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Outline 

I.  Solving the Simple Harmonic Oscillator with the ladder operators 
II.  Representing an operator as a matrix 
III.  Heisenberg Picture and Schroedinger Picture 
IV.  Equations of motion for x(t) and p(t) in the Heisenberg Picture 
V.  The Ehrenfest Theorem 

Please read Goswami Chapter 8 
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I.  Solving the simple harmonic oscillator with the ladder operators      
Recall a u0 = 0
                              Suppose we want to find the eigenfunctions in x-space 

                              Write out a = f (x).  Use - i ∂
∂x

 for p.

mω
2

x +
i

2mω
−i

∂
∂x

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
u0 (x) = 0

                              Multiply by 2  and define ξ= mω

x

ξ + ∂
∂ξ

⎧
⎨
⎩

⎫
⎬
⎭
u0 = 0.    Integrate:

u0 = Ce
−ξ2 /2 .           Normalize:

1 ≡ dx u0 (x) 2 = C 2 dx exp −mωx2



⎛
⎝⎜

⎞
⎠⎟−∞

+∞

∫
−∞

+∞

∫ = C 2 π
mω

So C =
mω
π

⎛
⎝⎜

⎞
⎠⎟

1/4

So u0 ξ( ) = mω
π

⎛
⎝⎜

⎞
⎠⎟

1/4

e−ξ
2 /2
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un ξ( )∝ un x( ) = x un = x
a†( )n
n!

u0

= x
1
n!

mω
2

x −
ip

2mω
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

n

u0

=
1
2n

1
n!

ξ − ∂
∂ξ

⎛
⎝⎜

⎞
⎠⎟

n

e−ξ
2 /2

↓
  

                 e−ξ
2 /2Hn ξ( )         This is the same solution as was found with the series method.

Note, it turns out that the un  are orthonormal, so 

un um = δnm

To find the eigenvalues, recall H u = ω a†a +
1
2

⎡
⎣⎢

⎤
⎦⎥
u = E u

So a†a u =
E
ω

−
1
2

⎛
⎝⎜

⎞
⎠⎟
u
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Consider u0

We know that a u0 = 0

So a†a u0 = 0

E0

ω
−

1
2

⎡
⎣⎢

⎤
⎦⎥

↑  

u0 = 0

So E0

ω
−

1
2
= 0

E0 =
ω
2

.
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II.  Representing an operator as a matrix

Consider the mathematical operation  um a† un .
What this means is:
(i) Begin with an initial state un ,  the nth energy level of H or N.

(ii) Operate on it with a†,  which raises it to state un+1

That is, a† un = c un+1           where c is a normalization constant.

(iii) Calculate the inner product of that result with um :

um c un+1 = c um un+1

↓
 

                            δm,n+1

Now consider um c un .  By a similar analysis this gives c ' um un−1 = c 'δm,n−1.
Now find the c and c '.
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Start with un+1 =
1
n +1( )!

a†( )n+1
u0

=
1
n +1( )

1
n!

a†( )n+1
u0

=
a†

n +1( )
1
n!

a†( )n u0

↓
  

                        un

So un+1 =
a†

n +1( )
un .   Rewrite this as:

n +1( ) un+1 = a† un .     Multiply on the left with um :

um n +1( ) un+1

↓
  

= um a† un

n +1( ) um un+1

↓
 

                 δm,n+1

So um a† un = n +1( )δm,n+1
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Now consider the case for operator a: 

Start with a un = a
1
n!

a†( )n u0 .

                                                        Recall we showed that a a†( )n = n a†( )n−1
+ a†( )n a

So a un =
n
n!

a†( )n−1
u0 +

1
n!

a†( )n a u0

↓


                                                                0
Now multiply on the left with um :

um a un = um
n
n!

a†( )n−1
u0

                = um n
1
n −1( )!

a†( )n−1
u0

↓
  

                                          un−1

= um n un−1 = n um un−1

↓
 

                                    δm,n−1

So um a un = nδm,n−1



209 
 

Construct a table for operator a† :

INITIAL STATES
 

 n= 0       1       2      3      4.....
FINAL STATES
               m= 0            0        0      0       0      0

                     1           1       0      0       0      0

                     2            0      2      0       0      0

                     3            0         0   3      0     ....
                     4           ....       ....    ....
                   ....

Construct a table for operator a :

INITIAL STATES
 

 n= 0       1       2      3      4.....
FINAL STATES

               m= 0            0      1      0       0      0

                     1           0         0    2        0      0

                     2            0        0       0     3     0
                     3            0        0       0        0     ....
                     4           ....       ....    ....
                   ....
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These "tables" are the matrix representations of the operators a†  and a.
Notice that because the simple harmonic oscillator has an infinite number
of eigenstates, the matrices are infinite-dimensional.
The matrices encode the
-amount of overlap between states un  and um
−or −
-the amplitude

↓
  

 for transition
↓

    between un  and um

    probability      (caused by a or a†)
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Recall we showed that the operator that evolves Ψ in time is 
U = e− iH (t− t0 )/ .
So if t0 = 0,  
Ψ(t) = e− iHt / Ψ(0) .

Consider some operator A which is not itself a function of time.  Suppose we want to find its
expectation value at time t:
A t = Ψ(t) A Ψ(t)

= Ψ(0) eiHt /Ae− iHt / Ψ(0)
We have a choice about whether to group the exponential functions with the A or with the Ψ(0).
2 groupings:

Ψ(0) eiHt /
  

Ae− iHt / Ψ(0)
  

                                     Ψ(0) eiHt /Ae− iHt /   Ψ(0)

        Ψ(t) A Ψ(t)                                                      Ψ(0) A ' Ψ(0)
Here A is not a function of t  but Ψ is.                   Here A '  is a function of t  but Ψ is not.
The view that "the evolution of time                     The view that "the evolution of time
changes the Ψ's, not the operators" is the              changes the operators, not the Ψ's" is the 
Schroedinger Picture of quantum mechanics.        Heisenberg Picture of quantum mechanics.
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Up to now we have viewed everything from the Schroedinger perspective (that is, 
the Schroedinger Equation is a time-development equation for Ψ. 
Now consider the Heisenberg Picture and find a time-development equation for A’. 

Start with the definition: 

 

A '(t) = eiHt /Ae− iHt /

dA '(t)
dt

=
∂ eiHt /( )

∂t
Ae− iHt / + eiHt /

∂A
∂t
↓


e− iHt / + eiHt /A
∂ eiHt /( )

∂t

                                                   0

= iH

eiHt /Ae− iHt /

↓
   + eiHt /Ae− iHt /

↓
  

−iH


⎛
⎝⎜

⎞
⎠⎟

              A '(t)             A '(t)
Conclude:
dA '(t)
dt

=
i

H ,A '(t)[ ].           This is the Heisenberg equivalent to the Schroedinger Equation.

