ballistic
quantum channel [17, 18, 19]. In addition, the acoustoelectric effect was measured by an
experiment in a submicron-separated quantum wire [20], in a carbon nanotube [21], in an
InGaAs quantum well [22]. The SAW method was also applied to the study acoustoelectric
effect and acoustomagnetoelectric effect [23, 24, 25].
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However, the acoustoelectric effect in the quantum wire still opens for studying, in
this paper, we examine this effect in a cylindrical quantum wire with an infinite potential
for the case of electron relaxation time is not dependent on the energy and degenerate
electron gas. Furthermore, we think the research of this effect may help us to understand
the properties of quantum wire material. We have obtained the acoustoelectric current
Iac in the cylindrical quantum wire. The nonlinear dependence of the expression for
the acoustoelectric current Iac on acoustic wave numbers q has been shown. Numerical
calculations are carried out with a specific AlGaAs/GaAs quantum wire to clarify our
results.

II. ACOUSTOELECTRIC CURRENT

By using the classical Boltzmann kinetic equation method in [23, 24, 25], we cal-
culated the acoustoelectric current in quantum wire. The acoustic wave is considered a
hypersould in the region ql � 1 (l is the electron mean free path, q is the acoustic wave
number). Under such circumstances, the acoustic wave can be interpreted as monochro-

matic phonons having the 3D phonon distribution function N(~k), and this function can
be presented in the form [25]

N(~k) =
(2π)3

~ω~qvs
φδ(~k − ~q), (1)

where ~ = 1, ~k is the current phonon wave vector, φ is the sound flux density, ω~q and vs are
the frequency and the group velocity of sound wave with the wave vector ~q, respectively.

It is assumed that the sound wave and the applied electric field ~E propagates along
the axis of the quantum wire. The problem was solved in the quasi-classical case, i.e.,
2δ � τ−1, (τ is the relaxation time). The density of the acoustoelectric current can be
written in the form [26]

jac =
2e

(2π)3

∫
Uacψid

3p, (2)

with

Uac =
2πφ

ω~qvs
{|G~p−~q,~p|2[f(ε~p−~q)− f(ε~p)]δ(ε~p−~q − ε~p + ω~q)

+ |G~p+~q,~p|2[f(ε~p+~q)− f(ε~p)]δ(ε~p+~q − ε~p − ω~q)}. (3)

Here ~p is the electron momentum vector, f(ε~p) is the distribution function, G~p−~q,~p
is the matrix element of the electron-phonon interaction and ψi (i = x, y, z) is the root of
the kinetic equation given by [28]

e

c
(V ×H)

∂ψi

∂p
+ Ŵ~p{ψi} = Vi, (4)

here Vi is the electron velocity, V is the average drift velocity of the moving charges and

Ŵ~p{...} = (∂f/∂ε)−1Ŵ{(∂f/∂ε)...}. The operator Ŵ is assumed to be Hermitian [26]. In
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the τ approximation, Ŵ~p = 1/τ . Furthermore, τ = constant, we shall seek the solution of
Eq.(4) as

ψi = ψ
(0)
i + ψ

(1)
i + .... (5)

Substituting Eq.(5) into Eq.(4) and solving by the method of iteration, we get for
the zero and the first approximation. Inserting into Eq.(2) and taking into account the
fact that

|G
~p,~p′
|2 = |G~p′,~p

|2. (6)

We obtain for the density of the acoustoelectric current the expression

jaci =− eφ

2π2vsω~q

∫
|G~p+~q,~p|2[f(ε~p+~q)− f(ε~p)]×

× [Vi(~p+ ~q)τ − Vi(~p)τ ]δ(ε~p+~q − ε~p − ω~q)d
3p−

− e2φτ2

2π2mcvsω~q

∫
|G~p+~q,~p|2[f(ε~p+~q)− f(ε~p)]×

× [(~V (~p+ ~q)× ~H)i − (~V (~p)× ~H)i]δ(ε~p+~q − ε~p − ω~q)d
3p. (7)

The matrix element of the electron-phonon interaction [23, 28] is given

|G~p,~q|2 =
|Λ|2|~q|2

2ρω~q
. (8)

Where Λ is the deformation potential constant and ρ is the crystal density of the quantum
wire.

In solving Eq.(7) we shall consider a situation whereby the sound is propagating
along the quantum wire axis (Oz). Under such orientation the second term in Eq.(7)
is responsible for the density of the acoustomagnetoelectric current and the first term in
Eq.(7) is the density of the acoustoelectric current. Thus the density of the acoustoelectric
current in Eq.(7) in the direction of the quantum wire axis becomes

jaci = −eφ~q
2τ |Λ|2

4π2vsω2
~qρ

∫
[f(ε~p+~q)− f(ε~p)][Vz(~p+ ~q)− Vz(~p)]δ(ε~p+~q − ε~p − ω~q)d

3p, (9)

the distribution function f(ε~p) in the presence of the applied constant field ~E is obtained
by solving the Boltzmann equation in the τ approximation. This function is given

f(ε~p) =

∫ ∞
0

dt

τ
exp(− t

τ
)f0(ε~p). (10)

In the case degenerate electrons gas is given by

f0(ε~p) = θ(εF − ε~p) =

{
0 ε~p > εF
1 ε~p ≤ εF

(11)

Where εF is the Fermi energy, the energy ε~p of the cylindrical quantum wire with an
infinite potential in the lowest miniband is given by [27]

ε~p =
~2~p2z
2m

+
~2A2

n,l

2mR2
. (12)
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Where l = 1, 2, 3, ... is the radial quantum number, n = 0,±1,±2, ... is the azimuth
quantum number, m is the electron effective mass, R is the radius of the quantum wire, pz
is the longitudinal (relative to the quantum wire axis) component of the quasi-momentum
and An,l is the l level root of Bessel function of the order n.

