CHAPTER 3

FORMALISM

3.1 LINEAR ALGEBRA

g e e o v e e o MR tand i T

The purpose of this chapter is to develop the formalism of quantum mechanics—
terminology, notation, and mathematical background that illuminate the structure of
the theory, facilitate practical calculations, and motivate a fundamental extension of
the statistical interpretation. I begin with a brief survey. of linear algebra.! Linear
algebra abstracts and generalizes the arithmetic of ordinary vectors, as we encounter
them in first-year physics. The generalization is in two directions: (1) We allow
the scalars to be complex, and (2) we do not restrict ourselves to three dimensions
(indeed, in Section 3.2 we shall be working with vectors that live in spaces of infinite
dimension).

3.1.1 Vectors
A vector space consists of a set of vectors (|a}, |8), ly), ...), together with a set

of scalars (a, b, ¢, ...),” which are subject to two operations—vector addition and
scalar multiplication:

UIf you have already studied linear aigebra, you should be able to skim this section quickly, but
1 wouldn’t skip it altogether, because some of the notation may be unfamiliar. If, on the other hand, this
material is new to you, be warned that I am only summarizing (often without proof) those aspects of the
theory we will be needing later. For details, you should refer to a text on linear algebra, such as the classic
by P. R. Halmos: Finite Dimensional Vector Spaces, 2nd ed. (Princeton, NJ: van Nostrand, 1958).

2For our purposes, the scalars will be ordinary complex numbers. Mathematicians can tell you
about vector spaces over more exotic fields, but such objects play no role in quantum mechanics.
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Vector addition. The “sum” of any two vectors is another vector:

la) +18) = I¥). [3.1)
Vector addition is commutative
l) +18) = |8) + |}, [3.2]
and associative Co.
o) + (18) + 1¥)) = (fo) +18) + 1y). [3.3]

There exists a zero (or null) vector,’ [0), with the property that
jo) +10) = lov), [3.4]

for every vector |a). And for every vector |«) there is an associated inverse vector
(| — a)), such that
o} + | — @) = [0). [3.5]

Scalar multiplication. The “product” of any scalar with any vector is another
vector:

ala) = |y). [3.6}
Scalar multiplication is distributive with respect to vector addition

~alje) +18)) = ala) + alf) (3.7
and with respect to scalar addition
(a + b)) = alar) + blav). (3.8]
It is also associative wi(ﬁ respect to the ordinary multiplication of scalars:
a(bla)) = (ab)la). (3.9]
Multiplication by the scalars 0 and 1 has the effect you would expect:
Ola) = [0);  la) = |a). (3.10]

Evidently | — o) = (= 1ja).

There's a lot less here than meets the eye—all I have done is to write down
in abstract language the familiar rules for manipulating 'vectors. The virtue of such
abstraction is that we will be able to apply our knowledge and intuition about the
behavior of ordinary vectors to other systems that happen to share the same formal
properties.

Itis customary, where no confusion can arise, to write the nul vector without the adorning bracket:
10y — 0.
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A linear combination of the vectors |}, |8), |¥), ... is an expression of the
form
ala) +biB) ely) . [3.11]

A vector |A) is said to be linearly independent of the set |a), 18),1¥), ... if it cannot
be written as a linear combination of them. (For example, in three dimensions the unit
vector £ is linearly independent of f and 7, but any vector in the x y-plane is linearly
dependent on i and ].) By extension, a set of vectors is linearly independent if each
one is linearly independent of all the rest. A collection of vectors is said to span the
space if every vector can be written as a linear combination of the members of this
sett A set of linearly independent vectors that spans the space is called a basis. The
number of vectors in any basis is called the dimension of the space. For the moment
we shall assume that the dimension (n) is finite.
With respect to a prescribed basis

le), le2), ..., lea)s (3.12]
any given vector
Ia)=a||e|)+a2|e2)+-~~+a,,|e,,) 3.13}
is uniquely represented by the (ordered) n-tuple of its components:
la) <> (a1, a2, an). [3.14]

It is often easier to work with the components than with the abstract vectors them-

selves. To add vectors, you add their corresponding components:

la) +18) «» (@ + b az+ba oo @+ by (3.15]
to multiply by a scalar you multiply each component:
cla) < (cay, caz, ..., can); [3.16]
the null vector is represented by a string of zeroes:
-10) © (0,0,...,0); [3.17]
and the components of the inverse vector have their signs reversed:
| —a) © (—aj, —az, ..., —a). {3.18]

The only disadvantage of working with components is that you have to commit your-
self to a particular basis, and the same manipulations will look very different to
someone working in a different basis.

Problem 3.1 Consider the ordinary vectors in three dimensions (axf + a,j+ azk)

. with complex components.

47 set of vectors that spans the space is also called complete, though I personally reserve that word
for the infinite-dimensional case, where sublle questions of convergence arise.

J e s
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(a) Does the subset of all vectors with a, = 0 constitute a vector space? If so, what
is its dimension; if not, why not?

(b) What about the subset of all vectors whose z component is 1?

(c) How about the subset of vectors whose components are all equal?

*Problem 3.2 Considerthe collection of all polynorials {with complex coefficients)
of degree < N in x.

(a) Does this set constitute a vector space (with the polynomials as “vectors™)? If
50, suggest a convenient basis, and give the dimension of the space. If not,
which of the defining properties does it lack?

(b) What if we require that the polynomials be even functions?

(c) What if we require that the leading coefficient (i.e., the number multiplying
xM "y be 17

(d) What if we require that the polynomials have the value 0 at x = 1?

(e) What if we require that the polynomials have the value | at x = 07

Problem 3.3 Prove that the components of a vector with respect to a given basis
are unique.

3.1.2 Inner Products

- In three dimensions we encounter two kinds of vector products: the dot product and
the cross product. The latter does not generalize in any natural way to n-dimensional
vector spaces, but the former does—in this context it is usually called the inner
product. The inner product of two vectors (|a) and |8)) is a complex number (which
we write as (x|f)), with the following properties:

(Bla) = («|B)", [3.19]
{a]a) =0, and (¢|e) =0 & ja) =10), [3.20]
(@] (b1B) +cly)) = blalB) + claly). [3.21]

Apart from the generalization to complex numbers, these axioms simply codify the
familiar behavior of dot products. A vector space with an inner product is called an
inner product space. ’

Because the inner product of any vector with itself is a nonnegative number
(Equation 3.20), its square root is real—we call this the norm of the vector:

loll = {olar); [3.22]
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it generalizes the notion of “length”. A “unit” vector, whose norm is 1, is said to
be normalized (the word should really be “normal”, but I guess that sounds too
anthropomorphic). Two vectors whose inner product is zero are called orthogonal
(generalizing the notion of “perpendicular”). A collection of mutually orthogonal
normalized vectors,

(;]aj) = 8y, [3.23]

is called an orthonormal set. It is always possible (see Problem 3.4), and almost
always convenient, to choose an orthonormal basis; in that case the inner product of
two vectors can be written very neatly in terms of their components:

(«|BY = atby +a3by+ - +ayby, [3.24
the norm (squared) becomes
{alo) = |y +lasf? + - + e, [3.25)
and the components themselves are
a; = {e;|a). (3.26]

(These results generalize:the familiar formulas a - b = a.b, + ayb, + a;b;,a - a
=a’+ a’i +a?, and ay = { - a, a,=7j-a,a, = k - a, for the three-dimensional
orthonormal basis 7, J, k.) From now on we shall always work in orthonormal bases
unless it is explicitly indicated otherwise.