What if A (not A ' ) is explicitly time dependent?  This is called the Interaction Picture and will
be addressed in Chapter 22.
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IV.  The equations of motion for xop (t) and pop (t) in the Heisenberg Picture

What we want: 
             xop (t) = f1(t,  constants)
             pop (t) = f2 (t,  constants).
The constants are x(t = 0),  p(t = 0),  m,  ,  k, and so forth.

                                    These are constants specified by the environment of the problem.

Note these are the time-independent operators in the Schroedinger Picture.
What we know:
To find x(t) we must eventually solve some form of the equation 
dx(t)
dt

=
i

H , x(t)[ ].

This is hard to solve because we do not know H , x(t)[ ].
A "trick":
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We know that x(t) is related to x(0) by x(t) = e− iHt /x(0)eiHt /

We know that x(0) is related to a(0) and a†(0) by x(0) = a(0) + a†(0)
2mω


.

We know that a(0) and a†(0) are related to a(t) and a†(t) by 

a(t) = e− iHt /a(0)eiHt /  and a†(t) = e− iHt /a†(0)eiHt / .

It turns out that we can find H ,a(t)[ ]  and H ,a†(t)⎡⎣ ⎤⎦  and work backward to get x(t).

Plan:

(i)    Find H ,a(t)[ ]  and H ,a†(t)⎡⎣ ⎤⎦.

(ii)   Substitute these into da
(†) (t)
dt

=
i

H ,a(†) (t)⎡⎣ ⎤⎦  to get a(†)(t) = f (t,a(†) (0)).

(iii)  Work backward from a(†) (t) ⇒ a(†) (0) ⇒ x(0) ⇒ x(t).

Carry out the plan:
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(i)  Find H ,a(t)[ ]
Recall how we found H ,a(0)[ ] = −ωa(0) :  we used a(0),a†(0)⎡⎣ ⎤⎦ = 1.

So we need to find a(t),a†(t)⎡⎣ ⎤⎦.  To find this, begin with

a(0),a†(0)⎡⎣ ⎤⎦ = 1.  Expand it:

a0a0
† − a0

†a0 = 1.                       Multiply each term by 1:
a0 ⋅1 ⋅a0

† − a0
† ⋅1 ⋅a0 = 1.           Replace 1 =  e− iHt /e+ iHt /  

a0e
− iHt /e+ iHt /a0

† − a0
†e− iHt /e+ iHt /a0 = 1.

                                               Operate on everything with e+ iHt /  from the left and with e− iHt /  from the right.
e+ iHt /a0e

− iHt /

↓
  

e+ iHt /a0
†e− iHt /

↓
  

− e+ iHt /a0
†e− iHt /

↓
  

e+ iHt /a0e
− iHt /

↓
  

= e+ iHt / ⋅1 ⋅ e− iHt /
↓

  

       a(t)              a†(t)      -        a†(t)             a(t)        =           1
Condense this to:

a(t),a†(t)⎡⎣ ⎤⎦ = 1.                      "Eq 1"

To find H ,a(t)[ ]  we also need H(t):

Recall H = ω a0
†a0 +

1
2

⎛
⎝⎜

⎞
⎠⎟

.

As above, insert 1 =  e− iHt /e+ iHt /  between a0
†  and a0  then 

operate with e+ iHt /  from the left and with e− iHt /  from the right.
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We get:

e+ iHt /He− iHt /
↓

   = ω e+ iHt /a0
†e− iHt /

↓
  

e+ iHt /a0e
− iHt /

↓
  

+ e+ iHt /
1
2
e− iHt /

↓
  

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

H  commutes with           a†(t)            a(t)                    1
2

functions of H , so 
reorder this as
e+ iHt /e− iHt /

↓
   H

       1
Conclude:

H = ω a†(t)a(t)+ 1
2

⎛
⎝⎜

⎞
⎠⎟

                           Eq. 2

Now use Eq 1 and Eq 2 to get H ,a(t)[ ] :

H ,a(t)[ ] = ω a†(t)a(t)+ 1
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

,a(t)
⎡

⎣
⎢

⎤

⎦
⎥        Expand, do all the same steps as for the time-indep case:

              = -ωa(t)

Similarly, H ,a†(t)⎡⎣ ⎤⎦ = +ωa†(t)
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Continue with the plan.

(ii)  Substitute these into da
(†) (t)
dt

=
i

H ,a(†) (t)⎡⎣ ⎤⎦.

H ,a(†) (t)⎡⎣ ⎤⎦ = ωa
†(t)

So da
(†) (t)
dt

= iωa†(t).                                          Integrate:

a†(t) = eiω ta†(0)                                                   Eq.  3

Similarly, da(t)
dt

=
i

H ,a(t)[ ] = i


−ωa(t)( ).    Integrate:

a(t) = e− iω ta(0)                                                    Eq.  4
Continue with the plan.
(iii)  Work backward to obtain x(t).

Recall a(0) = mω
2

x(0) + i
2mω

p(0)             Eq. 5

Operate on everything from the left with eiHt /  and on the right with e− iHt /

eiHt /a(0) e− iHt /
  

= eiHt /
mω
2

x(0) e− iHt / + eiHt / i
2mω

p(0) e− iHt /  

                        = mω
2

eiHt /x(0) e− iHt /
  

+
i

2mω
eiHt / p(0) e− iHt /
  

 

         a(t) =       mω
2

          x(t)        + i
2mω

         p(t)                               Eq. 6
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Similarly recall that a†(0) = mω
2

x(0) − i
2mω

p(0)                 Eq.  7

This leads to a†(t) = mω
2

x(t) − i
2mω

p(t)                              Eq.  8

Now substitute Eq. 7 and Eq. 8 into Eq. 3:

mω
2

x(t) − i
2mω

p(t) = eiω t mω
2

x(0) − i
2mω

p(0)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
       Eq.  9

and substitute Eq. 5 and Eq. 6 into Eq. 4:

mω
2

x(t) + i
2mω

p(t) = e− iω t mω
2

x(0) + i
2mω

p(0)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      Eq. 10

Eliminate p(t) from Eq. 9 and Eq. 10 by adding them, to get:

2 mω
2

x(t) = mω
2

x(0) eiω t + e− iω t( ) − i
2mω

p(0) eiω t − e− iω t( )

So x(t) = x(0)cosωt + p(0)
mω

sinωt

Similarly, eliminate x(t) from Eq. 9 and Eq. 10 to get
p(t) = p(0)cosωt + mωx(0)sinωt
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V.  Ehrenfest Theorem

The message of this section is:
We found the following fact about expectation values of operators.  (Consider an arbitrary operator Q):
d
dt

Q =
i


H ,Q[ ] +
∂Q
∂t

This allows us to find relationships between Q  and d
dt

Q  for various operators including x and p.

