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Abstract. Phonon generation via the Cerenkov effect in cylindrical quantum wires (CQWs) is
theoretically studied based on the quantum kinetic equation for phonon population operator. Both
electrons and phonons are confined in the CQWs. Analytical expressions for the rate of change of
the phonon population and conditions for phonon generation are obtained. Numerical results for
GaAs/AlAs cylindrical quantum wires show that the amplitude of the laser field must satisfy ad-
ditional conditions that are different in comparison with those of the other works. The differences
between the generation of bulk LO-phonons and confined LO-phonons are discussed.

I. INTRODUCTION

Phonon amplification by absorption of laser field energy has been widely investigated
in bulk semiconductors [1, 2] and in low-dimensional heterostructures, in which the electron
systems are two-dimensional [3, 4, 5, 6, 7] and one-dimensional [8]. These studies provide
information on the excitation mechanisms of phonons, their dynamics, electron-phonon
interactions, and other important phenomena. The main results of these works are that if
the current is due to electron motion in an electric field, phonon amplification (generation)
can be achieved via the Cerenkov effect when the electron drift velocity exceeds the phase
velocity of the phonons.

High-frequency phonons have been observed for a number of semiconductor mate-
rials and heterostructures: GaAs and Ge [9], as well as other materials [10] (see Ref. 5
for a recent review). In quantum semiconductor heterostructures, if the current is due to
transitions of carriers between the bound-electron states, generation of phonons can be
realized if population inversion of these states occurs. Similar effects for photon generation
have been demonstrated in cascade lasers [11]. Intense phonon waves can be exploited for
various applications; these include [5, 12] the classical problem of sound amplification by
drifting electrons, the modulation of optical signals, the modulation of electric current,
phonon active control of electron transport, short-wavelength phonon induced phototran-
sitions in indirect-gap semiconductors, heat removal through stimulated phonon decay,
and nondestructive testing of nanostructures (phonon wavelengths can be scaled down to
10 nm).

It is important to noted that both theoretical analysis and experiments [13] have
shown that phonon generation by drifting electrons in bulk semiconductor is practically
impossible because the rate of phonon generation can not compete with the large rate
of phonon losses. However, advanced technology of semiconductor heterostructures has
opened new possibilities for applying the Cerenkov effect for phonon generation, especially
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for acoustic phonon generation, because electron drift velocities and electron densities
in low-dimensional systems are much greater than they are in bulk samples. Due to a
necessarily strong coupling of electrons and phonons in the same quantum well of quantum
wires, we expect phonon generation via the Cerenkov effect to be now capable of competing
with phonon losses.

Phonon amplification by absorption of laser field energy can be considered phe-
nomenologically by using the kinetic equation for the phonon population which corre-
sponds to the transition probability per unit time [1, 4, 7, 8] or the Boltzmann equation.
However, Herbst at al. [14] have shown that carrier-phonon scattering processes on the
quantum kinetic level are described by the dynamics of phonon assisted density matri-
ces. Since, in the Boltzmann equation, the scattering rates due to different interaction
mechanisms simply add up without interference, all contributions to the quantum kinetic
equation resulting from mechanisms other than carrier-phonon interactions have to be
neglected. This shows that the quantum kinetic treatment includes a variety of additional
phenomena related to the mutual influence of different mechanisms, besides the correct
treatment of the short time-and length-scale behavior. In particular, the carrier-phonon
scattering dynamic is modified by intraband and interband Fock terms, external fields,...
Recently, one of the authors (T. C. Phong) [15] studied phonon amplification in semicon-
ductor superlattices by using the quantum kinetic equation in the case of multi-photon
absorption processes.

In this paper, we study the phonon generation rate in a CQW. Starting from the
kinetic equation for the phonon, we calculate the rate of phonon population change and
find the conditions for phonon generation. Analytical expressions for the rate of phonon
excitation and the conditions are obtained for the case of the multiphoton absorption
process and a non-degenerate electron gas. The mechanism and the specific characteristics
of the phonon generation are illustrated for a realistic quantum wire.