Hence

Vz(~p) =
∂ε~p
∂p

=
~2pz
m

+
~2

2mR2

∂A2
n,l

∂p
. (13)

Substituting Eqs.(11), (12) and (13) into Eq.(9), we obtain for the acoustoelectric
current with the condition is satisfied then:

εF >
~2~p2z
2m

+
~2

2mR2
A2

n,l + ~ω~q. (14)

The inequalities in Eq.(14) is condition acoustic wave vector ~q to the acoustoelectric
effect exists. Therefor, we have obtained the expression density of the acoustoelectric
current

jacz =
eφτ |Λ|2q3

4πρvsω2
~q

∫ ∞
0

dt

τ
exp(− t

τ
)
[
~q − 2eEt− 2

√
2mεF −

~2A2
n,l

R2

]
. (15)

Thus, the analytic expression for the acoustoelectric current Iac in the cylindrical
quantum wire with an infinite potential can be written in the form

Iac =
eφτ |Λ|2R2q3

4ρvsω2
~q

∫ ∞
0

dt

τ
exp(− t

τ
)
[
~q − 2eEt− 2

√
2mεF −

~2A2
n,l

R2

]
. (16)

The Eq.(16) is the acoustoelectric current in the cylindrical quantum wire with an
infinite potential in the case degenerate electron gas, the expression only obtained if the
condition in Eq.(14) is satisfied.

III. NUMERICAL RESULTS

In this situation Eq.(16) was solved analytically and the result were given as

Iac =
eφτ |Λ|2R2q3

4ρvsω2
~q

[
~q − 2eEτ − 2

√
2mεF −

~2A2
n,l

R2

]
. (17)

Eq.(17) is the acoustoelectric current in the cylindrical quantum wire with an infinite
potential in the case degenerate electron gas. The dependences of the expression for the
acoustoelectric current Iac on the intensity of the electric field E, the frequency ω~q of the
acoustic wave, the acoustic wave numbers q and the radius R of the quantum wire are
obtained.

In the paper, we consider a AlGaAs/GaAs cylinder quantum wire with an infinite
potential. The parameters used in the calculations are as follows [26, 28]: τ = 10−12s;R =
80Å;φ = 1014Wm−2; ρ = 2×1013kgm−3; vs = 5370ms−1;E = 106V m−1;ω~q = 1010s−1;m =
0.067me, me being the mass of free electron.
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Fig. The dependence of the acoustoelectric current Iac on the acoustic wave numbers q.

Figure shows the dependence of the acoustoelectric current on the acoustic wave
number q when the relaxation time of momentum τ is constant approximation and degen-
erate electron gas. The curve of the acoustoelectric current Iac decreases when the small
value range of the acoustic wave number q and strongly increases when the large value
range of the acoustic wave number q.

IV. CONCLUSION

In this paper, we have analytically investigated the possibility of the acoustoelectric
effect in the cylindrical quantum wire with an infinite potential. We have obtained ana-
lytically expressions for the acoustoelectric effect in the cylindrical quantum wire with an
infinite potential for the case degenerate electron gas. The dependences of the expression
for the acoustoelectric current Iac on the frequency ω~q of the acoustic wave, the acous-
tic wave numbers q and the radius R of the quantum wire are obtained. The result is
different compared to those obtained in the normal bulk semiconductors [5], according to
[5] in the case τ = constant the effect only exists if the electron gas is non-degenerate,
if the electron gas is degenerate, the effect is not appear, however, our result indicates
that in the cylindrical quantum wire with an infinite potential the acoustoelectric effect
exists both non-degenerate and degenerate electron gas when τ = constant. Unlike the
normal bulk semiconductors, in the cylindrical quantum wire with an infinite potential
the acoustoelectric current Iac is nonlinear with the acoustic wave number q.

We have numerically calculated and graphed expressing the dependence of the acous-
toelectric current Iac on the acoustic wave number q are performed for AlGaAs/GaAs
cylindrical quantum wire with an infinite potential. The result shows that, the acous-
toelectric effect exists when the acoustic wave vector ~q complies with specific conditions
in Eq.(14) which condition dependences on the frequency ω~q of the acoustic wave, Fermi
energy, the mass of electron and the radius R of the quantum wire. That is mean to have
acoustoelectric current Iac, the acoustic phonons energy is high enough and satisfied in the
some interval to impact much momentum to the conduction electrons. The curve of the
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acoustoelectric current Iac strongly decreases when the small value range of the acoustic
wave number q and strongly increases when the large value range of the acoustic wave
number q.
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