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Abstract. We present a theoretical study the two-dimensional electron gas 2DEG at low temper-
ature in an unintentionally doped GaN/AlGaN surface quantum well, taking adequate account of
the roughness-induced scattering mechansms and effect due to sheet polarization charges. Within
model of surface quantum wells 2DEG be described by an extended Fang-Howard wave function,
we are able to derive an analytic expression for the self-consistent Hartree potential. Thus, we
obtained simple expresion describing the enhancement of the 2DEG screening and unscreened po-
tentials for different scattering sources. We studied the electron mobility due to different scattering
sources and the total electron mobility in an unintentionally doped GaN/AlGaN surface quantum
well .

I. INTRODUCTION

Recently, experimental reports indicated that a two-dimensional electron gas (2DEG)
is formed at the naked surface of several semiconductors, such as ZnO [1–4], SiGe [5] and
GaN [6]. This open structure is referred to as a surface quantum well (SFQW) [7], in which
a very high potential barrier (∼ 4.5 eV) between the vacuum and the host crystal leads to
an enhanced carrier confinement, i.e., a strong lateral quantization. In addition another
surface quantum wells, where the vacuum leven acts as one of confining potentials and a
wider band-gap heterojunction is the other confining potential was first demonstrated in
the GaInP and GaInAs systems in 1987, and 1988, respectively [8, 9].

An understanding of SFQW is obviously important also for the modeling of lateral
quantization in other open system, e.g, quantum wires and quantum dots. However,
it should be mentioned that SFQW have been much less studied than quantum wells
(QWs) [10].

Group-III-nitride-based heterostructures, in particular, the GaN/AlGaN have be-
come technologically important for fabrication of high-voltage, high-power, and high tem-
perature microwave devices. The electron mobility is an important transport parameter
used to characterize the performance of these devices.

Thus, this paper is devoted to the development of a theory for the mobility of
the two-dimensional electron gas 2DEG at low temperature in an unintentionally doped
GaN/AlGaN surface quantum well.
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II. TWO DIMENSIONAL ELECTRON GAS IN UID GaN/AlGaN SFQW

In what follow, we will be dealing with a UID GaN/AlGaN SFQW. The crystal
reference system is that the z axis is directed from vacuum to the well, and z = 0 defines
the plane between the vacuum (z < 0) and the GaN well layer (z > 0). It is assumed that
the GaN layer be under tensile strain, while the AlGaN layer be relaxed. The electrons are
confined in a QW separated from the vacuum by two potential barriers: one at z < 0 and
another at z = L, with of well. The barrier height between the vacuum and GaN is very
large (V0 ∼ 5 eV) [6], so that the penetration of electrons in to the vacuum is negligible.
Due to surface roughness in both barriers, the realistic barriers are not absolutely flat
interface. viz. the well width L is not constant. Therefore, the 2DEG in the lowest
subband of a GaN/AlGaN SFQW is described by a modified Fang-Howard wave function,
proposed by Ando [11,12]:

ζ(z) =


0 if z < 0

Bk3/2ze−kz/2 0 < z < L

Aκ1/2e−κ(z−L) z > L

(1)

in which A, B, k, κ are variational parameters to be determined. Here k and κ are half the
wave numbers in the well and barrier, respectively. A, B are dimensionless parameters.
Variational parameters A, B, κ and the wave function (1) are determined by k through
boundary conditions at z = L, and the normalization one. And then, k is determined
by condition, in which the wave function (1) is to minimize the total energy per particle,
which is determined by the Hamiltonian:

H = T + Vtot(z), (2)

where T is the kinetic energy, and Vtot(z) is the total effective confining potential [13]:

Vtot(z) = Vw(z) + Vb(z) + VH(z) + Vim(z) + Vσ(z) + Vxc(z), (3)

in which Vw(z) and Vb(z) are the barrier potentials at z = 0, and z = L, the third term
VH(z) is the Hartree potential due to ionized dopants and confined electrons themselves.
This is obtained from Poisson’s equation

d2

dz2
VH(z) =

4πe2

εL
[ND(z)− n(z)] (4)

where εL is the dielectric constant of sample, neglecting a small difference in its values
between the layers with the use of an average value. The bulk density of ionized dopants
in UID are given by