Another geomeltrical quantity one might wish to generalize is the angle between
two vectors. In ordinary vector analysis cos 8 = (a-b)/|aj|b|. But because the inner
product is in general a complex number, the analogous formula (in an arbitrary inner
product space) does not define a (real) angle 6. Nevertheless, it is still true that the
absolute value of this quantity is a number no greater than 1,

lalB)® < (ela) (BIB). (3.27}

(This important result is known as the Schwarz inequality; the proof is given in
Problem 3.5.) So you can, if you like, define the angle between |} and |8) by the
formula

cosf = W [3.28]

(@la)(BIB)

xProblem 3.4 Suppose you start out with a basis (Jes), |e2), . , len)) that is not
orthonormal. The Gram-Schmidt procedure is a systematic ritual for generating
from it an orthonormal basis (Je}), le3), ..., {e;)). Tt goes like this:
(i) Normalize the first basis vector (divide by its norm):
ley)

Jef) = =0

llesll”
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(ii) Find the projection of the second vector along the first, and subtract it off:
lea) = (erlea)ley).

This vector is orthogonal to le}}s normalize it to get {¢}).
(iii) Subtract from Jes) its projections along [e]) and |e}):

les) = (e} leadle]) — (erles)ley).

This is orthogonal to [¢}) and |e}); normalize it to get |¢}). And so on.
Use the Gram-Schmidt procedure to orthonormalize the three-space basis
ler) = (107 + (Df + Dk, lea) = )+ )]+ (DA, le3) = (07 + (28)] + ().

Problem 3.5 Prove the Schwarz inequality (Equation 3.27). Hinr: Let ly) =
18) ~ (| B)/{atla)le), and use (y|y) = 0.

Problem 3.6 Find the angle (in the sense of Equation 3.28) between the vectors
ler) = (1 -+ D)i + ()] + (Vk and |B) = (4 — i)i + (0)] + (2 — 20k,

Problem 3.7 Prove the triangle inequality: {[(ja) + [B)I < llel] + |]l.

3.1.3 Linear Transformations

Suppose you take every vector (in three-space) and multiply it by 17, or you rotate
every vector by 39° about the z-axis, or you reflect every vector in the x y-plane—these
are all examples of linear transformations. A linear transformation® (f") takes each
veetor in a vector space and “transforms” it into some other vector (o) = |&) =
Tla)), with the proviso that the operation is linear:

T(ala) + b18)) = a(Tla)) + b(T|BY), (3.29]

for any vectors |a), |8) and any scalars a, b.
If you know what a particular linear transformation does to a set of basis vectors,
you can easily figure out what it does to any vector. For suppose that

Tle) = Tule) + Tailes) + -+ + Tulen),
Tlea) = Tple)) + Taalea) + -« + Thale,),
f|€,,) = Tlnlel> + Toylea) + -+ + Tanlen),
or, more compac(ly‘ N
n
Tley =) Tyle), (j=1,2....,m. [3.30]
i=|

5 f o b , - . . .y . . .
In this chapter I'l use a hat (") to denote linear transformations; this is not inconsistent with my
earlicr convention (putting hats on operators), for (as we shall see) our operators are linear transformations.

|
I
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If j} is an arbitrary vector:
n
le) = arley) +azlea) + -+ + ayley) = Zajlej), (3.31]
j=1

then
n

Tla) = Zﬂj(ﬂ(’j)) = Zz(ljrijlc’i) = z”:(
j=1 i=l j

Jj=1i=]

n

Tyaj)le). 1332
l

Evidently T takes a vector with components ay, a, .. ., a, into a vector with compo-
nents®

n
aj =Yy Tya. (3.33]
j=1

Thus the n? elements T;; uniquely characterize the linear transformation 7 (with
respect to a given basis), just as'the # components a; uniquely characterize the vector
|} (with respect to the same basis):

T o (Th, Tia, oo T (3.34]
If the basis is orthonormal, it follows from Equation 3.30 that
Ty = (eilTley). [3.35]
It is convenient to display these complex numbers in the form of a matrix’;
Ty T ... Ty

T = T,“ T,” T?” [3.36]
Tnl TnZ T;m

The study of linear transformations, then, reduces to the theory of matrices. The sum
of two linear transformations (S -+ T) is defined in the natural way:

S+ Dla) = Sla) + Tla); (3.37]
this matches the usual rule for adding matrices (you add their corresponding elements):

U=S+T & Uj=S;+T,. [3.38]

SNotice the reversal of indices between Equations 3.30 and 3.33. This is not a typographical error.
Another way of putting it (switching / <> j in Equation 3.30) is that if the components transform with 7;;,
the basis vectors transform with Tj;.

71l use boldface to denote matrices.

B e \and
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The product of two linear transformations (ST is the net effect of performing them
in succession—first T, then 3

o) = |’y = Tla) - lo") = S’y = S(Fle)) = §T ). [3.39)

What matrix U represents the combined transformation U = 8§77 1t’s not hard o
work it out:

n n n
al = i: S,'/a} = i:s,’j (z": Tj,‘ak) = Z (Z S,-j'l}/() ay = Z Uirag.
=1 j=1 k=1 I \J=I k=1

k=

Evidently

n
U=ST & Uy= Y SyTu; (3.40)
j=1

this is the standard rule for matrix multiplication—to find the ik element of the
product, you look at the i row of 8 and the k™ column of T, multiply corresponding
entries, and add. The same procedure allows you to mulliply rectangular matrices, as
long as the number of columns in the first matches the number of rows in the second.
In particular, if we write the n-tuple of components of |&) as ann x | column matrix

ay

az
a=| . |, [3.41]

ay

the transformation rule (Equation 3.33) can be written
a’ =Ta. [3.42]

And now, some useful matrix terminology: The transpose of a matrix (which
we shall write with a tilde: 'T) is the same set of elements, but with rows and columns
interchanged:

Ty T ... Tn
= T:” T:" TZ [3.43]
T T oo Ton
Notice that the transpose of a column matrix is a row matrix:
i=(a a ... a). (3.44]

A square matrix is symmetric if it is equal to its transpose (reflection in the main
diagonal—upper left to lower right—Ileaves it unchanged); it is antisymmetric if
this operation reverses the sign:

SYMMETRIC: T =T, ANTISYMMETRIC: T = —T. [3.45]
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To construct the (coraplex) conjugate of a matrix (which we denote, as usual, with
an asterisk: T*), you take the complex conjugate of every element:

T T|:2 e le, a;
T, ThH ... T a3

T = .2 '22 'n . at = .2 i [3.46]
Lh Ta - T ay

A matrix is real if all its elements are real and imaginary if they are all imaginary:
REAL: T* =T; IMAGINARY:T* = -T. [3.47]

The Hermitian conjugate (or adjoint) of a matrix (indicated by a dagger: Tt) is the
transposed conjugate:

;lj ;Z:I ;.
th=fr=| 2 27 | at=at=(ar ) ... ab). 1348
Tltl TZ’:r 7;1*/1

A square matrix is Hermitian (or self-adjoint) if it is equal to its Hermitian conjugate;
if Hermitian conjugation introduces a minus sign, the matrix is skew Hermitian (or
anti-Hermitian):

HERMITIAN: T! = T; SKEW HERMITIAN: T = —T. [3.49]

With this notation the inner product of two vectors (with respect to an orthonormal
basis—Equation 3.24), can be written very neatly in matrix form:

(@|B) = a'b. 13.50]

(Notice that each of the three operations discussed in this paragraph, if applied twice,
returns you to the original matrix.)

Matrix multiplication is not, in general, commutative (ST # TS); the difference
between the two orderings is called the commutator:

[S,T] =ST - TS. [3.51]
The transpose of a product is the product of the transposes in reverse order:
ST =TS 3.52]
(see Problem 3.12), and the same goes for Hermitian conjugates:

(ST)t = Ttst. [3.53
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The unit matrix (representing a linear transformation that carries every vector
into itsetf) consists of ones on the main diagonal and zeroes everywhere else:

10 ... 0
=20 ? (3.54]
00 .. I
In other words,
’ 1;; = 8. [3.55]
The inverse of a matrix (written T™') is defined in the obvious way:
T 'T =TT ' =1 [3.56]
A matrix has an inverse if and only if its determinant® is nonzero; in fact,
T = ¢ [3.57]

where C is the matrix of cofactors [the cofactor of element Tj; is (=D times
the determinant of the submatrix obtained from T by erasing the i'" row and the Jh
column]. A matrix without an inverse is said to be singular. The inverse of a product
(assuming it exists) is the product of the inverses in reverse order:

ST =T's™". [3.58]

A matrix is unitary if its inverse is equal to its Hermitian conjugate:
UNITARY : Ut = U™ (3.59]

Assuming the basis is orthonormal, the columns of a unitary matrix constitute an
orthonormal set, and so too do its rows (see Problem 3.16).