This paper is organized as follows: In Sec. II, we establish the quantum kinetic
equation for confined phonons in a CQW under a laser field. In Sec. III, we calculate the
rate of change of the phonon population in a CQW. For definiteness, in Sec. IV, we offer
numerical results for a specific GaAs/AlAs wire. Conclusions are given in the Sec. V.

II. QUANTUM KINETIC EQUATION FOR A PHONON IN A CQW

In a cylindrical GaAs quantum wire of radius R and length L (L � R) embedded
in AlAs, electrons are confined in GaAs where the potential well develops. Under the
infinitely deep well approximation, electron wave functions can be written as

ψ`j,k(r) =
eikz√
L
C`,jJ`

(
x`,j

r

R

)
ei`φ, (1)

with the corresponding energies

ε`,j(k) =
~2k2

2me
+

~2(x`,j)
2

2meR2
, (2)

where ` = ...,−1, 0, 1, ....; j = 1, 2, 3, ....; r = (r, φ, z) are cylindrical coordinates for
the system and k denotes the axial wave-vector component. C`,j = 1/(

√
πy`,jR) is the
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normalization factor, x`,j is the jth zero of the `th order Bessel function, i.e., J`(x`,j) = 0
and y`,j = J`+1(x`,j), me is the effective mass of electron.

Here, we are interested in the role of phonons. With the confined longitudinal
optical (LO) phonon assumption, Hamiltonian of the electron-phonon system in a CQW

in the presence of a laser field, ~E = ~E0 sin Ωt, is written as

H(t) = He +Hph +He−ph, (3)

where, the first and second term in Eq. (3) are the Hamiltonian of the electron He and
the Hamiltonian of the phonon Hph, respectively, they are given by [16, 17]

He =
∑
`,j,kz

ε`,j(kz −
e

~c
~A(t))c+

`,j(kz)c`,j(kz), (4)

Hph =
∑
m,n,qz

~ωLOa+
m,n(qz)am,n(qz), (5)

where c+
`,j(kz) and c`,j(kz) (a+

m,n(qz) and am,n(qz)) are the creation and the annihilation

operators of confined electron (phonon) for state |`, j, kz >≡ |α, kz > (|m,n, qz >), re-
spectively; kz and qz are the components along the z-axis of confined electron and phonon
wave vector.

The one-dimensional Frohlich Hamiltonian in the last term of Eq. (3) describing
the interaction between electrons and confined LO-phonon modes can be written as

He−ph =
∑
α,α′

∑
n,kz ,qz

Mα,α′,n(qz)

×c+
α′(kz + qz)c`,j(kz)(am,n(qz) + a+

m,n(−qz)), (6)

Mα,α′,n(qz) is the coupling matrix element, it depends on the scattering mechanism [18]

Mα,α′,m,n(qz) = −eθ
(ωLO
L

)1/2
C`−`′,nFα,α′(x`−`′,n), (7)

with

Fα,α′(η) = 2

∫ 1

0
ξdξ

1

y`jy
`′
j′
J`(x

`
jξ)J`−`′(ηξ)J`′(x

`′
j′ξ) (8)

is the form factor.
The quantum kinetic equation for phonon in a CQW is

i~
∂

∂t
〈a+
m,n(qz)am,n(qz)〉t = i~

∂Nm,n,qz(t)

∂t
= 〈[a+

m,n(qz)am,n(qz), H(t)]〉t, (9)

where < X >t means the usual thermodynamic average of X at moment t. Using H(t)
and realizing operator algebraic calculations, we have

∂Nm,n,qz(t)

∂t
=
i

~
∑

α,α′,kz

[
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α′,kz+qz
α,kz

(m,n, qz, t)
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α,kz
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∗
]
, (10)



164 TRAN CONG PHONG, LE THI THU PHUONG, TRAN DINH HIEN

where

Fα
′,~k′

α,~k
(m,n, qz, t) ≡ F (t) = 〈c+

α (qz)cα′(kz − qz)am,n(qz)〉t. (11)

We rewrite again the quantum kinetic equation for F (t); then, using the assumption
of an adiabatic interaction, F (t)|t→−∞ = 0, and then solved by using the method of
constant variation, we obtain the quantum kinetic equation for phonons in a CQW