Nd(z) =

{
0 for z < 0 and z > zd
Nd 0 < z < zd

(5)

here, zd is UID thickness, n(z) is the bulk density of electron respectively. The electron
density distribution is specified by the wave function from Eq.(1)

n(z) = ns|ζ(z)|2 (6)
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where ns is a sheet density of electron. Under overall charge neutrality condition [14], it
hold

ns = Ndzd (7)

We solve the Poisson’s equation (4) with a boundery conditions that electric field
corresponding to the Hartree is vanishing at infinity [14]. As a result, this potential is
found as a sum

VH(z) = VI(z) + Vs(z) (8)

in which the terms are to be regarded as the partial potentials created by the ionized
dopants and the 2DEG.

The fourth term in Eq.(3) is the potential due to image charge, which quantities
the effect arising from an abrupt decrease in the electric constant across the surface z = 0.
This is given by [15]

Vim(z) =
ε−
ε+

e2

εL

1

4z
(9)

where by definition

ε± =
εL ± 1

2εL
, ε+ + ε− = 1. (10)

The fifth term in Eq. (3) is the potential due to spontaneous polarization charges
bound on the AlGaN surface (z = L), so that

Vσ =
2πe2(σp/e)

εL
z, (11)

with σp/e as their sheet density.
At last, the exchange-correlation corrections allow for the many-body effect in the

2DEG along the normal direction. In the literature this was described by various models.
Within a simplest model this is given by [16]

Vxc(z) = − 0.611
e2

εL

[
3

4π
n(z)

]1/3
, (12)

with n(z) as the electron distribution from Eq. (7).

III. THE ELECTRON MOBILITY AT LOW TEMPERATURE

The electron mobility at very low temperature may be determined within the relax-
ation time approximation by

µ = eτ/m∗, (13)

with m∗ as the in-plane effective electron mass of the GaN [17]. The inverse relaxation
time for zero temperature is then expressed in terms of the autocorrelation function for
each disorder [12]:

1

τ
=

1

2π~EF

∫ 2kF

0
dq

q2

(4k2F − q2)1/2
〈|U(q)|2〉
ε2(q)

, (14)

where q = 2kF sin(θ/2) as the 2D momentum transfer by a scattering event in the x − y
plane, with θ as a scattering angle. The Fermi energy is given by EF = ~2k2F /2m∗, with
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kF as the Fermi wave number fixed by the 2DEG density: kF =
√

2πns. 〈|U(q)|2〉 is
autocorrelation function in wave vector space, that is specified for the different random
scattering fields. Hereafter, the angular brackets stand for an ensemble average. U(q) is
a 2D Fourier transform of the unscreened scattering potential averaged with the envelope
wave function of a 2D subband. The dielectric function ε(q) entering in Eq. (14) takes
account of the screening of a scattering potential by the 2DEG. As usual, this is evaluated
within the random phase approximation [15]

ε(q) = 1 +
qs
q
FS(q) [1−G(q)], for q ≤ 2kF , (15)

where the inverse 2D Thomas-Fermi screening length is

qs =
2m∗e2

εLε+~2
, (16)

We introduced the dimensionless wave numbers:

t = qL, a = kL, and b = κL. (17)

The screening form factor FS(q) takes account of the extension of electronic states
along the normal direction. With the wave function from Eq. (1), we obtained:

FS(t) = ε+

{[
1

2

(
1

2L

(
A4bL(3b− t)

b2 − t2
+
aB4e−2(a+t)L(e2a+t(a− t)3(8a2 + 9at+ 3t2)

(a2 − t2)3

−8a5ea(2 + a2 + 2t+ t2 + 2a(1 + t)) + et(a+ t)3(2a6 − 4a5(t− 2) + 3t2

+3at(2t− 3) + 2a4(8− 6t+ t2) + 2a3(8− 9t+ 2t2) + 2a2(4− 9t+ 3t2))))