The components of a given vector depend on your (arbitrary) choice of basis,
as do the elements in the matrix representing a given linear transformation. We might
inquire how these numbers change when we switch to a different basis. The new
basis vectors | f;) are—like all vectors—linear combinations of the old ones:

) = Sule) +Sauled) + -+ Suilen),
|f2) = SlZIel) + S22|€2) 4+t SnZlen),
I = Sinler) +Sz,,|€2)+~"+S,,,,|€,,)

81 assume you know how to evatuate determinants. If not, sec M. Boas, Mathematical Methods in
the Physical Sciences, 20d ed. (New York: John Wiley, 1983), Section 3.3.
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(for some set of complex numbers S;;), or, more compactly,

Y= Syled, (=12...,m. (3.60]
i=1

This is itself a linear transformation (compare Equation 3.30),” and we know imme-
diately how the components transform:

n
al =3 Sya [3.61]
Jj=t

(where the superscript indicates the basis). In matrix form
a/ = Sa®, [3.62}

What about the matrix representing a given linear transformation T—how is if
modified by a change of basis? In the old basis we had (Equation 3.42)

ae' —- Te e
and Equation 3.62—multiplying both sides by S~'—entails" a® = §™'a’, so
a’' = Sa® = S(T*a%) = ST*S'a’.

Evidentl
e T/ =ST°S™". [3.63])

In general, two matrices (T and T;) are said to be similar if T; = ST,S“ for some
(nonsingular) matrix S. What we have just found is that similar matrices represent
the same linear transformation with respect to two different bases. Incidentally, if
the first basis is orthonormal, the second will also be orthonormal if and only if the
matrix S is unitary (see Problem 3.14). Since we always work in orthonormal bases,
we are interested mainly in unitary similarity transformations.

While the elements of the matrix representing a given linear transformation
may look very different in the new basis, two numbers associated with the matrix are
unchanged: the determinant and the trace. For the determinant of a product is the
product of the determinants, and hence

det(T/) = det(S T°S™") = det(S) det(T®) det(S™") = detT®.  [3.64]

9Notice, however, the radically different perspective: In this case we're talking about one and the
same vector, referred to two different bases, whereas before we were thinking of a completely different
vector, referred to the same basis.

"Note that 8~ certainly exists—if S were singular, the | f;}'s would not span the space, so they
wouldn't constitute a basis.
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And the trace, which is the sum of the diagonal elements,

n

T(T) = Z T, [3.65]
i=t

has the property (see Problem 3.15) that
Tr(T;T,) = Tr(T,T)). [3.66]
(for any two matrices Ty and T3), so that

Tr(TY) = TrH(ST'S™") = Tr(T¢S™!8) = Te(T*). [3.67]

Problem 3.8 Using the standard basis (f, J, £) for vectors in three dimensions:

(a) Cons.lruct the matrix representing a rotation through angle 6 (counterclockwise,
looking down the axis toward the origin) about the z-axis.

(b) Construct lhf: matrix representing a rotation by 120° (counterclockwise, looking
down the axis) about an axis through the point (1,1,1).

(c) Construct the matrix representing reflection in the x y-plane.

(d) Are transle?tions (x = x+x9, y—> y+ )y, z— z+ z, for some constants
X0, 30 zo) linear transformations? If so, find the matrix which represents them;
if not, explain why not.

«Problem 3.9 Given the following two matrices:

—1 i i 2 0 —i
A=} 2 0 3), B= (o 1 0},
2i =2 2 i 3 2
compute (a) A + B, (b) AB, (¢) [A, B], (d) A, (e) A*, () AT, (g) Tr(B), (h) det(B
and (i) B!, Check that BB~' = 1, Does A have an inverse? ® ®.

+Problem 3.10 Using the square matrices in Problem 3.9 and the column matrices

i 2
a=(2i>, b.—:((l—i)>,
2 0

find (a) Aa, (b) atb, (c) 4Bb, (d) ab!.

Pro]:')lem 3.11 By explicit construction of the matrices in question, show that any
matrix T can be written

(a) as the sum of a symmetric matrix S and an antisymmetric matrix A;

Sec. 3.1: Linear Algebra 87

(b) as the sum of a real matrix R and an imaginary matrix I

(€) as the sum of a Hermitian matrix H and a skew-Hermitian matrix K.

«Problem 3.12 Prove Equations 3.52, 3.53, and 3.58. Show that the product of two
unitary matrices is unitary. Under what conditions is the product of two Hermitian
matrices Hermitian? Is the sum of two unitary matrices unitary? Is the sum of two
Hermitian matrices Hermitian?

Problem 3.13 In the usual basis (7, J, k), construct the matrix Ty representing a
rotation through angle @ about the x-axis, and the matrix T, representing a rotation
through angle @ about the y-axis. Suppose now we change bases, to I’ = J, =
-7, I?I — . Construct the matrix S that effects this change of basis, and check that
ST,S™! and ST_‘.S" are what you would expect.

Problem 3.14 Show that similarity preserves matrix multiplication (that is if
A°B? = C°, then A/B/ = C/). Similarity does nof, in general, preserve symmetry,
reality, or Hermiticity; show, however, that if S is unitary, and H¢ is Hermitian, then
H/ is Hermitian. Show that S carries an orthonormal basis into another orthonormal
basis if and only if it is unitary.

«Problem 3.15 Prove that Tr(T T) = Te(T,Ty). It follows immediately that
Te(T T, Ts) = Te(T2 T T, but is it the case that Tr(TT,T3) = Tr(T2 T Ta). in gen-
eral? Prove it, or disprove il. Hinr: The best disproof is always a counterexample—
and the simpler the better!

Problem 3.16 Show that the rows and columns of a unitary matrix constitute
orthonormal sets.

3.1.4 Eigenvectors and Eigenvalues

Consider the linear transformation in three-space consisting of a rotation, about some
specified axis, by an angle 8. Most vectors will change in a rather complicated way
(they ride around on a cone about the axis), but vectors that happen to lie along the
axis have very simple behavior: They don’t change at all (T1e0) = |o)). If 9 is 180°,
then vectors which lie in the the “equatorial” plane reverse signs (Tlay = —la)). Ina
complex vector space,’ every linear transformation has “special” vectors like these,
which are transformed into simple multiples of themselves:

Tle) = Alar); [3.681

U This is not always true in a real vector space (where the scalars are restricted to real values). See
Problem 3.17.
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they are called eigenvectors of the transformation, and the (complex) number A jg
their eigenvalue. (The null vector doesn't count, even though, in a trivial sense, j
obeys Equation 3.68 for any 7 and any X; technically, an eigenvector is any nonzery
vector satisfying Equation 3.68.) Notice that any (nonzero) multiple of an eigenvector
is still an eigenvector with the same eigenvalue.
With respect {o a particular basis, the eigenvector equation assumes the matrix
form
Ta = Aa [3.69]
(for nonzero a), or
(T—Ala=0. {3.70}
(Here 0 is the zero matrix, whose elements are all zero.) Now, if the matrix (T — A1)
had an inverse, we could multiply both sides of Equation 3.70 by (T — A1)™!, and
conclude that a = 0. But by assumption a is nof zero, so the matrix (T — A1) must
in fact be singular, which means that its determinant vanishes:

Tu =2 Tz Tin
T; (T — Ay ... T
de(T—Ap=| = * ol=o. By
T;ll TnZ v (Tlm - )‘)
Expansion of the determinant yields an algebraic equation for A:
CoM 4+ Cpy M oo+ CIA + Cp =0, [3.72]

where the coefficients C; depend on the elements of T (see Problem 3.19). This is
called the characteristic equation for the matrix; its solutions determine the eigen-

" values. Notice that it’s an nth-order equation, so it has n (complex) roots.'? However,

some of these may be duplicates, so all we can say for certain is that an # x n matrix
has at least one and at most n distinct eigenvalues. To construct the corresponding
eigenvectors it is generally easiest simnply to plug each A back into Equation 3.69 and
solve “by hand” for the components of a. I'll show you how it goes by working out
an example.