It turns out that the relationships we get when Q = x or Q = p have the same form as Newton's Laws.
So Newton's Laws related quantities (x,  p,  F, etc.) that are accurately given by quantum mechanical 
expectation values x ,  p ,  etc.
That is why classical mechanics works in a world that is in reality quantum mechanical.
So for example, when we measure Newtonian position, what we are really measuring is x .

To show this:

begin with d
dt

Q =
i


H ,Q[ ] +
∂Q
∂t

.  Let Q = x.  Then ∂Q
∂t

=
∂x
∂t

= 0.  Then we have

d
dt

x =
i


H , x[ ]

          = i


p2

2m
+V (x), x

⎡

⎣
⎢

⎤

⎦
⎥            Expand:
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d
dt

x = i


1
2m

p2 , x⎡⎣ ⎤⎦
+ V (x), x[ ]

↓
 

                                             0 because a function of x commutes with x.

                        To find this commutator, note p2 , x⎡⎣ ⎤⎦ = p2x − xp2 = p2x − xp( ) p.

                        But x, p[ ] = xp − px = i,  so xp = i + px.

                        Then p2 , x⎡⎣ ⎤⎦ = p2x − i + px( ) p
                                             = p2x − ip − p xp( )
                                              = p2x − ip − p i + px( )
                                             = p2x − ip - pi - p2x = −2ip.
d
dt

x =
i


1
2m

−2ip( )

d
dt

x =
p
m

                   Ehrenfest Equation #1

Note:

(1) This is the quantum mechanical version of v = p
m

(2) This formula cannot be true for individual eigenvalues of xop  and pop  since that would imply 
simultaneous measurement of x and p.
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Now consider the case where Q = p.  Then again ∂p
∂t

= 0,  so we have

d
dt

p =
i


p2

2m
+V (x), p

⎡

⎣
⎢

⎤

⎦
⎥

          = i


1
2m

p2 , p⎡⎣ ⎤⎦
↓


+ V (x), p[ ] =

−i


p,V (x)[ ]

                             0
To find p,V (x)[ ],  act with it on some test ψ :

 p,V (x)[ ]ψ = pVψ −Vpψ .                           Substitute p = -i d
dx

                   = - i d
dx

Vψ( ) −V -i dψ
dx

⎛
⎝⎜

⎞
⎠⎟

                  = -i
d Vψ( )
dx

−V
dψ
dx

⎧
⎨
⎩

⎫
⎬
⎭

                 = −i V
dψ
dx

+
dV
dx

ψ −V
dψ
dx

⎧
⎨
⎩

⎫
⎬
⎭
= −i

dV
dx

ψ

So p,V (x)[ ] = −i
dV
dx

.                                 Plug this in to get:
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d
dt

p =
−i


−i
dV
dx

So d
dt

p = −
dV
dx

= Fx                           because 

F = -


∇V .

This is the x-component of the vector formula
d
dt
p =


F                                                 Ehrenfest Equation #2

This is the quantum mechanical form of 
dp
dt

=

F
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Outline 

I.  The WKB Approximation: Introduction 
II.  WKB Connection Formulas 
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I.  The WKB Approximation: Introduction 

The issue: Most potentials in real applications are not simple square wells and so forth, 
so generally they lead to differential equations that are hard to solve. 

Generally solving these requires making approximations. 
There is an approximation that works well if V varies only slowly as a function of x, so 

if we look in a small region, we can say that V~ constant.  This is the WKB 
Approximation. 

The method: 
(1)  Consider a confining potential that is generally arbitrarily shaped but that does not 

vary rapidly: 

Consider a particle trapped in the well at E. 
Definition: The values of x for which V=E are called the “turning points.” 

V(x) 

E 
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(2) Write down the Schroedinger Equation, assume that because V is ~ constant in 
a local region, ψ is ~ a free particle in that region: that is, a plane wave.  Thus 
assume that ψ ~ Aeikx. 

Plane waves do not change their amplitudes, so assume that δ2A/dx2=0. 
Solve the Schroedinger Equation with this approximation. 
The approximate solution is close to the exact solution everywhere except at the 

turning points. 
(3) To repair the problem at the turning points: 
in those regions only, assume V is a linear function for which the Schroedinger 

Equation is easily solved. 

Find ψ for that V at those x’s. 
(4) Connect the ψ’s at the turning points to the ψ’s that are everywhere else. 
This is the boundary condition application.  This develops equations called the 

Connection Formulas. 
(5)  The formulas for ψ’s that are produced by this method are general enough to 

be used in all problems where V is slowly varying. 
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Carry out the method:

(1) Consider an arbitrary smooth "slowly varying" potential which is binding a particle that
has energy E.   What is meant by "slowly varying"?
A potential is slowly varying if its change in value

  
 across a deBroglie wavelength

  

                                                               ∂V
∂x

                                        λ

is much less than the kinetic energy of the particle
  

.

                                                   E -V

Or: ∂V
∂x

⋅ λ << E -V( )

Rewrite this as:
1

E −V
∂V
∂x

⋅ λ << 1.

Where this approximation works:                        Where this approximation does not work:
Let ψ (x) = A(x)eiϕ (x )                                               Where E = V  (that is, at the turning points)
The general form which can accommodate
anything.
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Continue the method:
(2) Write down the time-independent Schroedinger Equation
−2

2m
∂2ψ
∂x2 +V (x)ψ = Eψ

∂2ψ
∂x2 =

−2m E −V( )


2 ψ

                                        Define k ≡
2m E −V( )


 as usual, so 

                                        this is k2 =
p2


2

Rewrite:
∂2ψ
∂x2 =

− p2


2 ψ                   Substitute into this ψ =A(x)eiϕ (x )

                                                                      ∂ψ
∂x

=
∂A
∂x

+ iA
∂ϕ
∂x

⎛
⎝⎜

⎞
⎠⎟
eiϕ

                                                                       ∂
2ψ
∂x2 =

∂2A
∂x2 + 2i ∂A

∂x
∂ϕ
∂x

+ iA
∂2ϕ
∂x2 − A

∂ϕ
∂x

⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
eiϕ

∂2A
∂x2 + 2i ∂A

∂x
∂ϕ
∂x

+ iA
∂2ϕ
∂x2 − A

∂ϕ
∂x

⎛
⎝⎜

⎞
⎠⎟

2

=
− p2


2 A

Re           Im          Im           Re             Re
For this equation to be solved, the real and imaginary terms must be solved separately:
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Imaginary terms: 2 ∂A
∂x

∂ϕ
∂x

+ A
∂2ϕ
∂x2 = 0

This is solved by A =
C
∂ϕ
∂x

.

