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SYSTEMS OF UNITS — A
GUIDE FOR THE PERPLEXED

We have been using exclusively SI units which, for our purposes, are the same as those
of the rationalized MKSA system, and we will continue to do so, This means that our
unit system is based on four arbitrarily chosen and defined ‘quantities—the meter,
kilogram, second, and ampere. Primarily because of historical reasons based on the
originally separate development of electricity and magnetism, other systems of units
have been used and continue to be used. This is particularly the case in more advanced
treatments of physics, especially in subjects like quantum mechanics and its application
to the microscopic properties of matter. As a result, a student whose training has been
conducted entirely in terms of MKSA units very often faces the problem of answering
two questions: In what system of units is this equation written? What numbers do I put
in it in order to work this problem? This chapter provides some guidance in how to
answer these questions. Consequently, we do not give an exhaustive discussion of
various unit systems but primarily try to indicate how they originated, the effects on the
forms of our basic equations, and what to do about it. Thus, in a sense, this short
chapter is a digression, but, since we have just finished the task of writing electromag-
netism in its most general and fundamental form, this is a useful point at which to
consider these questions.

ORIGIN OF OTHER SYSTEMS OF UNITS

In order to see how different systems can occur, it is sufficient for our purposes to
consider two basic experimental results—one electrostatic and one magnetostatic.
From Coulomb’s law (2-3), we know that the magnitude of the force between two point
charges has the form
- | 23-1

F= C'F ( - )
where C, is a constant of proportionality whose numerical value will depend on the
units that are used. We previously chose to write C, = 1/4me,,. Similarly, the magni-
tude of the force per unit length between two parallel currents as found from Ampére’s
law is given by (13-13) and (13-14) and can be written as

dF I . -

o ZCMT ‘ (23-2)
where C,, is another constant of proportionality that we previously wrote as C,, =
Ho/4m. In addition, all systems of units use the definition of current given by (12-2):
I = dgq/dt. ,

If one always uses the same set of mechanical units in them, then the two forces
involved will have the same dimensions and we see that the combinations C,qq’/R?
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and C, II’ also must have the same dimensions so that the ratio

C, )

== (23-3)

m

must have the dimensions of (distance/time)?, that is, ¢ has the dimensions of a speed.
The value of this ratio has been measured many times and the experimental resuit is
that

¢ = 3 X 10® meters/second \ (23-4)

which is the same as the measured speed of light in a vacuum. The best value of ¢ as
presently known is 2.99792458 X 10® meters/second, but the value given in (23-4) is
accurate enough for us here. (As we will see in the next chapter, the agreement between
this ratio and the speed of light is not accidental.) We have already taken this numerical
result into account in the values we gave for C, and C,, and we find that C,/C, =
(dmey) ™/ (po/4m) = (pege) ™t = (9 X 10%)/(107) = (3 X 10® meters/second)? with
the use of (2-5) and (13-2); this is in agreement with (23-3) and (23-4). In other words,
we have the fundamental result that '
1
Boto =73 (23-5)

for the MKSA system that we are using.

The various systems of units used in electromagnetism essentially differ in the way in
which these constants are chosen. It is clear that either C, or C, can be chosen
arbitrarily, but then the value of the other is fixed by the requirement of (23-3).

All other systems of any interest are based on the use of the CGS system in which
everything is expressed in terms of the arbitrary choice of three fundamental units for
length, mass, and time; these are, respectively, the centimeter, gram, and second. The
mechanical units are then found in the usual way from their definitions. Thus, the force
unit is 1 gram X 1 centimeter/(second)? = 1 dyne. The unit of work or energy will be
the product of a unit force and a unit displacement: 1 dyne-centimeter = 1 erg. The
unit of power will be 1 erg/second, and so on. '

Another distinction that is made between unit systems concerns whether they are
“rationalized” or “unrationalized.” What this means, in effect, is that for a rationalized
system there are no numerical factors of 4« appearing in Maxwell’s equations, while, as
we will see, they do appear if an unrationalized system is used. Equations 21-19
through 21-22 show that we are using rationalized MKSA units. (The use of a
rationalized system does not make 4 disappear, rather it simply means that 47 s are
found elsewhere in results found from Maxwell’s equations; thus, the choice of which
type to use is somewhat a matter of taste.) :

THE ELECTROSTATIC AND ELECTROMAGNETIC SYSTEMS

Suppose that you felt that Coulomb’s law was a fundamental result that was the best
place to start in defining a system of units for electromagnetism. Your natural
inclination would be to give this equation as simple an appearance as possible; this can
certainly be done by choosing C, = 1. Then, from (23-3), C,, must be taken to be 1 /c?
and (23-1) and (23-2) would become

qq  dF 20

F= F Z 7._;; (&Su) (23-6)