Example. Find the eigenvalues and eigenvectors of the following matrix:

2 0 -2
M= (—2i 2 ) [3.73]
I 0 -1
The characteristic equation is .
(2-1) 0 -2
=20 (=N 2i =M+ (4D -ir=0, [3.74]
I 0 (=1 =2

1211 is here that the case of real vector spaces becomes more awkward, because the characteristic
equation need not have any (real) solutions at ali, See footnote 11 and Problem 3.17.
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and its roots are 0, 1, and i. Call the components of the first eigenvector (ay, az, a3):

2 0 -2 a ay 0
(—21’ i 2i><az>=0 a)=10],
1 0 -1 as a3 0

which yields three equations:

then

2a| —2(13 =0,
—2ia +iay +2iay =0,
ay—as =0.

The first determines a3 (in terms of a;): a3 = a,; the second determines ay @y = 0;
and the third is redundant, We may as well pick a; = 1 (since any multiple of an
eigenvector is still an eigenvector):

1 .
al) = (O) , forA; =0, [3.75)
1

For the second eigenvector (recycling the same notation for the components)

we have 2 0 -2 a a @
<—2i i 2 ) (az> =lla|={al}
1 0 -1 as a; as

which leads to the equations

2a; — 2a3 = ay,
—2iay +iay+2iay = az)
ay —ay =as,
with the solution a3 = (1/2)a1, az = [(1 — i)/2]ay; this time we'll pick a, = 2,50
that

2
a‘”:((l-—i)), fOl')\2=1. [376]
1

Finally, for the third eigenvector,

2 0 =2 aj a, iay
(-—Zi i 2i ) (az) =i ar = iaz f
1_ 0 -1 ai as ia3

which gives the equations

2a, —2a3 = iay,
—2iay +ia; + 2iay = iay,
a —ay= ias,
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whose solutionis @y = a; = 0, with a; undetermined, Choosingaz = 1, we congy d
) ude

0
a® = (1 , for A3 = i.
0 (3.7

If the eigenvectors span the space (as they do in the preceding example)
are free to use them as a basis; e

ffy = alf),
Tlh = Xlf),
1M = Mlfi).

The matrix representing T takes on a very simple form in this basis, with the cigen-
values strung out along the main diagonal and all other elements zero:

Ay 0 .00
_ 0 A ... 0
=1 : (3.78)
0 0 ... X
The (normalized) eigenvectors are equally simple:
1 0 0
0 1 0
(1) _ 2)
o al = 0 , a®=|0|, ... am=1]0 (3.79)
0 0 l

{\ {natrix that can be brought to diagonal form (Equation 3.78) by a change
of basis is :?zud to be diagonalizable. The similarity matrix that accomplishes the
transformation can be constructed by using the eigenvectors (in the old basis) as the
columns of §7F

87Ny = @y, [3.80]

Example (cont'd). In the example,

1 2 0
s—'=<0 (=0 1),'
1 1 0

5o (using Equation 3.57)
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and you can check for yourself that

000
STS“:(O 1 0).
0 0 i

There is a great advantage in bringing a matrix to diagonal form—it’s much easier to
work with. Unfortunately, not every matrix can be diagonalized—the eigenvectors
have to span the space. For an example of a matrix that cannot be diagonalized, see
Problem 3.18.

«Problem 3.17 The 2 x 2 matrix representing a rotation of the x y-plane is
T = [ 08 6 —sind
“\sing  cos@ /'
Show that (except for certain special angles—what are they?) this matrix has no real
eigenvalues, (This reflects the geometrical fact that no vector in the plane is carried
into itself under such a rotation; contrast rotations in three dimensions.) This matrix
does, however, have complex eigenvalues and eigenvectors. Find them. Construct

a matrix S which diagonalizes T. Perform the similarity transformation (STS™ "
explicitly, and show that it reduces T to diagonal form.

Problem 3.18 Find the eigenvalues and eigenvectors of the following matrix:
11
we (1 1)

Problem 3.19 Show that the first, second, and last coefficients in the characteristic
equation (Equation 3.72) are

Can this matrix be diagonalized?

Cp = (—1)", Cyy = (=1)""'Tr(T), and Cp = det(T). [3.81}

For a 3 x 3 matrix with elements T;;, what is C(?

Problem 3.20 It is pretty obvious that the trace of a diagonal matrix is the sum of
its eigenvalues, and its determinant is their product (see Equation 3.78). It follows
(from Equations 3.64 and 3.67) that the same holds for any diagonalizable matrix,
Prove that

det(T) =MAz hyy THT) =A -+ A+ 44y [3.82]

for any matrix. (The A’s are the » solutions to the characteristic equation—in the case
of multiple roots, there may be fewer linearly independent eigenvectors than there
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are solutions, but we still count each A as many times as it occurs.) Hint: Write the
characteristic equation in the form

A =Dz = 1) (A —2) =0,

and use the result of Problem 3.19.

3.1.5 Hermitian Transformations

In Equation 3.48 I defined the Hermitian conjugate (or “adjoint™) of a matrix as its
transpose conjugate: TT = T*. Now I wantto give you a more fundamental definition
for.thc Hermitian conjugate of a linear transformation: 1t is that transformation 7't
‘whhlch‘ when applied to the first member of an inner product, gives the same result as
if T itself had been applied to the second vector:

(T1alf) = (|7 B) [3.83]

ffor all vectors or) and |8))."* [I have to warn you that although everybody uses it, this
is lousy notation. For a and 8 are not vectors (the vectors are |} and |B)), they are
labels—serial numbers (“F43A-9GT"), or names (“Charlie”), or bar codes—anything
you care o use to identify the different vectors. In particular, they are endowed with no
mathematical properties at all, and the expression “fﬂ” is literally nonsense: linear
transformations act on vectors, not labels. But it’s pretty clear what the notation
means: |T B) means T|8), and (Tfoz|ﬂ) means the inner product of the vector ffla)
with the vector |8). Notice in particular that

(a|cB) = cla|B), [3.84]
but

{calB) = c*{alB) (3.85)
for any sc.n‘lar c] .If you're working in an orthonormal basis (as we always shall),
the Hermitian conjugate of a linear transformation is represented by the Hermitian

Cf)njugate of the corresponding matrix (so the terminology is consistent); for (using
Equations 3.50 and 3.53),

(@ITB) = alTh = (Tta)'b = (F1a|B). [3.86]
In quantum mechanics, a fundamental role is played by Hermitian transforma-

. . vt — Ky . .
tions (T'! = T). The eigenvectors and eigenvalues of a Hermitian transformation
have three crucial properties:

IJ”' o :

ou're w e C f ati i i

il y e Emdcnng \vhclhf:r such a transformation necessarily exists, you should have heen a
: i [! m.:f;)r. St its a good question, and the answer is yes. Sce, for instance, Halmos, (footnote 1)
Section 44, ‘ ‘
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1. The eigenvalues of a Hermitian transformation are real.

