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Abstract. A review of Randall-Sundrum model with stressing on radion phenomenology is pre-
sented. The radion production in the external electromagnetic field is considered. The total cross
sections for the conversions in the presence of the electric field of the flat condenser as well as
in the magnetic field of the solenoid are calculated in details. Based on our results a laboratory
experiment for production and detection of the light radions may be described.

I. INTRODUCTION

Much research has been done on understanding possible mechanism for radius sta-
bilization and the phenomenology of the radion field in Randall and Sundrum (RS) model.
The motivation for studying the radion is twofold. First, the radion may turn out to be the
lightest new particle in the RS-type setup, possibly accessible at the LHC. In addition, the
phenomenological similarity and potential mixing of the radion and Higgs boson warrant
detailed study in order to facilitate distinction between the radion and Higgs signals at
colliders. The aim of this work is to study phenomenology of radion of the RS model and
possibility of its conversion in the external electromagnetic field.

II. A REVIEW OF RS MODEL

The RS model is based on a 5D spacetime with non-factorizable geometry [1]. The
single extradimension is compactified on a S1/Z2 orbifold of which two fixed points ac-
commodate two three-branes (4D hyper-surfaces), the Planck brane at y = 0 and TeV
brane at y = 1/2. The ordinary 4D Poincare invariance is shown to be maintained by the
following classical solution to the Einstein equation:

ds2 = e−2σ(y)ηµνdx
µdxν − b20dy2, σ(y) = m0b0|y|, (1)

where xµ (µ = 0, 1, 2, 3) denote the coordinates on the 4D hyper-surfaces of constant y with
metric ηµν = diag(1,−1,−1,−1). The m0 and b0 are the fundamental mass parameter
and compactification radius, respectively.

Gravitational fluctuations about the RS metric,

ηµν → gµν = ηµν + εhµν(x, y), b0 → b0 + b(x), (2)

yield two kinds of new phenomenological ingredients on the TeV brane: the KK graviton

modes h
(n)
µν (x) and the canonically normalized radion field φ0(x), respectively defined



2 P. V. DONG, H. N. LONG, D. V. SOA...

as [2, 3]

hµν(x, y) =
∞∑
n=0

h(n)µν (x)
χ(n)(y)√

b0
, φ0(x) =

√
6MPlΩb(x), (3)

where Ωb(x) ≡ e−m0[b0+b(x)]/2. The 5D Planck mass M5 (ε2 = 16πG5 = 1/M3
5 ) is related

to its 4D one (MPl ≡ 1/
√

8πGN) by

M2
Pl

2
=

1− Ω2
0

ε2m0
. (4)

Here Ω0 ≡ e−m0b0/2 is known as the warp factor. Because our TeV brane is arranged to
be at y = 1/2, a canonically normalized scalar field has the mass multiplied by the warp
factor, i.e, mphys = Ω0m0. Since the moderate value of m0b0/2 ' 35 can generate TeV
scale physical mass, the gauge hierarchy problem is explained.

The 4D effective Lagrangian is then [4]

L = − φ0
Λφ

Tµµ −
1

Λ̂W
Tµν(x)

∞∑
n=1

h(n)µν (x), (5)

where Λφ ≡
√

6MPlΩ0 is the VEV of the radion field, and Λ̂W ≡
√

2MPlΩ0. The Tµν is
the energy-momentum tensor of the TeV brane localized SM fields. The Tµµ is the trace
of the energy-momentum tensor, which is given at the tree level as [5]

Tµµ =
∑
f

mf f̄f − 2m2
WW

+
µ W

−µ −m2
ZZµZ

µ + (2m2
h0h

2
0 − ∂µh0∂µh0) + · · · (6)

The gravity-scalar mixing arises at the TeV-brane by

Sξ = −ξ
∫
d4x
√
−gvisR(gvis)Ĥ

†Ĥ, (7)

where R(gvis) is the Ricci scalar for the induced metric on the visible brane or TeV brane,

gµνvis = Ω2
b(x)(ηµν + εhµν). Ĥ is the Higgs field before re-scaling. The parameter ξ denotes

the size of the mixing term.