∂Nm,n,qz(t)

∂t
=

1

~2

∑
α,α′,kz

|Mα,α′,m,n(qz)|2
+∞∑
s=−∞

J2
s (

Λ

~Ω
)

∫ t

−∞
dt′Nm,n,qz(t

′)

×
{[
fα′(kz + qz)− fα(kz)

]
e
i
~ (εα′ (kz+qz)−εα(kz)−~ωLO−s~Ω)(t−t′)

+
[
fα(kz)− fα′(kz − qz)

]
e
i
~ (εα′ (kz−qz)−εα(kz)+~ωLO+s~Ω)(t−t′)

}
, (12)

where fα(kz) is the distribution function of the electron gas, which is assumed to be in

equilibrium, and Λ = e~~q ~E0/(meΩ) is the field parameter.

III. RATE OF CHANGE THE PHONON POPULATION

Using the Fourier transform technique and the assumption of an adiabatic interac-
tion of the laser field, one obtains the kinetic equation for the phonon population of the
qz mode [1]:

∂Nm,n,qz(t)

∂t
= Gm,n,qzNm,n,qz(t), (13)

where Gm,n,qz is a the parameter that determines the rate of change of the phonon pop-
ulation Nm,n,qz(t) in time due to the interaction with electrons and takes the following
form:

Gm,n,qz =
2π

~
∑

α,α′,kz

|Mα,α′,m,n(qz)|2
+∞∑
s=−∞

J2
s (

Λ

~Ω
)
[
fα′(kz + qz)− fα(kz)

]
× δ

(
εα′(kz + qz)− εα(kz)− ~ωLO − s~Ω

)
. (14)

The parameter Gm,n,qz has significant meaning. If Gm,n,qz > 0, the phonon popu-
lation grows with time (phonon amplification) whereas for Gm,n,qz < 0, the phonons are
damped. In the strong-field limit, Λ >> ~Ω, the sum over s in Eq. (14) may then be
written approximately as [1]

+∞∑
s=−∞

J2
s (

Λ

~Ω
)δ(ε− s~Ω) =

1

2

[
δ(ε− Λ) + δ(ε+ Λ)

]
, (15)

with ε = εα′(kz + qz)− εα(kz)− ~ωLO.
The first Delta function in Eq. (15) corresponds to the emission and the second

to the absorption of (Λ/~Ω) photons. In other words, in the strong-field, limit only
multiphoton processes are dominant, and the electron-phonon interaction takes place with
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the emission and the absorption of (Λ/~Ω) >> 1 photons. Substituting Eq. (15) into Eq.

(14), the phonon population change rate becomes G
(±)
m,n,qz = G

(+)
m,n,qz +G

(−)
m,n,qz , where

G(±)
m,n,qz =

π

~
∑

α,α′,kz

|Mα,α′,m,n(qz)|2
[
fα′(kz + qz)− fα(kz)

]
× δ

[
εα′(kz + qz)− εα(kz)− ~ωLO ± Λ

]
. (16)

Transforming the sum over kz to an integral in kz space, assuming that the electron
gas is non-degenerate, substituting expressions for the energy spectra and the Fermi-
Dirac distribution function, fα(kz) = exp[β(εF − εα(kz)], and then carrying out some
calculations, we get the expression for the change rate of the phonon population:

G(±)
m,n,qz =

Lme

2~3qz

∑
α,α′

|Mα,α′,m,n(qz)|2

×
{

exp
[
β
(
εF − εα′ − ~2

me

( me

~2qz
(∆ε+ ~ωLO ∓ Λ)− qz

)2)]
− exp

[
β
(
εF − εα −

me

2~2q2
z

(∆ε+ ~ωLO ∓ Λ)2
)]}

. (17)

here, εF is the Fermi energy, β = 1/(kBT ), kB is the Boltzmann constant, and T is the
temperature of the system, and ∆ε = εα′ − εα − ~2q2

z/(2me).
From Eq. (17), we can derive the conditions for the phonon generation. It can be

seen that only the multi-photon absorption process (Λ/(~Ω) >> 1) corresponding to the
signs (+) in the superscript of Gm,n,qz and the signs (-) in front of Λ satisfy the condition