Real terms: ∂
2A
∂x2 − A

∂ϕ
∂x

⎛
⎝⎜

⎞
⎠⎟

2

=
− p2


2 A

This is not generally solvable analytically.  Make the approximation ∂
2A
∂x2 << A.

That is, since the potential is "slowly varying," the ψ  that responds to it does not radically change
amplitude over short distances dx.

So ignore the ∂
2A
∂x2  term.  Then we have

−A
∂ϕ
∂x

⎛
⎝⎜

⎞
⎠⎟

2

=
− p2


2 A

∂ϕ
∂x

= ±
p


ϕ(x) = ±
1


p(x)dx∫
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Combine the A and ϕ  solutions:

ψ ≅
C
∂ϕ
∂x

exp ±
i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥

=
C
p


exp ±
i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥

                                                Define C'=C 

=
C '
p(x)

exp ±
i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥

The most general ψ  is a linear combination that uses both signs of the exponent:

ψ general  WKB =
C+

p(x)
exp +

i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥
+

C−

p(x)
exp −

i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥

Any potential can typically be divided into different regions based upon where the particle is classically
allowed or not allowed.  For example:

Reg 1             Reg 2             Reg 3 



 

For each region, 
(i) use the part of the ψ general  that will properly → 0 as x →∞.  That is, set C+  or C−  = 0 as necessary. Also:

(ii) in Regions I and III where V > E,  p = 2m E −V( )  is intrinsically imaginary, so define P ≡ -ip
(This is like the definition K=-ik for the square well.)

Then in those regions, ψWKB ~ C
P(x)

e
±

1


P dx∫         no "i", and capital P

So for a general confining potential we get

ψ I 
A
P(x)

exp +1


P(x)dx∫⎛
⎝⎜

⎞
⎠⎟

ψ II 
C
p(x)

exp +i


p(x)dx∫⎛
⎝⎜

⎞
⎠⎟
+

C
p(x)

exp −i


p(x)dx∫⎛
⎝⎜

⎞
⎠⎟

ψ III 
D
P(x)

exp −1


P(x)dx∫⎛
⎝⎜

⎞
⎠⎟

Continue the method.
(3) Handle the turning points.  Look closely at a turning point:

For x close to x0 ,  V ~  a straight line.  So approximate V (x near  x0 ) ≈ E +
dV
dx x= x0

⋅ x

Substitute this V into the Time independent Schroedinger Equation to find ψ turning point
230 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−2

2m
∂2ψ t .p.

∂x2 + E +
dV
dx x0

x
⎛

⎝
⎜

⎞

⎠
⎟ψ t .p. = Eψ t .p.

∂2ψ t .p.

∂x2 =
2m


2

dV
dx x0  

xψ t .p.

               Call this α 3             (that is, α= 2m


2

dV
dx x0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/3

)

∂2ψ t .p.

∂x2 = α 3xψ t .p.

                                              Now let z ≡ αx, so 

                                                           x= 1
α
z,

                                                           d
dx

=
dz
dx

d
dz

= α d
dz

                                                            d
2

dx2 =
d
dx

α d
dz

⎛
⎝⎜

⎞
⎠⎟
=
dz
dx

d
dz

α d
dz

⎛
⎝⎜

⎞
⎠⎟
= α 2 d

2

dz2

α 2 d
2ψ t .p.

dz2 = α 3 1
α
zψ t .p.

d 2ψ t .p.

dz2 = zψ t .p.                       Airy's Equation
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ψ t .p. = aAi(αx) + bBi(αx)
                                                a,  b are unspecified constants
                                                Ai and Bi are Airy functions (like Bessel functions)

What we need to know about Airy functions:

for z >> 0, Ai(z) ~ 1
2 π z1/4 exp −2

3
z3/2⎛

⎝⎜
⎞
⎠⎟

 and Bi(z) ~ 1
π z1/4 exp +2

3
z3/2⎛

⎝⎜
⎞
⎠⎟

for z << 0,  Ai(z) ~ 1
π −z( )1/4 sin 2

3
−z( )3/2 +

π
4

⎛
⎝⎜

⎞
⎠⎟

 and Bi(z) ~ 1
π −z( )1/4 cos 2

3
−z( )3/2 +

π
4

⎛
⎝⎜

⎞
⎠⎟
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II.  WKB Connection Formulas
Continue the method.
(4) Connect ψ general WKB  to ψ turning points  at the turning points.
Technique:
(i) Write down ψ general WKB  and ψ turning points :

ψ general  WKB =
C+

p(x)
exp +

i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥
+

C−

p(x)
exp −

i


p(x)dx∫⎡
⎣⎢

⎤
⎦⎥

ψ t .p. = aAi(αx) + bBi(αx)

(ii) Substitute V ≈ E +
dV
dx x0

⋅ x into p(x) = 2m E −V( )

(iii) Substitute the asymptotic form into Ai and Bi
(iv) Compare ψ general WKB  to ψ turning points  to see what 
"a" and "b" must be to make them identical.
(v) Do this separately for 4 ranges in x:

Range 3 
Range 4 

Range 2 (approach 
righthand turning 
point from Region 2 Range 1 

(approach right 
hand turning 
point from 
Region 1 
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(vi) To simplify the math, locate the righthand turning point at x = 0.  Solve everything for
range 1 and range 2, then move that turning point back to arbitrary x.  Then get connection
formulas for the lefthand turning point by symmetry arguments.

Carry this out:
Consider the righthand turning point.  Call it x = 0.

Write the ψ 's:

ψWKB, not t.p. =

1
p(x)

Bexp i


p(x ')dx '
x

0

∫
⎛

⎝⎜
⎞

⎠⎟
+

1
p(x)

C exp −i


p(x ')dx '
x

0

∫
⎛

⎝⎜
⎞

⎠⎟
            x < 0

1
P(x)

Dexp −1


P(x ')dx '
0

x

∫
⎛

⎝⎜
⎞

⎠⎟
                                                           x > 0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

Notice that the limits on the integral reflect the region over which we want this ψ  to be applicable.