Proof: Let A be an eigenvalue of I f“[a) = Alar), with |a) # |0). Then
(@|Ta) = (@lre) = Mala).
Meanwhile, if T is Hermitian, then.
(@|Ta) = (f&[a) = (Aala) = A*{ale).
But {a]a) # 0 (Equation 3.20), so A = A*, and hence X is real. QED

2. The eigenvectors of a Hermitian transformation belonging to dis-
tinct eigenvalues are orthogonal.

Proof: Suppose f‘la) = AJe) and flﬂ) = pu|B), with A # u. Then
(@|TB) = (@lnB) = plelB),
and if T is Hermitian,
(| Tp) = (TalB) = (ralB) = A*(alB).
But A = A* (from property 1), and A # 1, by assumption, so {«|B) = 0. QED
3. The eigenvectors of a Hermitian transformation span the space.

Comment: If all the » roots of the characteristic equation are distinct, then (by
property 2) we have n mutually orthogonal eigenvectors, so they obviously span the
space. But what if there are duplicate roots (or, as they are called, in this context,
degenerate eigenvalues)? Suppose A is m-fold degencrate; any linear combination
of two eigenvectors belonging to the same eigenvalue is still an eigenvector (with
the same eigenvalue)—what we must show is that there are m linearly independent
eigenvectors with eigenvalue A. The proof is given in most books on linear algebra,"
and 1 shall not repeat it here. These eigenvectors can be orthogonalized by the Gram-
Schmidt procedure (see Problem 3.4), so in fact the eigenvectors of a Hermitian
transformation can always be taken to constitute an orthonormal basis. It follows, in
particular, that any Hermitian matrix can be diagonalized by a similarity transfor-
mation, with S unitary. This rather technical result is, in a sense, the mathematical
support on which much of quantum mechanics leans. As we shall see, it turns out to
be a thinner reed than one might have hoped.

M1 like the treatment in F. W. Byron, Jr., and R, W. Fuller, Mathematics of Classical and Quantum
Physics (Reading, MA: Addison-Westey, 1969), Vol. 1, Section 4.7.
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Problem 3.21 A Hermitian linear transformation must satisfy (@|T By = (Faip)
for all vectors |o) and |B). Prove that it is (surprisingly) sufficient that (ylfy) =
(Tyly) for all vectors |y). Suppose you could show that (e,,!f‘e,.) = (fe,,le,,) for
every member of an orthonormal basis. Does it necessarily foliow that T is Hermitian?
Hint: First let |y) = |a) -+ [B), and then let |y) = la) +ilB).

=i
T“(1+i 0)'

Verify that T is Hermitian.

xProblem 3.22 Let

~

(a
(b) Find its eigenvalues (note that they are real).
() Find and normalize the eigenvectors (note that they are orthogonal).

(d) Construct the unitary diagonalizing matrix S, and check explicitly that it diag-
onalizes T.

(e) Check that det(T) and Tr(T) are the same for T as they are for its diagonalized
form.

xxProblem 3.23 Consider the following Hermitian matrix:

2 i
T=<—i 2 i).
1 —i 2

(a) Calculate det(T) and Tr(T).

(b) Fin(! the eigenvalues of T. Check that their sum and product are consistent with
(a), in the sense of Equation 3.82. Write down the diagonalized version of T.

(c) Find the eigenvectors of T. Within the degenerate sector, construct two linearly
independent eigenvectors (it is this step that is always possible for a Hermitian
matrix, but not for an arbitrary matrix—contrast Problem 3.18). Orthogonalize
ti}eln. and check that both are orthogonal to the third. Normalize all three
eigenvectors.

(d) Construct the unitary matrix S that diagonalizes T, and show explicitly that the
similarity transformation using S reduces T to the appropriate diagonal form.

‘.

Problem 3.24 A unitary linear transformation is one for which 0to = 1.

(a) Sl}ow Allmt unitary transformations preser've inner products, in the sense that
(Ua|UBY = (a|B), for all vectors |}, |8).
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{(b) Show that the eigenvalues of a unitary transformation have modulus [.

(c) Show that the eigenvectors of a unitary transformation belonging to distinct
eigenvalues are orthogonal.

3.2 FUNCTION SPACES

We are ready now to apply the machinery of linear algebra to the interesting and
important case of function spaces, in which the “vectors” are (complex) functions of
x, inner products are integrals, and derivatives appear as linear transformations.

3.2.1 Functions as Vectors

Do functions really behave as vectors? Well, is the sum of two functions a function?
Sure. Is addition of functions commutative and associative? Indeed. Is there a “null”
function? Yes: f(x) = 0. If you multiply a function by a complex number, do you
get another function? Of course. Now, the set of all functions is a bit unwieldy—we'll
be concerned with special classes of functions, such as the set of all polynomials of
degree < N (Problem 3.2), or the set of all odd functions that go to zero at x = I, or
the set of all periodic functions with period . Of course, when you start imposing
conditions like this, you’ve got to make sure that you still meet the requirements for
a-vector space. For example, the set of all functions whose maximum value is 3
would not constitute a vector space (multiplication by 2 would give you functions
with maximum value 6, which are outside the space).
The inner product of two functions [ f(x) and g(x)] is defined by the integral

(flg) = f fx)*glx) dx [3.87]

(the limits will depend on the domain of the functions in question). You can check
for yourself that it satisfies the three conditions (Equations 3.19, 3,20, and 3.21) for
an inner product. Of course, this integral may not converge, so if we want a function
space with an inner product, we must restrict the class of functions so as to ensure that
(f1g) is always well defined. It is clearly necessary that every admissible function
be square integrable:

/lf(X)lZa'x < o0 [3.88]

(otherwise the inner product of f with itself wouldn't even exist). As it turns out,

———"f
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Table 3.1:  The first few Legendre polynomials, P, (x).

—

Po=1
Pp=x
Pp=1a2-1)

Py=§(5x" ~3x)
Py = §(35x* = 30x2 +3)
Ps = §(63x% — 70 + 15x)

this restriction is also sufficient—if f and g are both square integrable, then the
integral in Equation 3.87 is necessarily finite.'s
For example, consider the set P(N) of all polynomials of degree < N:

px) =ag+aix +a2x2+---+aN_|xN“', [3'39]

on the interval —I < x < 1. They are certainly square integrable, so this is a bong
fide inner product space. An obvious basis is the set of powers of x:

le) =1, lea) = x, lex) = x7, ..., Jen) =x"7; [3.90]

evidently it’s an N-dimensinal vector space. This is not, however, an orthonormal
basis, for

i 1
{elley) = / ldx =2, ({ele) = [ x¥dx =2/3,
—1 —

and so on, If you apply the Gram-Schmidt procedure, to orthonormalize this ba-
sis (Prablem 3.25), you get the famous Legendre polynomials, P, (x) (except that
Legendre, who had other things on his mind, didn’t normalize them properly):

legy = /n— (1/2)Pei(x), (1 =1,2,...,N). [3.91)

In Table 3.1 I have listed the first few Legendre polynomials.

*Problem 3.25 Orthonormalize the powers of x, on the interval =1 < x < I, 1o
obtain the first four Legendre polynomials (Equation 3.91).

xProblem 3.26 Let T'(N) be the set of all trigonometric functions of the form

N—1|

S = Z[a,, sin(nmx) + b, cos(nmwx)], [3.921

n=0

"There is a quick phoney “proof” of this, based on the Schwarz inequality (Equation 3.27). The
trouble is, we assumed the existence of the inner product in proving the Schwarz inequality (Problem 3.5)

so the logic is circular. For a legitimate proof, see F. Riesz and B. Sz.-Nagy, Functional Analysis (New
York: Unger, 1955), Section 21,
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on the interval —1 < x < 1. Show that
1,
les) = —\/—ie""”", (n=0,%1,..., =N —=1) [3.93]

constitutes an orthonormal basis. What is the dimension of this space?

