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FISSION BARRIERS OF SUPERHEAVY NUCLEI
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Szafrana 4a, 65-516 Zielona Góra, Poland
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Abstract. The aim of this paper is to give an overview of theoretical predictions on heights of
fission barriers for superheavy nuclei. The macroscopic-microscopic model of the potential energy
as a function of nuclear shape is briefly presented. Immersion method of searching for saddle points
determining the barrier heights which has been recently adapted to nuclear physics is discussed.
Predictions of fission barrier heights for a wide region of superheavy nuclei are given, as well as
a comparison to results obtained by other approaches and to existing experimental data.

I. INTRODUCTION

The first evidence of atomic nuclei have appeared almost a century ago (1911) and
is connected with E. Rutherford who gave the theoretical interpretation of experiments
performed by his students H. Geiger and E. Marsden. The great progress in the field of
nuclear physics came later, when the construction of particle accelerators enabled for a
qualitative change from passive observations to active experiments. The use of accelerators
allowed for production, in physics laboratories, of new elements, heavier than uranium
(Z = 92), the heaviest element found on the Earth. Generally, the heaviest nuclei become
less and less stable when one considers proton numbers greater than 92. The mean lifetime
of nuclei around Z ≈ 100 decreases to days or minutes and for Z ≈ 110 goes down to
an order of miliseconds. Therefore the production of new elements through a synthesis of
projectile nucleus bombarding a target nucleus became more and more difficult because
the cross section for the creation of the compound nuclei decreases rapidly with ZpZt,
where Zp/t is the proton number of the projectile/target. Despite those obstacles the
process of synthesis of new nuclides is still continuing [1, 2] and the liftimes of nuclides
produced in these experiments are again of the order of miliseconds. For example, Fig. 1
shows only those nuclei that have been produced after the year 1994. Moreover, it is worth
mentioning that even in this year the new element with atomic number Z = 117 [3] has
been observed (element Z = 118 has been synthesized in 2006 [4] ) and additionally in the
coming years the synthesis of even heavier systems with 119, 120 or even 122 protons is
planned. Of course, the natural question appears: whether or not there exists any

limit for the process of synthesis of the heaviest nuclei?
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Fig. 1. Presently known isotopes of superheavy elements with proton number
110 ≤ Z, all discovered after the year 1994.

Partial answer to this question can be obtained by theoretical estimations of the
cross section σ for the synthesis of those systems within existing nuclear models. The
height of the static fission barrier Bf is an important quantity needed for the calculations
of σ. This height is a decisive quantity in the competition between processes of neutron
evaporation and fission of the compound nucleus in the process of its cooling to form a
residual nucleus in its ground state. A large sensitivity of σ to Bf stresses a need for
accurate predictions, because even small change of this quantity can make the difference
between success and failure in experiments aimed at production of a new superheavy
nuclei.

Fig. 2. Schematic picture of the potential energy surface of a heavy nucleus with
marked location of the ground state point (GS) and saddle point (SP). As can be
seen in this case nucleus in the ground state is deformed.

As shown in Fig. 2 quantity Bf is calculated as a difference between two values
of stationary points: one representing the ground-state minimum (GS) and the other:
saddle point (SP), that is the maximum of the potential energy on the path to fission.
The aim of this paper is the presentation of recent results concerning predictions of fission
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barriers of even-even superheavy nuclei [5] and statistical comparison of those barriers
with the predictions of other groups [6, 7], [8, 9] in cases when fission barriers estimated
from experimantal data are known [10, 11].

II. METHOD OF THE ANALYSIS

All calculations were done within a macroscopic-microscopic approach in which the
total energy as a function of shape is a sum of two parts. The main part comes from a
macroscopic model a kind of liquid drop model which gives a good average description of
many nuclear properties. The second, microscopic part takes into account quantum correc-
tions to that overall description which arise from shell structure and residual short range
interactions between nucleons. In our model we apply the Yukawa-plus-exponential model
[12] as the macroscopic part of the energy, and the Strutinski shell correction plus pairing
correction as the microscopic part. We use the deformed Woods-Saxon single-particle po-
tential [13] for the nuclear mean field to calculate the Strutinski shell correction and BCS
theory for pairing correction. It is worth mentioning that the total energy presented in the
following maps was additionally renormalized by subtracting the macroscopic energy for
the spherical shape. For all details of the approach we refer to [5] and references therein.

The shape of the nucleus and the nuclear potential has been parametrized by ex-
pansion of the nuclear radius R(ϑ, ϕ) in spherical harmonics:

R(ϑ, ϕ) = R0 {1 + β2

[
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where the dependence of R0 on the deformation parameters is determined by the volume-

conservation condition. The real functions Y
(+)
λµ are defined as:

Y
(+)
λµ =

1√
2

[Yλµ + (−1)µYλ−µ] , for µ > 0. (2)

A few examples of nuclear shapes which can by described by above parametrization are
shown in Fig. 3 where for illustrative purposes the values of deformation parameters are
exaggerated.