Substitute V = E +
∂V
∂x x0

x

E 

x =0 

V(x) 
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So p(x) = 2m E −V (x)( )→ 2m E − E +
∂V
∂x x0

x
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2m ∂V

∂x x0

−x

                     Recall α ≡
2m


2

∂V
∂x x0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/3

p(x) ≅ α 3/2 −x
and

P(x) = -ip(x) = α 3/2 x
Substitute this into ψ range 1: x > 0

WKB not t.p.

Use the Region 3 ψ :

ψ =
D
P(x)

exp −1


P(x)dx
0

x

∫
⎛

⎝⎜
⎞

⎠⎟

ψ range 1
non-t.p. =

D
α 3/4x1/4 exp −1




0

x

∫ α 3/2 xdx
⎛

⎝⎜
⎞

⎠⎟
=

D


1/2α 3/4x1/4 exp −α 3/2 x1/2 dx
0

x

∫
⎛

⎝⎜
⎞

⎠⎟

ψ range 1
non-t.p. =

D


1/2α 3/4x1/4 exp −
2
3
αx( )3/2⎛

⎝⎜
⎞
⎠⎟

                                                                Eq 1
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Carry out the same calculation for ψWKB at turning points :
ψWKB at turning points = aAi(αx) + bBi(αx).

Substitute Ai(αx large positive) ~ 1
2 π αx( )1/4 exp −2

3
αx( )3/2⎛

⎝⎜
⎞
⎠⎟

 and 

                Bi(αx large positive) ~ 1
π αx( )1/4 exp +2

3
αx( )3/2⎛

⎝⎜
⎞
⎠⎟

.

ψ range 1
WKB @ t.p. ~ a

2 πα1/4x1/4 exp −2
3

αx( )3/2⎛
⎝⎜

⎞
⎠⎟
+

b
πα1/4x1/4 exp +2

3
αx( )3/2⎛

⎝⎜
⎞
⎠⎟

                      Eq. 2

At the turning point, Eq. 1 and Eq. 2 must be equal.   This will be assured if:
D


1/2α 3/4 =

a
2 πα1/4              and            b = 0

a =
4π
α

D
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Now do Range 2 (still the righthand turning point).  Rewrite, using the Region II ψ :

ψ general, non-t.p. =
1
p(x)

exp +i


p(x ')dx '
x

0

∫
⎛

⎝⎜
⎞

⎠⎟
+

C
p(x)

exp −i


p(x ')dx '
x

0

∫
⎛

⎝⎜
⎞

⎠⎟

Substitute p(x')~α 3/2 −x '

ψ range 2
general, non-t.p. =

1
α 3/4 −x( )1/4 Bexp i

2
3

−αx( )3/2⎡
⎣⎢

⎤
⎦⎥
+ C exp −i

2
3

−αx( )3/2⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

               Eq. 3

ψ range 2
@t .p. = aAi(αx) + bBi(αx)

Since x is < 0 in this range, use the Airy function forms for large negative αx:

Ai(αx large negative) ~ 1
π −αx( )1/4 sin 2

3
−αx( )3/2 +

π
4

⎛
⎝⎜

⎞
⎠⎟

 and 

Bi(αx large negative) ~ 1
π −αx( )1/4 cos 2

3
−αx( )3/2 +

π
4

⎛
⎝⎜

⎞
⎠⎟

Then ψ range 2
@t .p. =

a
π −αx( )1/4 sin 2

3
−αx( )3/2 +

π
4

⎛
⎝⎜

⎞
⎠⎟
+

b
π −αx( )1/4 cos 2

3
−αx( )3/2 +

π
4

⎛
⎝⎜

⎞
⎠⎟

Substitute what we found earlier, that a = 4π
α

D and b = 0.  Also write sin( )  as ei( ) − e− i( )

2i
:

ψ range 2
@t .p. =

4π
α

D
1

π −αx( )1/4
eiπ /4e

i 2
3
−α x( )3/2

− e− iπ /4e
− i 2

3
−α x( )3/2

2i

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                                  Eq. 4.

Require Eq. 3 = Eq. 4.  This means
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1
α 3/4 B =

4
α

Deiπ /4

2iα1/4                   and                  1
α 3/4 C = −

4
α

De− iπ /4

2iα1/4

B = −iDeiπ /4                                      and                  C = +iDe− iπ /4

Recap: now we have:
a = a(D)
b = 0
B = B(D)
C = C(D).
Summarize:

ψWKB,  both @t.p. and not @ t.p. =

1
p(x)

−iDeiπ /4( )exp i


p(x ')dx '
x

0

∫
⎡

⎣
⎢

⎤

⎦
⎥ +

1
p(x)

iDe− iπ /4( )exp −i


p(x ')dx '
x

0

∫
⎡

⎣
⎢

⎤

⎦
⎥     for x < 0

1
P(x)

Dexp −1


P(x ')dx '
0

x

∫
⎡

⎣
⎢

⎤

⎦
⎥                                                                            for x > 0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Rework this:

(i) Convert eiπ /4e
i


p dx∫ → e
i 1


p dx+π
4∫⎡

⎣⎢
⎤
⎦⎥

(ii) Convert e
i ∫⎡⎣⎢ ⎤

⎦⎥ + e
− i ∫⎡⎣⎢ ⎤

⎦⎥ → 2i sin ∫⎡⎣ ⎤
⎦

(iii) Convert integral limits: 0 → x2   (the arbitrary location of the turning point).
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We get:

ψWKB =

1
p(x)

2Dsin 1


p(x ')dx '+ π
4x

x2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                 for   x < x2

1
P(x)

Dexp −1


P(x ')dx '
x2

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                      for   x > x2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

for the right side of the well, that is, for a potential shaped like:

We could also consider the left side of the well and develop equations around a downward
sloping potential:

We would get:
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ψWKB =

D '
P(x)

exp −1


P(x ')dx '
x

x1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                          for   x < x1

2D '
p(x)

sin 1


p(x ')dx '
x1

x

∫ +
π
4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                      for   x > x1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

for the left side of the well.
To get D/D', require ψ x>x1

=ψ x<x2

2D '
p(x)

sin 1


p(x ')dx '+ π
4x1

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=  2D

p(x)
sin 1


p(x ')dx '+ π
4x

x2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin 1


p(x ')dx '+ π
4x1

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=  D

D '
sin 1


p(x ')dx '+ π
4x

x2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin 1


pdx
x1

x2

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  

−
1


pdx +
π
4x

x2

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  

+
π
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
D
D '

sin 1


p(x ')dx '+ π
4x

x2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

Call this "η"         Call this "a"                           So this is also "a"

sin η − a +
π
2

⎛
⎝⎜

⎞
⎠⎟
=
D
D '

sina                      To solve this, use sin(m - n) = sinmcosn - cosmsinn

                                                                                     Let m = η +
π
2

 and n = a
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sin η +
π
2

⎛
⎝⎜

⎞
⎠⎟

cosa − cos η +
π
2

⎛
⎝⎜

⎞
⎠⎟

sina = D
D '

sina

This is solved if η +
π
2
= n +1( )π          for n = 0,  1,  2,  ...

