Introduction to Particle Physics Homework 5

- 1. Griffiths problem 7.50.
- 2. Consider the annihilation process $e^+e^- \rightarrow \mu^+\mu^-$. Neglect all masses, use crossing symmetry, and show that the differential cross section for this process may be written in terms of the Mandelstam variables as $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2s} \frac{\left(t^2 + u^2\right)}{s^2}$, where α is the fine structure constant.
- 3. Use the prescription for obtaining the Feynman rules from the Lagrangian to show that the vertex factors for the quark-gluon and triple gluon vertices are, respectively, $-ig\gamma_{\mu}(T_{\alpha})_{ij}$ and $-gf_{abc}[g_{\mu\nu}(p_1-p_2)_{\lambda}+g_{\nu\lambda}(p_2-p_3)_{\mu}+g_{\lambda\mu}(p_3-p_1)_{\nu}$, where the Gell-Mann matrices, $\lambda_{\alpha}/2$, are the conventional choice for the T_{α}
- 4. The Lagrangian for three interacting real fields ϕ_1 , ϕ_2 , ϕ_3 is $L = \frac{1}{2} \left(\partial_\mu \phi_i \right)^2 \frac{1}{2} \mu^2 \phi_i^2 \frac{1}{4} \lambda \left(\phi_i^2 \right)^2$, with $\mu_2 < 0$ and $\lambda > 0$, and where a summation over i is implied. Show that it describes a massive field of mass $\sqrt{-2\mu^2}$ and two massless Goldstone bosons.