G
(+)
m,n,qz > 0 for phonon generation. In this case, we obtain the condition that laser field

must satisfy:

Λ =
e~~q ~E0

meΩ
> ~ωLO. (18)

The condition in Eq. (18) simply means that for a particular phonon wave vector, the
necessary condition for the onset of the phonon instability is just the Cerenkov condition

~q~v0 > ωLO, where ~v0 = e ~E0/(meΩ) and vph = ωLO/qz is the phonon-phase velocity.
The above result is formally analogous to the one for the electron-phonon system in the
presence of a dc electric field. The difference lies in the fact that in the latter case, ~v0 is

replaced by the drift velocity ~vd = e ~E0/(meΩ) imposed by the static field [1, 7].

IV. NUMERICAL RESULTS AND DISCUSSION

The following parameters values were used in the calculation of this paper [16, 18]:
~ωLO = 36.2 meV, χ1s = 12.9, χ1∞ = 10.9, me = 0.067m0 = 6.097× 10−31 kg, Lz = 100
nm, εF = 0.5 × 10−18 J. The transition included in numerical results is ` = 1, `′ = 0,
j = j′ = 1.

It can be seen from Fig. 1 that the rate of LO-phonon excitation obtains the both
positive (amplification) and negative (absorption) values for confined phonons. This means
that phonon amplification can only occur in a narrow range of the wave number. With
the conditions given in Fig. 1, only confined phonons with wavenumber in the range of
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Fig. 1. The dependence of the phonon generation rate on the wave number for
two cases: confined LO phonon (at different lattice temperature: the solid, the
dashed, and the dotted lines correspond to 150 K, 250 K, and 300 K, respectively)
and bulk LO phonon (dashed and dotted line at 200 K). Here, Ω = 1.0× 1013 Hz,
R = 16.3 nm, E0 = 106 V/m.

0.7× 108 m−1 and 4.0× 108 m−1 can be created. Phonons with wavenumber lesser than
0.7 × 108 m−1 are almost absorbed. In contract, in this range of the wavenumber bulk
phonons are always created with the rate smaller than that for confined phonons. The
higher temperature is, the lower the rate of phonon generation is and the greater rate
of their absorption. Figure 1 also shows that if the phonon wavenumber is greater than
5.0 × 108 m−1, the influence of the phonon confinement nearly disappeared, the external
field has no impact on the phonon excitation.
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Fig. 2. The dependence of the phonon generation rate on the radius R for two
cases: confined LO phonon a) at different laser field frequency: the solid, the
dashed, and the dotted lines correspond to 1.0 × 1013 Hz, 2.0 × 1013 Hz, and
3.0 × 1013 Hz, respectively; b) at different wave number: the solid, the dashed,
and the dotted lines correspond to 1.0×108 m−1, 2.0×108 m−1, and 3.0×108 m−1,
respectively, and bulk LO phonon (dashed and dotted line): a) at Ω = 1.0× 1013

Hz; b) at qz = 1.0× 108 m−1. Here, T = 250 K.

Figures 2a and 2b show the dependence of the phonon generation rate on the wire’s
radius R. We can see that the rate of change of the phonon population for confined
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phonons possesses both positive and negative value, but for bulk phonon there is only the
positive one. when the wire’s radius is considerable (greater than 50 nm), the plotted
curves nearly coincide. This mean that the phonon confinement no longer takes effect.

V. CONCLUSIONS

In conclusion, we have analytically investigated the possibility of phonon generation
by absorption of laser-field energy in a cylindrical quantum wire in the case of a multi-
photon absorption process and a non-degenerate electron gas. Starting from the confined
phonon assumption and using the quantum kinetic equation for phonons, we have obtained
expressions for the rate of change of the phonon population in the cases of confined LO
phonons.

The expressions are numerically calculated and plotted for a specific CQW to show
the mechanism of phonon generation. The obtained results show that the impact of the
phonon confinement is considerable for optical phonon with the sufficient small wavenum-
ber and wire’s radius. This impact is insignificant for phonons with large wavenumber as
well as wire’s radius.
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