Problem 3.27 Consider the set of all functions of the form p(x)e™ 12 where p(x)
is again a polynomial of degree < N in x, on the interval —co < x < 00, Check that
they constitute an inner product space. The “natural” basis is

) _x? 2 —x32 I
|e|)=ex/2, lea) =xe ¥ 12, |3y = x27F 12, ..., Jew) =xV e,

Orthonormalize the first four of these, and comment on the result.

3.2.2 Operators as Linear Transformations

In function spaces operators (such as d/dx, d*/dx?, or simply x) behave as linear
transformations, provided that they carry functions in the space into other functions
in the space and satisfy the linearity condition (Equation 3.29). For example, in the
polynomial space P(N) the derivative operator (D = d/dx) is a linear transforma-
tion, but the operator ¥ (multiplication by x)' is not, for it takes (N — I)th-order
polynomials into Nth-order polynomials, which are no longer in the space.

In a function space, the eigenvectors of an operator T are called eigenfunctions:

Tf(x) = 1/ (). [3.94}
For example, the eigenfunctions of D are

fHilx) = 4™, [3.95]
Evidently this operator has only one eigenfunction (the one with & = 0) in the space

P(N). .
A Hermitian operator is one that satisfies the defining condition (Equation 3.83):

(f1Tg) = (T flg). (3.96]

for all functions f(x) and g(x) in the space. Is the derivative operator Hermitian?
Well, using integration by parts, we get

R b b dr . .
(f1Dg) :/ f*%dx:(f‘g)lﬁ—/a S _gdx = (/"9 - (D/1®). BT

16For consistency, I'll put a hat on x when I'm emphasizing its role as an operator, but you're
welcome to ignore it if you think I'm being too fastidious.
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Il's‘clo.v.e, but the sigp is wrong, and there’s an unwanted boundary term. The gjop, ;
easily disposed of: D itself is (except for the boundary term) skew Hermitian ‘ggn' :
wou!d be Hermilian—complex conjugation of the i compensates for the nlinlj:;()g! b
corn{ng from integration by parts. As for the boundary term, it will go away‘“-“lgn
restrict ourselves to functions which have the same value at the two ends: e

1) = f(@. 13.95)

In practice, we shall almost always be working on the infinite interval (¢ = ~c0o0_ p -
+00), where square integrability (Equation 3.88) guarantees that f(a) = f(b)’ 25
i;\(de;f?nce that i D is Hermitian. But /D is not Hermitian in the polynomial Space
o By now you will realize that when dealing with operators you must always kee
in mind the function space you’re working in—an innocent-looking operator may nop
be a legitimate linear transformation, because it carries functions out of the spaceT
the eigenfunctions of an operator may not reside in the space; and an operator 1hm‘;
Hermitian in one space may not be Hermitian in another. However, these are rclativcli
hflrmless problems—they can startle you, if you’re not expecting them, but they don’y
bite. A much more dangerous snake is lurking here, but it only inhabits vector spaces
of infinite dimension. | noted a moment ago that £ is not a linear transformation ir}
the space P(N) (multiplication by x increases the order of the polynomial and hence
takes functions oqlside the space). However, it is a linear transformation on P(00)
the space of all polynomials on the interval —1 < x < 1. In fact, it’s a Hermilim;
transformation, since (obviously)

[ : 1
f]lf(x)]‘[xg(x)]dx =[ /(T [g(x)] dx.
- -1
But what are its eigenfunctions? Well,

Xag+arx +ax®+--) = Mag +arx +apxd 4,

for all x, means

0 = Aay,
ap = Ay,
a; = Aay,

andsoon. If A = 0, thenall the components are zero, and that’s not a legal eigenvector:
but if A 5 0. the first equation says ay = 0, so the second gives a; = 0, and the third
says az = 0, and so on, and we're back in the same bind. This Hermitian operator
doesn’t have a complete set of eigenfunctions—in fact it doesn’t have any at all! Not,
at any rate, in P(00). ’

What would an eigenfunction of £ look like? If

xg(x) = Ag(x), (3.99]
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where A, remember, is a constant, then everywhere excep! at the one point x = A we
must have g(x) = 0. Evidently the eigenfunctions of £ are Dirac delta functions:

gu(x) = BS(x — 1), (3.100]

and since delta functions are certainly not polynomials, it is no wonder that the
operator £ has no eigenfunctions in P(00).

The moral of the story is that whereas the first two theorems in Section 3.1.5
are completely general (the eigenvalues of a Hermitian operator are real, and the
eigenvectors belonging to different eigenvalues are orthogonal), the third one (com-
pleteness of the eigenvectors) is valid (in general) only for finite-dimensional spaces.
In infinite-dimensional spaces some Hermitian operators have complete sets of eigen-
vectors (see Problem 3.32d for an example), some have incomplete sets, and some (as
we just saw) have no eigenvectors (in the space) at all.!” Unfortunately, the complete-
ness property is absolutely essential in quantum mechanical applications. In Section
3.3 I'll show you how we manage this problem.

Problem 3.28 Show that exp(—x2/2) is an eigenfunction of the operator @ =
(d%/dx?) — x%, and find its eigenvalue.

xProblem 3.29

(a) Construct the matrix D representing the derivative operator D = d/dx with
respect to the (nonorthonormal) basis (Equation 3.90) in P(N).

(b) Construct the matrix representing D with respect to the (orthonormal) basis
(Equation 3.93) in the space 7'(N) of Problem 3.26.

(C) Construct the matrix X representing the operator £ = x with respect to the basis
(Equation 3.90) in P(co). If thisis a Hermitian operator (and it is), how come
the matrix is not equal to its transpose conjugate?

__/‘h. R —

++Problem 3.30 Construct the matrices D and X in the (orthonormal) basis (Equa-
tion 3.91) for P(cc). You will need to use two recursion formulas for Legendre

polynomials:
1
Py(x) = (1 + 1) Pos (¥) + 0 Py (0 3.101
X Py(x) (2n+1)[(n+ YPu1 (x) + n Py ()] [ ]
DB ™ — dk = Py it (0, [3.102]
dx o

171n an n-dimensional vector space, every lincar transformation can be represented (with respect
10 a particular basis) by an n x n matrix, and as long as # is finite, the characteristic Equation 3.71 is
guaranteed to deliver at least one eigenvaluc. But if n is infinite, we can’t take the determinant, there is no
characteristic equation, and hence there is no assurance that even a single eigenvector exists.

it i et
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where the sum cuts off at the fi i ive i
- b rst term with a negative in i
Hermitian but /D is not, ¢ der. Confrm tha x i

Proplem 3.31 Consider the operator D = d2/dx2. Under what condit}

asznflssable functions) is it a Hermitian operator? Construct the matrix reonS(on the
D= in P(N) (with respect to the basis Equation 3.90), and confirm that it i Pl'esen[ing
of the matrix representing D (Problem 3.29a). *the Sauare

Problem 3.32

(@) Show that iD is Hermitian in the space T'(N) of Problem 3,26.
(b) What are its eigenvalues and (normalized) eigenfunctions, in T(N)?
(c) Check that your results in (b) satisfy the three theorems in Section 3.1.5

(d) Confirm that iD has a com i i
plete set of eigenfunctions in T (co ;
nent theorem from Fourier analysis). (o) quote the e

3.2.3 Hilbert Space

To construct the real number system, mathematicians typically begin with the ins

anfi use them to define the rationals (ratios of integers). They proceed to show :If»’gt’ﬁn
rational numbers are “dense,” in the sense that between any two of the;n (no rl:[ -
how close together they are) you can always find another one (in fact, infinitel a’llef
of them). And yet, the set of all rational numbers has “gaps” in it, f(;r you car{:zz::;;,

{ nk of infinite sequences of rational n bﬁlg Wll se {imit 1s not a ltltlollal llu“ll)el
h” 1 I um 0.
I Of cxanlple,