III. PHOTON-TO-RADION CONVERSIONS

Referring the reader for details of the radion-photon coupling to Ref. [2], we lay out
the necessary radion-photon coupling

Lγγφ =
1

2
cφγγφFµνF

µν , (8)

with
cφγγ = − α

4πΛφ

{
a(b2 + bY )− a12[F1(τW ) + 4/3F1/2(τt)]

}
, (9)

Let us consider the conversion of the photon γ with momentum q into radion φ with
momentum p in external EM field. Using the Feynman rules we get the following expression
for the matrix element

< p|Mφ|q >=
cφγγ

(2π)2
√
p0q0

εµ(q, λ)qν
∫
V
eikrF class

νµ dr, (10)
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where k ≡ p−q and εµ(q, λ) represents the polarization vector of the photon. Expression
(10) is valid for an arbitrary external EM field. In the following we shall use it for the cases,
namely in the electric field of a flat condenser and in the static magnetic field of a solenoid
with the TE10 mode. Here we use the following notations: q ≡ |q|, p ≡ |p| = (q2−m2

φ)1/2

and θ is the angle between p and q.

III.1. Conversion in electric field

Let us take the EM field as a homogeneous electric field of a flat condenser of size
lx × ly × lz. We shall use the coordinate system with the x axis parallel to the direction
of the field, i.e., F 01 = −F 10 = E. Then the matrix element is given by

< p|Mφ|q >=
cφγγ

(2π)2
√
p0q0

ε1(q, λ)q0Fe(k), (11)

where

Fe(k) =

∫
V
eikrE(r)dr (12)

For a homogeneous electric field of intensity E we have

Fe(k) = 8E sin(lxkx/2) sin(lyky/2) sin(lzkz/2)(kxkykz)
−1. (13)

Squaring the matrix element (11) we obtain

dσe(γ → φ)

dΩ
=

8c2φγγE
2q2

π2

[
sin(12 lxkx) sin(12 lyky) sin(12 lzkz)

kxkykz

]2(
1− q2x

q2

)
. (14)

We shall explore the following case: The momentum of photon is parallel to the z axis,
i.e. qµ = (q, 0, 0, q). In the spherical coordinates we then have

px = p sin θ cosϕ, py = p sin θ sinϕ, pz = p cos θ, (15)

where ϕ is the angle between the x axis and the projection of p on the xy plane. Substi-
tution of Eq.(15) into Eq.(14) yields

dσe(γ → φ)

dΩ
=

8c2φγγE
2q2

π2

[
sin

lxp sin θ cosϕ

2
sin

lyp sin θ sinϕ

2
sin

lz(q − p cos θ)

2

]2
× [p2(q − p cos θ) sin2 θ cosϕ sinϕ]−2. (16)

Because the integrand in the general formula (16) does not simultaneously vanish in the
integrated domain, the corresponding total cross-section is always different from zero.
On the other hand, the cross-section as given in the range of provided high momenta q
(at least larger than the radion mass) is in the rapid oscillation with q. In that case,
the relevant quantity should be an average over several oscillations. Also, the resulting
cross-section will almost be not depended on the radion mass values if m2

φ/q
2 � 1. To

evaluate the average total cross-section for Eq.(16), the parameters are chosen as fol-
lows: Λφ = 5 TeV, ξ = 0,±1/6, α = 1/128, lx = ly = lz = 1 m = 5.07 × 106 eV−1,

E = 100 KV/m = 6.517 × 10−2 eV2 [6], and the radion mass can be taken in the limit
mφ = 10 GeV [5]. The average cross-section value σ on the ranges of momenta q for the
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radion production are given in Table 1. Here the different values ξ = 0,±1/6 approxi-
mately yield the same contribution to the cross-section. We can see from Table 1 that the
cross-section is quite small to be measurable because of the current experimental limits.

q[GeV] 100–200 200–300 300–400 400–500 500–600
σ[cm2] 1.308× 10−47 9.717× 10−47 2.569× 10−45 4.672× 10−45 6.700× 10−45

Table 1. Average cross-section for conversion in electric field.