                                         We use "n +1" rather than "n" here to ensure that η is not negative.

Then D
D '

= −1( )n

Pick D = 1, then D ' = 1
−1( )n

= −1( )n

The final ψWKB :

−1( )n
P(x)

exp −1


P(x ')dx
x

x1

∫ '
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                     x < x1

−1( )n
p(x)

2sin 1


p(x ')dx '
x1

x

∫ +
π
4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

               x1 < x < x2

1
P(x)

exp −1


P(x ')dx '
x2

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                    x > x2

x1 
x2 
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How to find the energy levels in the WKB approximation:
Recall we found that 

η+π
2
= n +1( )π

                                               Recall η ≡
1


p(x)dx
x1

x2

∫

p(x)dx
x1

x2

∫ = n +
1
2

⎛
⎝⎜

⎞
⎠⎟
π

                                                But p= 2m E −V (x)( )
So plug in a specific V (x), evaluate the integral, and solve for En .
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Outline 

I.  Systems with 2 degrees of freedom: Introduction 
II.  Exchange Degeneracy 
III.   The Exchange Operator 

Please read Goswami Chapter 9. 
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I.  Systems with 2 degrees of freedom: Introduction 

Examples of kinds of degrees of freedom: 
(i)  2 particles free to move in 1 dimension 
(ii)  1 particle free to move in 2 dimensions 

Each of these leads to energy degeneracy. 



245 

II.  Systems of 2 particles in 1 dimension have exchange degeneracy

Consider 2 particles in the same 1-dimensional infinite square well of width "a".
Both have mass m.
The particles do not interact with each other.  That is, they are "invisible" to each other.
Since their wavefunctions overlap/superpose (and this does NOT imply that the particles interact!),
there is only 1 wavefunction in the well.  It is the wavefunction of the system of two particles.
That is, it does not make sense to describe the 2 particles' wavefunctions separately.
How to handle this mathematically:

Label particle 1's position = x1

Label particle 1's momentum = p1

Label particle 2's position = x2

Label particle 2's momentum = p2

Suppose the particles can be in energy levels n1  and n2 .
The Hamiltonian for this system is

H =
p1

2

2m
+V (x1) + p2

2

2m
+V (x2 ) = H (x1) + H (x2 )

Note we indicate that the particles are non-interacting by not having a V (x1 − x2 ) term.
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Suppose we want to find ψ n1n2
x1, x2( )  and En1n2

x1, x2( ).
Since the H is separable, we GUESS that ψ n1n2

x1, x2( )  can be written as the product:

ψ n1n2
x1, x2( ) =ψ n1

x1( ) ⋅ψ n2
x2( )

                                                     where ψ n1
x1( )  is the solution of H (x1)ψ n1

x1( ) = En1
ψ n1

x1( )
                                                     and ψ n1

x1( )  is the solution of H (x1)ψ n1
x1( ) = En1

ψ n1
x1( )

For the infinite square well, ψ n =
2
a

sin nπ x
a

⎛
⎝⎜

⎞
⎠⎟

 and En =
n2π 2


2

2ma2

Note the "n" indicates the level number, not the particle number!

Check whether the GUESS works:
Hψ n1n2

x1, x2( ) = H (x1) + H (x2 )[ ]ψ n1n2
x1, x2( )

                      = p1
2

2m
+V (x1)

⎧
⎨
⎩

⎫
⎬
⎭
ψ n1

x1( ) ⋅ψ n2
x2( ) + p2

2

2m
+V (x2 )

⎧
⎨
⎩

⎫
⎬
⎭
ψ n1

x1( ) ⋅ψ n2
x2( )

                           ψ x2( )  is unaffected by x1  or ∂
∂x1

.   ψ x1( )  is unaffected by x2  or ∂
∂x2

.  

                        = ψ n2
x2( )H (x1)ψ n1

x1( ) +ψ n1 x1( )H (x2 )ψ n2
x2( )
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So Hψ n1n2
x1, x2( ) =ψ n2

x2( )H (x1)ψ n1
x1( )

↓
  

+ψ n1 x1( )H (x2 )ψ n2
x2( )

↓
  

                                               En1
ψ n1

x1( )                       En2
ψ n2

x2( )
= En1

+ En2( )ψ n1ψ n2

=
n1

2 + n2
2( )π 2


2

2ma2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
a

sin n1π x1

a
⎛
⎝⎜

⎞
⎠⎟

 2
a

sin n2π x2

a
⎛
⎝⎜

⎞
⎠⎟

So we confirm that:
(i)  ψ n1n2

x1, x2( ) =ψ n1
x1( ) ⋅ψ n2

x2( )  is an eigenfunction of H = H (x1) + H (x2 )

(ii) Its eigenvalue is En1
+ En2( ).

THIS math formula describes a system in which
Particle 1 is in energy level n1  (we know this because n1  is the argument of the sine that has x1)
−and −
Particle 2 is in energy level n2  (we know this because n2  is the argument of the sine that has x2 ).

Notice that we would get the SAME total energy, 
n1

2 + n2
2( )π 2


2

2ma2 ,  if

Particle 1 were in energy level n2  and Particle 2 were in level n1.
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So we say that "ψ n1n2
x1, x2( )  is degenerate in energy with ψ n1n2

x2 , x1( )."
The degeneracy reflects the effect of exchanging the positions (levels) of the 2 particles,
so it is called "exchange degeneracy."
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III.  The Exchange Operator

We just considered two 2-particle wavefunctions:
ψ n1n2

x1, x2( ) :  Particle 1 in level n1,  Particle 2 in level n2

ψ n1n2
x2 , x1( ) :  Particle 1 in level n2,  Particle 2 in level n1

Define the Exchange Operator: P12   (not Parity!)  which represents the effect that
exchanging the positions of the particles has upon their total wavefunction.

Mathematically the effect of P12  is:
P12ψ n1n2

x1, x2( ) =ψ n1n2
x2 , x1( )

Notice that because E ψ n1n2
x1, x2( )( ) = E ψ n1n2

x2 , x1( )( ) = "E",  we expect H ,P12[ ] = 0.