This procedure leads one to the electrostatic system of units (esu). We see from the first
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expression in (23-6) that two equal unit charges a distance 1 centimeter apart will repel
each other with a force of 1 dyne; the unit of charge defined in this way is called a
statcoulomb (from electrostatic). The unit of current will then be 1 statcoulomb /second
= 1 statampere, and that of potential difference 1 erg/statcoulomb = 1 statvolt. One
can continue this process and define a statfarad, statohm, and so on, and in this way
develop a consistent and complete description. At some point, however, one has to
decide how to define B and relate it to E: this is done in this system by writing
Faraday’slawasv X E = ~ 9B /dr or, equivalently, the Lorentz force as q(E + v X B).
In this pure form, however, this system is seldom used anymore and we will not
describe it further. Nevertheless, it should be pointed out that it is very common to find
quantities measured in this system but nor given in statamperes, statfarads, and so on,
but merely stated as being so many “electrostatic units” or just so many “esu.”

Now suppose that you were more interested in and had more experience with
magnetostatics than in electrostatics; then you might feel that the expression (23-2) is a
better starting point and you would like to simplify it as much as possible. This can be
done by choosing C,, = 1 so that C, = c? and (23-1) and (23-2) become
' cXqq’ dF 2Ir
F=8 & = () (23-7)

R? dz

Such a procedure leads to the electromagnetic system of units (emu). We now see from
the second expression in (23-7) that two very long equal parallel unit currents 1

" centimeter apart will attract each other with a force of 2 dynes /centimeter; the unit of

23-3

current defined in this way is called an abampere (from absolute). The unit charge will
be 1 abcoulomb = 1 abampere-second and one can continue this process to get abvolts,
abfarads, and the like; it is also very common to use simply the terminology of
“electromagnetic units” or “emu.” Again the definitions of E and B are related by
writing V X E= —9B/dt or F = g(E + v X B). In this pure form, the electromag-
netic system is practically never used. What is still very much used, however, and the
system which one needs to be able to deal with, is that which we consider next.

THE GAUSSIAN SYSTEM

This is an unrationalized CGS system that is mixed in the sense that electric quantities
are measured in electrostatic units while magnetic quantities are measured in electro-
magnetic units. For our purposes, it will suffice simply to quote the form that the basic
equations assume for this system. Maxwell’s equations in general are

V-D-41rp,‘ V-B=0

(23-8)
1 4B 4n 14D
VXE-—:E VXH=—C—JI+:W
where the various field vectors are related by
D=E+4rP H=B-47M (23-9)
and the Lorentz force is
F= q(E +% X B) (23-10)

(It follows from (23-8) that the equation of continuity still has the form v - J+
(3P//a’) =0}
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Where they are applicable, the various constitutive equations are written
D=¢E H=B/u J;=oE

(23-11)
P=xE M=x,H
so that
e=1+4dmx, p=1+4dnyx, (23-12)
Expressions involving the potentials are easily seen to become |
[ o 1 dA
B=vxA E=—v¢—:7 (23-13)
while energy formulas of interest are
‘ 1
u=8—;(E-D+B-H) S=::;(E><H) (23-14)

where the first holds for linear media.

We see from the above that all of the field vectors E, D, B, H, P, and M have the
same dimensions; this, of course, has not kept people from giving different names to the
units. This is most prevalent with respect to magnetic quantities and the common usage
is as follows: B, gauss; H, oersted; M, oersted (but see the next section); ®, 1
gauss-(centimeter)* = 1 maxwell.

It also follows from (23-9) that in a vacuum, D = E and H = B. The quantities ¢, u,
X and x, are all dimensionless; we discuss their numerical values in the next section,

Furthermore, it is not uncommon to find a “modified” Gaussian system being used.
It is just like the one we have described except that, while charge is still measured in
statcoulombs (esu), current is measured in abamperes (emu). What this does, in effect,
is to replace any symbol for current by ¢ times that symbol (e.g., J, = ¢J;). The only
one of Maxwell’s equations that is affected by this is Ampére’s law, and then the
equation of continuity, which become : .