III.2. Conversion in magnetic field

Next, we consider the conversion of photon into radion in a homogeneous magnetic
field of the solenoid with radius R and a length l. Without loss of generality we suppose
that the direction of the magnetic field is parallel to the z-axis, i.e. F 12 = −F 21 = B.
The matrix element is given then

< p |M | q >=
cφγγ

(2π)2
√
p0q0

(ε2(q, σ)q1 − ε1(q, σ)q2)Fm(k), (17)

where

Fm(k) =

∫
V
eikrB(r)dr. (18)

In the cylindrical coordinates, the integral (17) becomes

Fm(k) = B

∫ R

0
%d%

∫ 2π

0
exp{i[kx cosϕ+ ky sinϕ]}dϕ

∫ l/2

−l/2
exp{ikzz}dz. (19)

After some manipulations we get

Fm(k) =
4πBR

kz
√
k2x + k2y

j1

(
R
√
k2x + k2y

)
sin

(
lkz
2

)
, (20)

where j1 is the spherical Bessel function of the first kind.
From Eqs.(17,20) we obtain the differential cross-section as follows

dσm(γ → φ)

dΩ′
=

2c2φγγR
2B2

k2z(k
2
x + k2y)

j21

(
R
√
k2x + k2y

)
sin2

(
lkz
2

)
(qx − qy)2. (21)

Eq.(21) shows that when the momentum of the photon is parallel to the z-axis (the direc-
tion of the magnetic field), the differential cross-section vanishes. This result is the same
as the previous section. It implies that if the momentum of the photon is parallel to the
EM field, then there is no conversion. If the momentum of the photon is parallel to the
x-axis, i.e. qµ = (q, q, 0, 0), then Eq.(21) gets the form

dσm(γ → φ)

dΩ′
=

2c2φγγR
2B2q2j21

(
R
√

(q − p cos θ)2 + (p sin θ cosϕ′)2
)

(p sin θ sinϕ′)2[(q − p cos θ)2 + (p sin θ cosϕ′)2]

× sin2

(
lp

2
sin θ sinϕ′

)
, (22)

where ϕ′ is the angle between the y-axis and the projection of p on the yz-plane.
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To evaluate the average total cross-section from the general formula (22), the pa-
rameter values for Λφ, α and mφ are given as before. The remaining ones are chosen as

follows: R = l = 1 m = 5.07 × 106 eV−1 and B = 9 Tesla = 9 × 195.35 eV2 [7]. The
average cross-section on the ranges of momenta q by Eq.(22) for three cases ξ = 0,±1

6
yield the same value which is presented as in Table 2.

From Table 2 we see that the cross-sections for the radion production in the mag-
netic field are much bigger than that of the electric field, this is due to B � E. It is worth
mentioning here if the radion mass is much smaller than the provided photon momentum,
the cross-sections are much larger.

q[GeV] 100–200 200–300 300–400 400–500 500–600
σ[cm2] 4.740× 10−38 6.625× 10−38 7.662× 10−38 2.732× 10−37 4.734× 10−37

Table 2. Average cross-section for conversion in magnetic field.

IV. CONCLUSION

We have given a brief review of the RS model with stressing on radion phenomenol-
ogy. With the help of the coupling of radion to photons, we have obtained the cross-sections
of conversions of photon into radion in the presence of several external fields such as the
static electric field of the condenser and the static magnetic field of the solenoid. The
numerical evaluations of the total cross-sections are also given.

Let us mention that since the Randall-Sundrum model radion is quite heavy with
masses at least in the GeV order, the experiments are only available if the provided photon
sources are in high energies, as we often take some hundreds of GeV. Also, the light radions
in the model if they really exist are favored in these experiments.

In this work we have considered only a theoretical basis for the experiments, other
techniques concerning construction and particle detection can be found in Ref. [7]. It is
emphasized that our study can be applied for searching the possible light radions in other
models such as the large extradimensions.
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