. [ T 1

‘ . 'AN—l §+§‘—Z+'°'ﬂ:“ﬁ [3.103]
!s a ra(lonc}l number for any finite integer N, but its limit (as N — 00) is In 2, whicl
1? nota I"i}ll()n‘itl number. So the final step in constructing the real numbers is l(; “fill ir:
:)}er’glz}p.s ,lor complete” the set, by including the limits of all convergent sequences
(‘} ional numbers, (Of co‘urse. some sequences don’t have limits, and those we do
L\ioy |.nc:1ud‘e. For example, if you change the minus signs in Equation 3.103 to plus
signs, (‘ e \sequence.does not converge, and it doesn't correspond to any real number.)
"lh? same thing happens with function spaces. For example' the set of ail

palynomials, P(00), includes functions of the form ’

2 3 4 N
) =14x T g
| ‘ M TR v G104
(for finite N), but it does nof include the limit as N — oo:
2 3 (ST
| + x x_ x._. = X - e
+ ) + T + _Zn_' =e'. [3.105]

n=0 """

§
i
i
{
i
)
{

e
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For ¢° is not itself a polynomial, although it is the limit of a sequence of polynomials.
To complete the space, we would like to include all such functions. Of course, some
sequences of polynomials don’t have limits, or have them only for a restricted range

of x. For example, the series

I 4x+x?dx+.= :

1—x
converges only for Ix| < 1. And even if the sequence does have a limit, the limit
function may not be square integrable, so we can’tinclude it in an inner product space.
To complete the space, then, we throw in all square-integrable convergent sequences
of functions in the space. Notice that completing a space does not involve the intro-
duction of any new basis vectors; it is just that we now allow linear combinations-
involving an infinite number of terms,

e
) =Y " ajle), (3.106)
j=1
provided {jar) is finite—which is to say (if the basis is orthonormal), provided

3 oy < oo. (3.107]
j=1

A complete'® inner product space is called a Hilbert space.'” The completion
of P(c0) is easy to characterize: It is nothing less than the set of all square-integrable
functions on the interval —1 < x < +1; we call it La(—1, +1). More generally,
the set of all square-integrable functions on the interval a < x < b is La(a, b). We
shall be concerned primarily with the Hilbert space Lo(—00, 4+00) (or Ly, for short),
because this is where quantum mechanical wave functions live. Indeed, to physicists
Lyis practiéally synonymous with “Hilbert space”.

The eigenfunctions of the Hermitian operators iD=id/dx and £ = x are of
particular importance. As we have already found (Equations 3.95 and 3.100), they
take the form

Silx) = ™™, and @) = Bid(x — ),

respectively. Note that there is no restriction on the eigenvalues—every real number
is an eigenvalue of iD, and every real number is an eigenvalue of x. The set of
all eigenvalues of a given operator is called its spectrum; iD and £ are operators
with continuous spectra, in contrast to the discrete spectra we have encountered

18Nole the two entirely different uses of the word “complete”: a sef of vectors is complete if it spans
the space; an inner product space is complete il i has no “holes™ in it (i.e., it includes afl its limits).

YEvery finite-dimensional inner product space is trivially complete, so they’re all technically Hilbert
spaces, but the term is usually reserved for infinite-dimensional spaces.

Do st s MR L AU Sl R G LU 2
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heretofore, Unfortunately, these eigenfunctions do not lie in Hilbert space, anq

in the strictest sense, do not count as vectors at all. For neither of them is
integrable:

o~ o0 R o0
f N A dx = ;,4*;2/ M e M gy = |AA|2/ ldx — oo,
oo oo

-0

hencc‘
Quare.

and

/ o) n()dy = IB,\IZ[ S(x = M)8(x — N dx = |B, P8 () — X)) = oo,

Nevertheless, they do satisfy a kind of orthogonality condition:

o [ve]
/ S fu(¥)dx = Ay Ay / eMeT i gy — Ay 28 (A — )
—X) =00

(see Equation 2.126), and

~ o0
/ a ) g () dx = BfB, / 8(x = N8(x — pydx = | B |28( — ).
it o]

00

It is customary 10 “normalize” these (unnormalizable) functions by picking the cop.
stant so as to leave an unadorned Dirac delta function on the right side (replacing the
Kronecker delta in the usual orthonormality condition; Equation 3.23).* Thus

. Lo
Sx) = 7= L with (] f) = 8k — ), (3.108)
are the “normalized” eigenfunctions of iﬁ, and

&) = 8(x — 1), with (g]g,) = 8k — 1), (3.109]
are the “normalized” eigenfunctions of $.2'

What if we use the “normalized” eigenfunctions of i D and ¥ as bases for L,
Because the spectrum is continuous, the linear combination becomes an integral:

=] wimas 0= [ niga. 3.110]

—

11 call this “normalization” (in quotes) so you won’t confuse it with the real thing.

4 . L . . .

*'We are engaged here in o dangerous streiching of the rules, pioneered by Dirac (who had a kind
of inspired confidence that he could Bet away with it) and disparaged by von Neumann (who was more
sensitive (0 mathematical nicelies), in th

cir rival classics (P. A. M Dirac, The Principles of Quantum
Mechanies, irst published in 1930, 4™ od., Oxford (Clarendon Press) 1958, and J. von Neumann, The
Mathematical Foundations of Quantum Mechanics, first published in 1932, revised by Princeton Univ.
Press. 1955). Dirvac notation invites us to apply the language and methods of linear algebra to functions

that Jie in the “almost normalizable” suburbs of Hilbert space. 1t turns out to be powerful and effective
beyond any reasonable expectation,

LThat's right: We're going (o use, as bases, sets of func
They may not be normalizable, but they are complete, and th

tions none of which is actually in the space!
at’s all we need.

-y e =
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ing the inner product with | £}, and exploiting the “orthonormality” of the basis
Taking th :

(Equation 3.108), we obtain the “components” a,:

(ﬁz|f)=f_:ﬂx(f;x|fx)dlzf

o0

@ é(pn — Aydr = ay.
0

So 1

s = F(=)); 3.111]
ar = (AN = 7= ™ f(x)dx = F(=)); [

—oo )
. . . . i,
idently the —A “‘component” of the vector |/}, in th.c basis of elg;nfgnctlons of i
Zv‘(hz F())Icrier transform (Equation 2,85) of the function f(x). Likewise,
is

[o]

b= (@) = f 5(x — M) f(x) dx = £, [3.112]

. . . dself. 1If
the A “component” of the vector | f) in the position basis is f ()»)hilt;elcfan &)e
Tt & i bstract vector, whic
i that | /) is an abs .
ds like double-talk, remember N e ‘ N
o SOuend with respect to any basis you like; in this sense the func tl()l; [(.\') is r:1oerrg 0yf
heeoll . A i basis consisting of eigenvectors
i its the particular basis cons :
llection of its “components” In ' tors o
e C(:)sition operator.] Meanwhile, we can no longer represe.nt operators t:}yer:lgq oS
:]e '[\)u;e the basis vectors are labeled by a nondenumerable index. Nevertheless,
ecaus si

are still interested in quantities of the form
(AITLAD

i ¢ operator 7.
which, by force of habit, we shall call the A, j¢ matrix element of the operator

»xProblem 3.33

i inati ionsin Lo{a, b) isstillin Ly(a, b).
(@) Showatanyinear bl e v e eeon space
(b) For what range of (real) v is the function f(x) = |le" 'm3L2(—.1’ 1—1():1 .
(c) For whatrange of a is the function f(x) = 1—x+x —.\.' —f‘-‘ - in nzems”, o
(d) Show that the functi%n f(x) = ePlisin Ly, and find its “compo

is i .108). , ‘
(e) Ib;?rs}:l(hiq:::\ttlr(:: :Ieme)nts of the operator D? with respect to the basis (Equatlon
3.108) of L.