X H = 4nd, + P PR (23-15)
v ™ c ot Ve ¢ adt i

Finally, the Heaviside-Lorentz system is simply a rationalized Gaussian system; when
this is used, the effect is to replace every 4« in the equations (23-8) through (23-12) by
unity; for example, one gets v - D = p; and D = E + P. The factors of ¢ still remain,
however. ‘ o

If a particular author does not state the unit system that is being used, one can
generally deduce what it is by looking at the form of some familiar results, preferably
Maxwell’s equations. '

HOW TO COPE WITH THE GAUSSIAN SYSTEM

In principle, any desired result in the Gaussian system can be derived by starting with
Maxwell’s equations (23-8) and using the expressions (23-9) through (23-13) as re-
quired. This is not always convenient and it is desirable to have a method that will
engble one to transform a given result written in the Gaussian system into the
corresponding one in the MKSA system and vice versa. Table 23-1 provides a recipe
for doing this. In order to use this table, one replaces a symbol in the column labeled
by the system in which the formula is written by the symbol or combination listed for
the other system. Symbols representing essentially mechanical quantities are un-
changed.
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Table 23-1. Conversion of symbols in equations

Symbols representing essentially mechanical quantities (length, mass,
time, force, work, energy, power, etc.) are not changed (nor are
derivatives). To convert an equation written in the MKSA system to the
corresponding one in the Gaussian system, replace the symbol listed
under the column labeled MKSA by that listed under Gaussian. The
entries can also be used to convert a Gaussian equation to an MKSA
one by going from right to left in the table. :

Quantity MKSA Gaussian
Capacitance ' C dme,C
Charge q (4mey)'/2q
Charge density p,(9,\) (4meg)t %, (a, N)
Conductivity o 4meyo
Current , I (dmeg) /2l
Current density J,(X) (dmey)2J, (K)
Dielectric constant K, ¢
Dipole moment (electric) p (4mey)p
Dipole moment (magnetic) m (4m/pg)/*m
Displacement D (€o/4m)/*D
Electric field E (4mey)”'°E
Inductance L (4meg) 'L
Magnetic field H (dmpo)~H
Magnetic flux o (o/4m)/ 0
Magnetic induction B (po/47)/*B
Magnetization M (4n/ue)*M
Permeability B (1) Kb, then

@) km—p
Permeability (relative) Ko n
Permittivity € (1) x €, then
(AR Pl

Polarization P (4mey)' /2P
Resistance R (4me) 'R
Resistivity : p (4mey) '
Scalar potential ¢ (4mep) ™%
Speed of light (Bo€o) ™/ ¢
Susceptibility Xer(Xm) 41Xer (Xm)
Vector potential A (Bo/4m)/?A
Example

Let us transform ¥ -D =p, as given by (21-19). Using the table, we get
v - [(eo/47)/2D] = (4mey)"/%p;, which reduces to v - D = 4ap, as quoted in (23-8).
s

Example

Let us transform the expression for the Poynting vector given in (23-14) into MKSA
form. Since S is an energy flow, it is not changed and, by going from the Gaussian
qolumn to the MKSA one, we get :

-1/2
(P'C*EO) Y 1/2 1/2 _
S = T[(4m0) Ex (4mpo)*H] =Ex H

which is exactly (21-39). : ) ' .8
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The use of Table 23-1 may occasionally lead to a wrong tesult when applied to a
Gaussian system equation that has been worked out for a vacuum. The reason is that,
since D =E and B = H in this case, there is a tendency to use these symbols
interchangeably which may lead to ambiguities since the conversion factors listed in
Table 23-1 are different for the members of each of these pairs. For example, in such a
situation it is quite common to find the equation connecting the field with the vector
potential written as H = v X A, and we quickly find from the table that this will not
transform directly back to the corresponding MKSA equation B = v X A, although it
does lead to poH = ¥ X A which, for a vacuum, is all right.

The problem of converting the form of an equation is different from that of
converting the numerical values of a given physical quantity from one unit system to
another. For example, the data may be given numerically in Gaussian units and it is
necessary to insert their equivalent values into an MKSA formula, or conversely. For
this purpose, one requires a numerical conversion table and Table 23-2 is adequate for
most purposes. The entry in each row gives the same amount of the given quantity
expressed in different units; that is, the terms in each row are equal. The various factors
of 3 arise from writing ¢ = 3 X 10® meters/second; this does not apply to powers of
10. Other needed conversions can be obtained in the usual manner by multiplying by
unity as expressed by the appropriate ratio and canceling units; for example, one can
write 1 = 103 grams/1 kilogram, _

Although H and M are both measured in ampere/meter in the MKSA system, we
see that the conversion factors to oersted are different for each of them; this is a
consequence of the 47 in (23-9), and similar remarks apply to D and P. It is not
unusual to find magnetization stated in gauss rather than in oersted; in the overwhelm-
ing majority of such cases, the author really means “oersted” and one can proceed by