+a3A2bB2e−a

{
2 + a2 + 2b+ b2 + 2a(1 + b)− 2ea+b

(a+ b)3(b− t)

+
2 + a2 − 2ea+t + 2t+ t2 + 2a(1 + t)

(a+ t)3(t− b)

+
e−t(−2ea + et(2 + a2 − 2a(t− 1)− 2t+ t2))

(a+ b)3(b− t)

−
(

1

(a+ b)3(a− t)3(t2 − b2)

)[
e−t(2(a+ b)3ea(b− t) + et(b+ t)(4t3

+4b(−1 + t)t2 − a5 + a4(4t− 3b− 2)− b3(2− 2t+ t2)

+2b2t(2− 2t+ t2)− a3(2 + 3b2 + b(6− 10t)− 10t+ 5t2)

+a(2b3(t− 1) + 4(t− 3)t2 − b2(6− 10t+ 7t2) + 4bt(3− 4t+ t2))

−a2(b3 + b2(6− 8t)− 2t(6− 6t+ t2) + b(6− 18t+ 11t2)

]}))]}

+ε−

{
B4e−2(a+t)a6(2− 2ea+t + (a+ t)(2 + (a+ t)))2

2(a+ t)6
−A

4b2e−2t

2(t+ b)2

}
(18)
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with ε± defined in Eq. (10). Here, the first (∝ ε+) and second (∝ ε−) terms are connected
with the Coulomb interactions between the electrons and between them and their mirror
images, respectively. The local field corrections are due to a many-body exchange effect
in the 2DEG in the in-plane, given by [18]:

G(t) =
t

2(t2 + t2F )1/2
. (19)

At very low temperature the phonon scattering is negligibly weak. Therefore the
electrons are expected to experience the following scattering sources: i) ionized dopants
(ID), ii) alloy disorder (AD), iii) surface roughness (SR), iv) roughness-induced piezoelec-
tric charges (PE) and v) roughness-induced deformation potential (DP). The total relax-
ation time is then determined by the ones for individual disorder according to Matthiessen’s
rule:

1

τtot
=

1

τID
+

1

τAD
+

1

τPE
+

2

τSR
+

2

τDP
(20)

where we introduced a factor of 2 in last two terms on the right-hand side to include the
effects from both interfaces of the SFQW. Thus, according to Eq.(14) we ought to specify
the autocorrelation function in wave vector space 〈|U(q)|2〉 for these scattering sources.

III.1. Inonized dopants

The autocorrelation function for scattering by randomly distributed charged impu-
rities is shown [15,19] to be represented in the form

〈|UID(q)|2〉 =

(
2πe2

εLq

)2 ∫ +∞

−∞
dziNI(zi)F

2
R(q, zi) (21)

Here, NI(zi) is the three-dimensional impurity density, and for UID: NI(zi)=Nd for 0 <
zi < zd, and is zero elsewhere. FR(q, zi) denotes the form factor for a sheet of impurities
located in the plane z = zi and accounts for the extention of the electron state along the
grownth direction, given by

FR(q, zi) =

∫ +∞

−∞
dz|ζ(z)|2e−q|z−zi| (22)

Nevertheless, it has been experimentally indicated that [20] the assumption of the
random impurity distribution fails to be valid at high doping levels, and for the under-
standing of several observable properties of heavily doped semiconductor systems one has
to allow for high-temperature ionic correlation. This is due to Coulomb interactions be-
tween the charged impurities in their diffusion during growth and tends to reduce the
probability for large fluctuations in their density and, hence, in their potential, so re-
ducing the autocorrelation function. Thus, the ionic correlation may be referred to as
a statistical screening and weakens the impurity scattering, so increasing the respective
partial mobility.