i ] ] functions [such as the step func-
34 L,(—1, +1)includes (Itsconlnnu(ms. : e
lfroblem E}; . lio;([z 125], which are not differentiable. But fur’xcuon.s expres.';lbl:
“0”‘1: 9?)’ g:s (f(t)'— a(; +ax + ayx? 4 -+ ) must be infinitely dqu"t:'re?:lion;
s T s X) = : . o
zli-;ov;lytl?ern ecun #(x) be the limit of a sequenﬁ:e.of polynomials? (11\/(::53[.“/“1; o
difﬁéult pn:ob]em once you see the light, but it is very subtle, so do s

time on it if you’re not getting anywhere.
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3.3 THE GENERALIZED STATISTICAL

INTERPRETATION

I(;/ly l;ext prlojecl is to recast the fundamental principles of quantum mechgp;
eveloped in Chapters | and 2) into the more elegant language of line; 0
Remember that the state of a particle is represented by its wave functio‘xr .
»Yhose absolute square is the probability density for finding the particle azn’ w
time ¢. 1t follows that W must be normalized, which is possible (by diViS(i)r]lrg‘

€5 (ay
8ebry,
ey,
by, y

constant) if and only if it is square integrable. Thus offa
1. The state of a particle is represented b i
Hilbert space 1 p Yy a normalized vector (|\¥)) iy, the

‘ Classical dynamical quantities (such as position, velocity, momentum apg ki
netic energy) can be expressed as functions of the “canonical” variables x '

. . an
(and, in rare cases, (): Q(x, p, 1). To each such classical observable we asso L

quantum-mechanical operator, (), obtained from Q by the substitution e
N ha
s (3.113)
The expectation value of Q, in the state W, is
(0) :/\ll(x,t)*Q\l/(x,t)dx,
which we now write as an inner product:®
(Q) = (W1 0W). (3.114]

Now, the expectation value of an observable quantity has got to be a real number

(dflel d“, 1t CO“CSpOndS to Y, R
1] h using rulers nd
aC[Ilal measurements in the laborator b
clocks ar d IllC[Clg), SO

(W] 0W) = (W[ OW)* = (Qw|w), (3.115)

f;}\rl;‘\” vectors |W), It follows (see Problem 3.21 ) that Q must be a Hermitian operator.

v

2. Obs iti
(ors. Q(_\' QE‘V:I)I?Ifh(::uantltles,. Qfx, p, t), are 'represented by Hermitian opera-
» 735+ 1); the expectation value of Q, in the state W), is (W|QW).

21The “lous s,
e fu,]clj()::w (;’u.s)l! m)l?'“t?n I warned you about on page 92 is not so bad in this context, for we are using
self to label the vector | W), and the expression QW is perfectly self-explanatory.
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In general, identical measurements on identically prepared systems (all in the
same state W) do not yield reproducible results; however, some states are determi-
nate, for a particular observable, in the sense that they always give the same result.
|A competent measurement of the total energy of a particle in the ground state of
the harmonic oscillator, for example, will always return the value (1/2)fiw.] Fora
determinate state of observable ©, the standard deviation is zero:

0=} = (0 — (O)H = (W@~ ()W)
= (0 — (OOWI(Q — (DY) = 1@ — (@NW)IP. [3.116]

I used the fact that the operator (Q —{Q)) is Hermitian to peel it off the second
member of the inner product and attach it to the first member.] But the only vector
with norm zero s the null vector (Equation 3.20), so (0 — {(ON{W¥) =0, or

o) = (). (3.117]
Evidently determinate states are eigenvectors of Q. Thus

3. A measurement of the observable O on a particle in the state jw) is
certain to return the value A if and only if [W) is an eigenvector of 0, with
eigenvalue A.

For example, the time-independent Schrédinger equation (Equation 2.11),
Ay = Ey,

is nothing but an eigenvalue equation for the Hamiltonian operator, and the solutions
are states of determinate energy (as we noted long ago).

Up to this point I have added nothing new to the statistical interpretation: I
have merely explored its implications in the language of linear algebra. But there is
a missing part to the story: Although we can calculate the average result of any mea-
surement, we still cannot say what the probability of getting a particular result would
be if we were to measure a given observable Q on a particle in an arbitrary state W)
(except for the special case of position for which the original statistical interpretation
supplies the answer). To finish the job, we need the following generalized statistical
interpretation, which is inspired by postulate 3 above, and subsumes it as a special
case:

¥, If you measure an ohservable O on a particle in the state |W), you
are certain to get one of the eigenvalues of 0. The probability of getting the
particular eigenvalue A is equal to the absolute square of the A component of
(W), when expressed in the orthonormal basis of eigenvectors.”

N tice that we could calculate from this the expectation value of @, and il is important to check
that the result is consistent with postulate 2 above. See Problem 3.35(c).
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To sustain this postulate, it is essential that the eigenfunctions of Q span the
space. As we have seen, in the finite-dimensional case the eigenvectors of a Hermi-
tian operator ahvays span the space. But this theorem fails in the infinite-dimensional
case—we have encountered examples of Hermitian operators that have no eigenfunc-
tions at all, or for which the eigenfunctions lie outside the Hilbert space. We shall
take it as a restriction on the subset of Hermitian operators that are observable, that
their eigenfunctions constitute a complete set (though they need not fall inside Ly).B

Now, there are two kinds of eigenvectors, which we need to treat separately. If
the spectrum is discrete (with the distinct eigenvalues separated by finite gaps), we
can label the eigenvectors with an integer n:

Olea) = Malen), withn =1,2,3,...; 3.118]
the eigenvectors are orthonormal (or rather, they can always be chosen so):
(enlem) = Bums [31 19]

the completeness relation takes the form of a sun:
[o0]
W) = calends [3.120]
n=1

the components are given by “Fourier's trick™
o Cp = (e,,l\!l), [312]]

and the probability of getting the particular eigenvalue A, is

lenl? = I{eal W) [3.122]

On the other hand, if the spectrum is continuous, the eigenvectors are {abeled
by a continuous variable (k):

Oler) = Mler), with — o0 < k < 00; [3.123}

the eigenfunctions are not normalizable (so they do not liein Ly, and do not themselves
represent possible particle states), but they satisfy a sort of “orthonormality” condition

{exle)) =8k =1 (3.124]

255ome authors, following Dirac, take this to be an axiom of quantum mechanics, but it seems to
me peculiar to use that term for something that is provable in many particular instances; 1 prefer to regard
il s a part of what it means to be “observable”.,
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(or rather, they can always be chosen so); the completeness relation takes the form of
an integral:

jw) = /00 crie) dk; (3.125]

—00

the “components” are given by “Fourier's trick™:
cx = {ex| W), (3.126]

and the probability of getting an eigenvalug in the range dk about A is

lexl2 dk = |{ex| W)} dk. {3.127]

The generalized statistical interpretation makes no reference to the observable
x3 it treats all observables on an equal footing. But it includes the “original” f.o_rm
(Equation 1.3) as a special case. The “orthonormal” eigenfunctions of the position

operator are
ex(x) = 8(x —x'), [3.128]
IR

and the eigenvalue (x’) can take on any value between —00 and +oo. The x’ “com-
ponent” of |W¥) is

e = (ex|W¥) = f §(x = xHW(x,dx = W(x', 1), [3.129]

so the probability of finding the particle in the range dx' about X' is
lex P dx’ = W D1 dx', [3.130}

which is the original statistical interpretation of W. ‘
A more illuminating example is provided by the momentum operator. Its “or-

thonormal” eigenfunctions are (see Problem 3.37)

ep(x) = elrih, £3.131

i
2mh
and the eigenvalue (p) can take on any value in the range —00 < p < oo. The p
“component” of |¥) is

—«ipx/h\p(x, Ndx = d(p,1). [3.132]

1 o0
Cp = (Cp‘\l/) = -ﬁf“me

We call ®(p, f) the momentum-space wave function—it is (apart from the factors
of ) the Fourier transform of the “position-space” wave function ¥(x, t). Evidently
the probability of getting a momentum in the range dp is

(@ (p, OI*dp. : {3.133)