II.1. Method of the analysis: Immersion method

A useful and very effective method for searching saddle point is the immersion
method described in detail in [11, 9]. In Fig. 4 we show a scheme of the algorithm
determining the saddle point energy and position. For simplicity we explain the method
on an example of three-dimensial potential energy map (shown at the top left panel) where
parameters of deformation are [β2 cos(γ2), β2 sin(γ2), β4]. In this figure energy dependence
on β4 is hidden because for each [β2 cos(γ2), β2 sin(γ2)] the energy is minimized with respect
to β4.

The algorithm starts by setting two points: GS and EX, where GS corresponds to
the position of the ground state (with the energy E(GS)) and EX denotes the position of
the point outside the barrier, i.e. exit point (with the energy E(EX)). The whole energy
landscape is stored in the matrix E(i, j, k) which has three indices corresponding to the
values of the three shape coordinates i, j, k defined on a grid. The values of elements
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Fig. 3. Some examples of nuclear shapes which can be described by the expression
(1). In each presented case only a single non-zero deformation parameter was

used.

Fig. 4. A scheme of determination of the saddle point in the immersion method.

of another matrix I(i, j, k) indicate if a given grid point is ”wet” I(i, j, k) = 1 or ”dry”
I(i, j, k) = 0. In first step we set I(GS) = 1 making the ground state point ”wet”, and
initialize all other elements of I(i, j, k) to 0 (Fig. 4: top right). Next we fill the potential
energy well around the ground state with ”water” to the energy E = E(GS) + ∆E
and replace the value of I(i, j, k) to 1 for all grid points conneted to each other which
energies fulfil the condition E(GS) < E(i, j, k) ≤ E(GS)+∆E (Fig. 4: bottom left). This
step correspond to an immersion of the potential energy landscape around the ground
state shape up to the energy E(GS) + ∆E. If in this step the area of ”wet” points
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does not contain the exit point we increase the considered energy up to E(GS) + 2∆E,
E(GS)+3∆E, . . ., until the exit point EX becomes ”wet” (i.e. I(EX) = 1). This situation
occurs only when the ”water” has flooded the saddle SP between the entry GS and exit
EX points (Fig. 4: bottom right). In this case we know that the saddle point energy lies
between E(GS) + n∆E and E(GS) + (n + 1)∆E. Then we can define a smaller energy
increment ∆E1 and by repeating the same steps in a new smaller range of the energy,
starting from the points with the energy E(GS) + n∆E we restrict our search area again
and again. After several iterations our search area is narrowed to a very small region (in
the limit to one point) which is a saddle point up to required precision. In the case of
more dimensions all steps described below will be the same. This method is intuitively,
fast in operation and easy to implement - its only limitation is the size of the grid which
have to be stored in the computer memory.

III. RESULTS AND CONCLUSION

In order to check a predictive power of our approach we have first calculated the
fission barrier heights Bf for actinide nuclei and compared our results with values extracted
from experiments, available for the heaviest nuclei [10, 11], and with those obtained in
other approaches.

Table 1. Statistical parameters of calculted inner fission barrier heights in various
models. Except the number of nuclei N all quantities are in MeV.

Models: LSD FRLDM HN
N 16 18 18

<| Bth
f −B

exp
f |> 0.9 1.0 0.4

Max | Bth
f −B

exp
f | 1.8 2.2 1.0

R.M.S. 1.0 1.1 0.5

In Table 1 we compare statistical properties of the calculated Bf values obtained in
three theoretical models: LSD [6, 7], FRLDM [8, 9] and our HN [5]. All results are refered
to experimental values. All three theoretical models are based on macroscopic-microscopic
approach, however they differ from each other by using different versions of macroscopic
part, different details of the mean field potential and different shape parametrization.
Our method, particularly devoted for a description of many properties on Heavy Nuclei
(HN) [14] exhibits much better reproduction of experimental values of Bf than the other

models. The parameters compared are: the mean value of deviations <| Bth
f − B

exp
f |>,

the maximal deviation Max | Bth
f −B

exp
f | and root mean square of deviations R.M.S. All

those quantities are in our model roughly two times smaller than those in other models.
Therefore we hope that our predictions for yet non-observed nuclei are the most precise.

Fission barrier heights for a vast region of even-even nuclei with Z ∈ [98, 126] and
N ∈ [134, 192] obtained by our group are presented in Fig. 5. We predict relatively high
values of Bf (5-6 MeV) only for region of Z . 122, 124 and 170 . N . 184. The numerical
values for all considered nuclei are given in [5].
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Fig. 5. Contour map of fission barrier heights Bf calculated for even-even super-
heavy nuclei.

It is worth to mention that the other approaches, like Hartree-Fock self-consistent
theory, based on several versions of nucleon-nucleon interaction give in general much worse
description of fission properties of heavy nuclei than macroscopic-microscopic approach.

There may be several reasons causing that the results of HN model are the closest
to the experimental data. Firstly, the parameters of our calculations for the heavy nuclei
have been several years ago chosen such that many properties of a large region of heavy
nuclei were reproduces by the model calculations as well as possible. Next, our shape
paramtrization is the richest one allowing to find a shape configuration of the lowest
energy for the fission process.
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