It was shown that [21] for taking into account the ionic correlation, we have to
incorporate an appropriate correlation factor (less than unity) into the autocorrelation
function as follows [12]

〈|UID(q)|2〉c = 〈|UID(q)|2〉 q

q + qi
(23)
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Here, the angular brackets with subindex c means the ensemble average over the correlated
impurity distribution, and qi is inverse statistical screening radius, given by

qi =
2πe2nd
εLkBT0

(24)

where nd = NdLd is the 2D impurity density, and T0 the freezing temperature for impurity
diffusion (∼1000K).

With the use of lowest-subband wave function from Eq.(1), and the dimensionless
wave numbers from Eq.(17), we may find the autocorrelation function for scattering by
correlated ionized dopants in form of a special analytic function fr2t(t) in [22] that is easy
calculated by Mathematica software but can not be represented here

〈|UID(t)|2〉c =

(
2πe2

εL

)2

nd

(
t

t+ ti

)
L2fr2t(t)

t2
(25)

here ti = qiL

III.2. Alloy disorder

The autocorrelation function for scattering is supplied in form [11]

〈|UAD(q)|2〉 = x(1− x)u2alΩ0

∫ L

0
dz|ζ(z)|4 (26)

in which, x is the Al content, ual is the alloy potential, L is the well width. The volume
occupied by one alloy atom is given by Ω0 = a3(x)/8, which a(x) the lattice constant of
the alloy [12].

By mean of Eq.(1)for the lowest-subband wave function and the dimensionless wave
numbers from Eq.(17), the autocorrelation function for scattering by alloy disorder is
written as follows:

〈|UAD(t)|2〉 = x(1− x)u2alΩ0

{
1

4
B4 a

L

[
3− e−2a(3 + 6a+ 6a2 + 4a3 + 2a4)

]}
(27)

III.3. Surface roughness

Here, we treat the scattering of 2DEG from a rough potential barriers, one at z = 0
and another at z = L. It was pointed out [12] that the autocorrelation function for surface
roughness scattering is fixed by the local value of the wave function at the surface:

USR(q) = V0|ζ(0)|2∆q (28)

where ∆q is surface rouhgness profile.
It is to be noticed that at z = 0 the right-hand side of Eq. (28) becomes indefinite

in the limiting case of infinite potential barrier [V0 → ∞ and ζ(0) → 0]. Therefore, we
need to adopt the following formula valid for any bound electronic state: [12]∫ +∞

−∞
dz|ζ(z)|2∂Vtot(z)

∂z
= 0, (29)

which is exact and applicable for any value of the barrier height V0. Upon replacing the
effective confining potential with Eq. (3), we may represent the local value of the wave
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function via the expectation values of the electric fields created by the partial confining
sources:

V0|ζ(0)|2 = V0|ζ(L)|2 = 〈VH(z)′〉+ 〈Vim(z)′〉+ 〈Vσ(z)′〉+ 〈V ′xc〉, (30)

with V ′ = ∂V (z)/∂z.
Next, by putting Eq. (30) into Eq. (28), we arrive at the autocorrelation function for
surface roughness:

〈|USR(q)|2〉 =

(
2πe2

εL

)2

[e−kL
(σ
e

)(
A2ekL +B2(2− 2ekL + 2kL+ k2L2)

)
−

2A2Nd

(
e(L−zd)k − 1− Lk + zdκ

)
κ

+
ns
2
e−2kL(B4(2− 2ekL

+2kL+ k2L2)2 −A4e2kL)) + 0.015083

(
2πe2

εL

)
n1/3s (A8/3κ4/3

−B8/3e−
4kL
3 k4L8/3)]2〈|∆q|2〉 (31)

As seen from Eq. (28), surface roughness scattering is specified by the surface profile.
This is normally written as:

〈|∆q|2〉 = π∆2Λ2FSR(t), (32)

where ∆ is a roughness amplitude, and Λ a correlation length. The roughness form factor
is given by: [23]

FSR(t) =
1

(1 + λ2t2/4n)n+1
, (33)

where n is an exponent fixing its falloff at large momentum transfer in range n=1 to 4,
and λ = Λ/σ

√
2 a dimensionless correlation length.