Table 23-2. Conversion table for numerical values

. Quantity MKSA Gaussian
Length 1 meter (m) 10? centimeters (cm)
Mass 1 kilogram 103 grams
Time 1 second 1 second
Force 1 newton 107 dynes
Work, energy 1 joule 107 ergs
Power 1 watt 107 ergs/second
Capacitance (C) 1 farad 9 X 10! statfarads
Charge (q) 1 coulomb 3 X 10° statcoulombs
Charge density (p) 1 coulomb /o7 3 X 10 statcoulomb /cnr’
Conductivity (o) 1 (chm-m)~* 9 X 10° (statohm-cm)~*
Current (1) 1 ampere 3 x 10° statamperes

= 10~! abamperes
Current density (J) 1 ampere /o7 3 X 10° statampere/cm’
Displacement (D) 1 coulomb/m? 127 X 10° statvoit/cm
Electric field (E) 1 volt/m 4 % 107* statvolt/cm
Inductance (L) 1 henry 4 % 107! stathenrys
Magnetic field (H) 1 ampere/m 47 X 1073 oersted
Magnetic flux (®) 1 weber 10% maxwells
Magnetic induction (B) 1 weber/m? = 1tesla  10* gauss
Magnetization (M) 1 ampere/m 1073 cersted
Polarization (P) 1 coulomb/m? 3 X 103 statvolt/cm
Potential (¢) 1 volt ' & statvolt
Resistance ( R) 1 ohm 4 x 107! statohms
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changing the name and using the factor given in the table for M. Occasionally, the
author really means “gauss”; this will normally signify that he or she has in mind an
MKSA definition of magnetic dipole moment equal to s, times the expression (19-20);
this would make the relation among the magnetic vectors take the form B = p,H + M
rather than (21-24). In that case, it would be appropriate to measure B and M in the
same units; this is a rare situation, however,

When one looks up numerical values of the quantities permeability, dielectric
constant, and susceptibilities, one often finds them given in Gaussian terms. The

numerical relations among these parameters in the two systems are:

KeMKSA = (f—o) = €Gaugtian (23-16)
MKSA

K MKSA = (;‘;) = B Gaustian (23-17)
MKSA

X = 40X Gausi (23-18)

where the.last relation holds for both x, and x,,. (Also see Exercise 20-17.)

EXERCISES

23-1 Using (23-6), express the dimensions of a
statcoulomb in terms of centimeters, grams, and
seconds. Similarly, use (23-7) to do the same for
an abampere. ‘

23-2 Show that 1 statcoulomb/(centimeter)? =
1 statvolt/centimeter. Also show that 1 statfarad
= | centimeter, and that 1 statohm = 1 second/
centimeter.

23-3 Show that all of the equations (23-8)
through (23-13) can be obtained by applying Ta-
ble 23-1 to the corresponding MKSA equations.
23-4 Beginning with the equations stated in
Gaussian form, derive the differential equations
satisfied by A and ¢ and the Lorentz condition
for a 1i.h. medium, Verify that they are the same
as those obtained with the use of Table 23-1.

238 Use (23-8) and (23-9) to obtain the capaci-
tance of a parallel plate capacitor of plate area A
and separation d with vacuum between the plates.
Verify that your result is consistent with Table
23-1 and Exercise 23-2.

23-6 Use (23-8) to show that the induced emf
will be written in Gaussian units as &=
—c~Y(d®/dr). If self-inductance is also defined
in the usual way by &= —L(dl/dt), show that
the analogue of (17-55) must be L = ®/cl. Then

show that 1 Gaussian unit of inductance = 1
stathenry = 1 (second)?/centimeter. Now use
(23-8) and (23-9) to find the self-inductance of a
length / of an infinitely long ideal solencid of
cross-sectional area S, n turns per unit length,
and vacuum inside. Verify that your result is
consistent with Table 23-1 and the above result
for its dimensions. 7
23-7 Use (23-8) and (23-11) to derive Poynting’s
theorem for a linear isotropic medium and thus
show the suitability of the results quoted in (23-
14).

23.8 As a simple numerical exercise in the use
of Table 23-2, suppose that H and M are parallel
and that they have the values a ampere/meter
and B ampere/meter, respectively, where a and
B are numbers. Find B in webers/(meter)?, B in
gauss, H in oersted, and M in oersted. Show that
when the values just found for H and M are put
into (23-9), the same value of B is obtained as
found by direct use of the conversion factor-for B
itself.’

23-9 Verify that (23-16) through (23-18) are cor-
rect. (Hint: as in the previous exercise, choose a
specific numerical value for the appropriate quan-
tity and carry out all of the conversions.)