III.4. Roughness-induced piezoelectric charges

In wurtzite III-nitride heterostructures, e.g. GaN/AlGaN, surface roughness gives
rise to strain fluctuations in both strained and relaxed layers. In Ref. [24] Quang and
coworkers have demonstrated that the strain fluctuations produce random nonuniform
variations in the piezoelectric polarization. These in turn induce fluctuating densities of
piezoelectric charges, viz. bulk charges of strained and relaxed layers as well as sheet
charges on the interface. The charges create relevant electric fields and act as scattering
sources on the 2D motion of electron in the in-plane. It has been pointed out [24] that the
average electric field due to sheet charges is much weaker than those of bulk charges. In
addition, the average field due to bulk charges in GaN well is nearly equal to that in the
AlGaN barrier. Therefore, we may plausibly restrict ourselves to calculate the scattering
by bulk charges located in the well layer.

The potential energy for an electron moving in the field due to roughness-induced
bulk piezoelectric charges in the channel layer is described by [12]:

UPE(q, z) =
παε||eQ

εL
q∆qFPE(q, z) (34)
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Here, α denotes the anisotropy ratio as a measure for the deviation of hexagonal
symmetry of the wurtzite crystal from isotropy, ε|| is the latice mismatch. Q is a ma-
terial parameter characteristic of the well, defined in term of its elastic stiffness cwij and

piezoelectric ewij constants by [12].

Q =
Cb

cb33

[
ew15
cw44

+
ew31(c

w
33 + 2cw13)− ew33(cw11 + cw12 + cw13)

Cw

]
(35)

with

Cλ = cλ33(c
λ
11 + cλ12)− 2(cλ13)

2, (36)

here (λ = b, w) is noted for the barrier and well layers respectively.
The form factor in Eq.(34) is given by

FPE(q, z) =
1

2q


eqz2qL for z < 0
2qzeqz + 2eLqSinh[q(L− z)] 0 < z < L
e−qz(e2Lq − 1) z > L

(37)

Upon averaging Eqs. (34) and (37) by mean of the lowest subband wave function
from Eq. (1), we obtained the weighted potential for scattering by roughness-induced
piezoelectric charges

UPE(q) =
παε||eQ

εL
FPE(q/k)∆q. (38)

The weighted piezoelectric form factor is expressed as a function of the dimensionless wave
number in Eq.(17):

FPE(t) =
1

(a− t)4)

[
a3LB2(6− et−a(6 + (6 + (a− t)(3 + a− t))(a− t)))

]
+
A2bLe−t(e2t − 1)

2t(b+ t)
+

1

t(a2 − t2)3

[
a3B2Le−a(ea+2t(a− t)3 − eak3(a+ t)3

+et(a2(6 + a(4 + a))t− 2(a(2 + a)− 1)t3 + t6))

]
(39)

III.5. Roughness-induced deformation potential

Rougness-induced strain fluctuations give rise to random nonuniform shifts of band
edges of the conduction and valence bands. This implies that electrons in the conduc-
tion band and holes in the valence one must experience a perturbating potential. The
roughness-induced deformation potential for electron is determined by fluctuations of a
diagonal strain component ∆εzz, according to [12]

UDP = Ξd∆εzz. (40)

where Ξd is the combined dilational component of the deformation potential for conduction
band. Since the deformation potential is of short range, and the 2DEG is located mainly
in the well, we can reasonably take into account the relevant scattering merely in this
layer.
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Follow [12], we get a 2D Fourier transform of the perturbating potential for the
electron as follows:

UDP (q, z) =
αε||Ξd

2

Cb

cb33

cw11 + cw12 + cw13
Cw

q∆qe
−qz. (41)

for 0 < z < L, and is zero elsewhere. Here, cλij are the elastic stiffness constants of the λ

layer (λ = b, w), and Cλ are determined from Eq. (36)
Upon averaging Eq.(36) by means of the lowest-subband wave function from Eq.(1).

we may represent the autocorrelation function for deformation potential scattering in the
form

〈|UDP (q)|2〉 =

{
αε||Ξd

2

Cb

cb33

cw11 + cw12 + cw13
Cw

qFDP (q/k)

}2

〈|∆q|2〉. (42)

where the formfactor is given by

FDP (t) =
A2be−t

b+ t
+
a3B2(2− e−(a+t)

[
2 + a2 + 2t+ t2 + 2a(1 + t)

]
)

(a+ t)3
. (43)

IV. RESULTS AND CONCLUSIONS

In this section, we are trying to apply the foregoing theory to understand transport
properties of the 2DEG in wurtzite UID GaN/AlGAN SFQW. For numerical results, we
have to specify parameters appearing in the theory as input. The lattice constant, elastic
stiffness constants, piezoelectric constants, and dielectric constant for AlN and GaN are
taken from Refs. [12, 25]. The coresponding constants for an AlGaN alloy are estimated
within the virtual crystal approximation [25]. The potential barrier heigh V0 as usual, this
is to be equal to the conduction band offset between the AlxGa1−xN barrier and the GaN
well, which depend on the Al content x as [26,27]:

∆Ec = 0.75

[
Eg(x)− Eg(0)

]
(44)

where the band gap of AlxGa1−xN is measure to be [25]:

Eg(x) = 6.13x+ 3.42(1− x)− x(1− x) eV (45)

The anisotropy ratio α of the wurtzite GaN is chosen α=5 [25] as a typical value in our
numerical calculation. We have carried out numerical calculations of the low-temperature
2DEG mobility due to piezoelectric scattering in UID GaN/Al0.25Ga0.75N SFQW. The
effective electron masses of GaN are for the growth direction mz = 0.18me [17] and for the
in plane m* = 0.228 me [28]. We carried out calculation the influence of density of sheet of
polarization charge σ/e on the wave function of 2DEG, and the total electron mobility as
well as electron mobility due to different scattering sources versus sheet electron density
ns, and dependence of the electron mobility on an Al-content x. From calculation results
obtained, we may draw the following conclusions:

i) Figure. 1 reveals that the variation of density of sheet of polarization charge σ/e
has influencing to distribution of 2DEG in well . When density of sheet of polarization
charge is small (σ/e < 7.1012), the positive potential that is created by positive polarization
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Fig. 1. The wave functions of 2DEG of an UID GaN/Al0.25Ga0.75N SFQW for
different density of sheet of polarization charge σ/e.

 
 

Fig. 2. 2DEG mobility of an UID GaN/AlGaN SFQW vs. sheet electron density
ns and vs. an Al content x.

charges is not enough prevail negative potential of the well, therefore the 2DEG is located
mainly in the well layer, and when density of sheet of polarization charge is enough large
(σ/e > 7.1012), the electric field that is created by positive polarization charges push the
2DEG to barrier at z = L where is located polarization charges-the interface plane and
when density of sheet of polarization charge is increased, the peak of electron distribution
is raised, so the 2DEG is pushed closer to interface plane .

ii) Figure 2 reveals that total electron mobility is small ,and in the high-density
regime of 2DEG surface roughness and ionized dopants are found to be predominant
scattering sources over the other scattering sources: alloy disorder, deformation potential
and piezoelectric charges .

iii) Figure 2 reveals that the electron mobility is reduced by polarization charges.
The mobility reduction is due to that the polarization charges can cause an reduction of
electron mobility in two ways. On the one hand, via the polarization confinement effect
they facilitate the redistribution of 2D electrons in the interface plane, where are the key
scattering sources, scattering decreased the electron mobility. On the another hand via
their electric field they elevate the density of electrons, so enhancing the screened potential
in each scattering potential, so reduced mobility.

To summarize, in this contribution we have theoretical studied the electron mobil-
ity of the two-dimensional electron gas in a UID GaN/AlGaN SFQW. We have derived
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analytic expression, which explicitly describe the scattering rates for different scattering
process limiting the 2DEG. We have examined dependence of the total electron mobility,
also each mobility due to different scattering sources on sheet electron density and on Al
content. The presence of the polarization charges on profile plane decreased the electron
mobility. The influence of polarization charges on the electron mobility will be studied in
another our paper.
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