Show this:
H ,P12[ ]ψ n1n2

x1, x2( ) = HP12ψ n1n2
x1, x2( ) − P12Hψ n1n2

x1, x2( )
                               = Hψ n1n2

x2 , x1( ) − P12Eψ n1n2
x1, x2( )

                               = Eψ n1n2
x2 , x1( ) − EP12ψ n1n2

x1, x2( )
                               = Eψ n1n2

x2 , x1( ) − Eψ n1n2
x2 , x1( )

                               = 0
We showed (Goswami p. 122) that if 2 operators commute, they have simultaneous
eigenfunctions.  Find those eigenfunctions for H  and P12 :
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Notice: ψ n1n2
x1, x2( )  is an eigenfunction of H :  Hψ n1n2

x1, x2( ) = n1
2 + n2

2( )π 2


2

2ma2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ n1n2

x1, x2( )

But it is NOT an eigenfunction of P12 :P12ψ n1n2
x1, x2( ) =ψ n1n2

x2 , x1( ).
                                                                    because these are not the same.
Similarly ψ n1n2

x2 , x1( )  is an eigenfunction of H  but not of P12 .

How many eigenfunctions do we expect for P12 ?       2....because P12( )2ψ = +1ψ ,  for arbitrary ψ .
The eigenvalues of P12  must be ±1.
These are the 2 simultaneous eigenfunctions of P12  and H :

ψ n1n2

(s ) ≡
1
2

ψ n1
x1( )ψ n2

x2( ) +ψ n1
x2( )ψ n2

x1( )⎡⎣ ⎤⎦      The "symmetric ψ" has eigenfunction +1 under operator P12 .

ψ n1n2

(a) ≡
1
2

ψ n1
x1( )ψ n2

x2( ) −ψ n1
x2( )ψ n2

x1( )⎡⎣ ⎤⎦      The "antisymmetric ψ" has eigenfunction -1 under operator P12 .

Facts about symmetric and antisymmetric:
(1) Mathematically it seems that if you have 2 particles, they should be free to arrange their ψ 's in either the 
ψ (s )  or the ψ (a)  combined state so that if you had an ensemble of pairs of particles, and you could somehow
detect whether they were in ψ (s )  or ψ (a),  you would find half in each.  (Of course we cannot measure ψ  directly.

We can only measure ψ 2 = probability.
(2) A surprising fact about nature is that they choose NOT to do this.  
Each kind of particle always picks ψ (s )  or ψ (a).  
Example: electrons always pick ψ (a),  photons always pick ψ (s ).
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(iii)  How do we know this?
Example for the electrons:
(1) We determine indirectly that they satisfy the Pauli Exclusion Principle.  That is, if we try to add
more and more electrons to an atom, they enter higher and higher energy levels and "refuse" to be 
all in the same level.    

                   same ψ
So we have experimental data that 2 e's will not occupy the same state.  Now check how occupying
the same state would affect their combined ψ :

Suppose that 2e's were in ψ (s ) :ψ n1n2

(s ) ≡
1
2

ψ n1
x1( )ψ n2

x2( ) +ψ n1
x2( )ψ n2

x1( )⎡⎣ ⎤⎦.

Force them to be in the same state, n1 :

ψ n1n1

(s ) ≡
1
2

ψ n1
x1( )ψ n1

x2( ) +ψ n1
x2( )ψ n1

x1( )⎡⎣ ⎤⎦

        = 2ψ n1
x1( )ψ n1

x2( ).

Now suppose that 2 e's are in ψ (a) =
1
2

ψ n1
x1( )ψ n2

x2( ) −ψ n1
x2( )ψ n2

x1( )⎡⎣ ⎤⎦.

Force them to be in the same state n1 :

Then we have ψ n1n1

(a) ≡
1
2

ψ n1
x1( )ψ n1

x2( ) −ψ n1
x2( )ψ n1

x1( )⎡⎣ ⎤⎦ = 0.
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Conclusion:        
If we do not know whether 2 e's are in ψ (s )  or ψ (a)  and we try to force them to be in the same state,
they will not do it.  Their way of "refusing" to do it is to maintain a ψ total  that becomes 0 if we 
force that situation.  The kind of ψ total  that can become 0 under this situation is ψ (a).
So we conclude: pairs of e's always arrange themselves in antisymmetric combined ψ 's.
Similarly, photons preferentiall occupy the same energy level.  We conclude that they arrange
themselves in symmetric combined ψ 's.

(iv)  There is a direct connection between the spin of a particle and the symmetry of the ψ 's
it makes with other particles that are identical to it.

Spin                       ψ total                     Name                    Examples
half integer (1/2)    ψ (a)                      fermion                  electron, quark
integer (0,1)           ψ (s )                       boson                     photon, W ± ,  Z,  gluon
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Outline 

I.  System of 2 interacting particles in 1 dimension 
II.  System of 1 particle in 2 dimensions 
III.  Multi (>2) particle systems in 3 dimensions 

Please read Goswami Chapter 11. 
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I.  Systems of 2 interacting particles in one dimension

Allow them to have different masses, m1  and m2.

In this case H =
p1

2

2m1

+
p2

2

2m2

+V x1 − x2( ).
Find the eigenvalues E  and eigenvectors ψ (x1x2 ) for this H .  
Note there is no reason to expect these ψ (x1x2 ) to be the product ψ (x1) ⋅ψ (x2 ) that occured
for separable (that is, non-interacting) H .
So we want to solve the equation:

−


2

2m1

∂2

∂x1
2 −


2

2m1

∂2

∂x1
2

⎛
⎝⎜

⎞
⎠⎟
ψ (x1x2 ) +V x1 − x2( )ψ (x1x2 ) = Eψ (x1x2 )

The way to solve this is to define:
                                                     x ≡ x1 − x2                                    "Eq. 1"

                                                    X ≡
m1x1 + m2x2

m1 + m2

                          "Eq. 2"

                                                    1
µ
≡

1
m1

+
1
m2

                                                     M ≡ m1 + m2
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Rewrite the Schroedinger Equation in terms of these variables:

∂
∂x1

=
∂x
∂x1

∂
∂x

+
∂X
∂x1

∂
∂X

= 1 ∂
∂x

+
m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

∂2

∂x2
1

=
∂
∂x1

∂
∂x

+
m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

⎡

⎣
⎢

⎤

⎦
⎥ =

∂x
∂x1

∂
∂x

∂
∂x

+
m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

⎡

⎣
⎢

⎤

⎦
⎥ +

∂X
∂x1

∂
∂X

∂
∂x

+
m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

⎡

⎣
⎢

⎤

⎦
⎥

      = 1 ∂2

∂x2 +
m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂x∂X
⎡

⎣
⎢

⎤

⎦
⎥ +

m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂x∂X
+

m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂X 2

⎡

⎣
⎢

⎤

⎦
⎥

       = ∂2

∂x2 +
2m1

m1 + m2

∂2

∂x∂X
+

m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2
∂2

∂X 2

Similarly,

∂
∂x2

=
∂x
∂x2

∂
∂x

+
∂X
∂x2

∂
∂X

= −1 ∂
∂x

+
m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

∂2

∂x2
2

=
∂
∂x2

−
∂
∂x

+
m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

⎡

⎣
⎢

⎤

⎦
⎥ =

∂x
∂x2

∂
∂x

−
∂
∂x

+
m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

⎡

⎣
⎢

⎤

⎦
⎥ +

∂X
∂x1

∂
∂X

−
∂
∂x

+
m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂
∂X

⎡

⎣
⎢

⎤

⎦
⎥

      = −1 ∂2

∂x2 +
m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂x∂X
⎡

⎣
⎢

⎤

⎦
⎥ +

m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

−
∂2

∂x∂X
+

m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂X 2

⎡

⎣
⎢

⎤

⎦
⎥

       = ∂2

∂x2 −
2m2

m1 + m2

∂2

∂x∂X
+

m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2
∂2

∂X 2
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Also V (x1 − x2 )→V (x)     and  ψ (x1, x2 ) =ψ (x,X).
Substitute all of this into the Schroedinger Equation:

−


2

2m1

∂2

∂x2 +
2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂x∂X
+

m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2
∂2

∂X 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ

−


2

2m2

∂2

∂x2 −
2m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂x∂X
+

m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2
∂2

∂X 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ +Vψ = Eψ

−


2

2
1
m1

+
1
m2

⎛
⎝⎜

⎞
⎠⎟
∂2

∂x2 −


2

2
1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

∂2

∂X 2 +V
⎡

⎣
⎢

⎤

⎦
⎥ψ = Eψ

−


2

2µ
∂2

∂x2 −


2

2M
∂2

∂X 2 +V
⎡

⎣
⎢

⎤

⎦
⎥ψ (x,X) = Eψ (x,X)

−


2

2µ
∂2

∂x2 +V (x)
  

−


2

2M
∂2

∂X 2
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ψ (x,X) = Eψ (x,X)

           H (x)              H (X)
Now the Hamiltonian is separable into functions of x and X, so we expect the ψ  to be 
expressible as a product:  ψ (x,X) =U(X) ⋅u(x)
Substitute this U(X) ⋅u(x) above.  We get: 
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H (x)U(X)u(x) + H (X)U(X)u(x) = EU(X)u(x)
U(X)H (x)u(x) + u(x)H (X)U(X) = EU(X)u(x)
U(X)H (x)u(x)
U(X)u(x)

+
u(x)H (X)U(X)
U(X)u(x)

=
EU(X)u(x)
U(X)u(x)

1
u(x)

H (x)u(x) + 1
U(X)

H (X)U(X) = E

1
u(x)

H (x)u(x)
  

= E −
1

U(X)
H (X)U(X)

  

  fn of x only             fn of X  only               These functions can be equal only 
                                                                    if both equal the same constant.  Call it Erel

Then we have

1
u(x)

H (x)u(x) = Erel ⇒
−2

2µ
∂2

∂x2 +V (x)
⎡

⎣
⎢

⎤

⎦
⎥u(x) = Erelu(x)

−and −

E −
1

U(X)
H (X)U(X) ⇒ E − Erel( )

  
U(X) = −2

2M
∂2

∂X 2 U(X)

                                        This is Ecm
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Conclusions about this: 

(1)  The X equation concerns the motion of the center of mass.  Note that there is no V acting 
on the center of mass. 

(2)  The x equation concerns the motion of the reduced mass (this is mathematically 
equivalent to a body of finite mass orbiting in the V of an immobile, infinitely massive 
other body.  Since the reduced mass does respond to the V, the V is in that equation. 

(3) When the Schroedinger Equation is expressed in terms of u(x)U(X), the motion of M and 
µ are decoupled, independent.  But when the Schroedinger Equation is expressed in 
terms of (x1, x2), the behaviors of the real physical particles (m1, m2) cannot be 
decoupled.  They remain really physically correlated, even when separated by great 
distances.  This implies a philosophical question: are the 2 particles truly correlated---for 
example, does measuring the position of m1 disrupt the momentum of m2?  This is the 
Einstein-Podolsky-Rosen (EPR) Paradox. 
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II.  System of 1 particle in 2 dimensions 
First convert 1-dimensional concepts to 2-dimensional concepts:
Concept                            1 - d                             2 - d

Free particle ψ                1
2π

eipx /              1
2π

eipx x / ⋅
1

2π
eipy y / =

1
2π

ei px x+ py y( )/

px                                     - i ∂
∂x

py                                     - i ∂
∂y

⎫

⎬
⎪⎪

⎭
⎪
⎪

                  - i ∂
∂x

⎛
⎝⎜

⎞
⎠⎟
x̂ - i ∂

∂y
⎛
⎝⎜

⎞
⎠⎟
ŷ = −i


∇2−d

V                                        V (x)                       V (r )              where r = xx̂ + yŷ

H                                       px
2

2m
+V (x)            

p 2

2m
+V (r ) = −2

2m

∇2−d

2 +V (r )

Consider a particle in a 2-dimensional square well:

V(x, y) =
0          if 0 ≤ x ≤ a              and         0 ≤ y ≤ a
∞         if x < 0,  x > a          or            y < 0,  y > a

⎧
⎨
⎩

The infinite walls cause the particle to be completely confined by the well, so we solve
the Schroedinger Equation for the region inside only.

−


2

2m
∂2ψ (x, y)

∂x2 −


2

2m
∂2ψ (x, y)

∂y2 = Eψ (x, y)

∂2ψ (x, y)
∂x2 +

∂2ψ (x, y)
∂y2 =

−2mE


2 ψ (x, y)
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Reduce this to 2 ordinary differential equations by separation of variables.  
GUESS that ψ (x, y) = u(x) ⋅ v(y).
Make this substitution, then divide through by ψ = uv.
∂2 u(x)v(y)[ ]

∂x2 +
∂2 u(x)v(y)[ ]

∂y2 =
−2mE


2 u(x)v(y)

v(y)∂2 u(x)[ ]
∂x2

u(x)v(y)
+

u(x)∂2 v(y)[ ]
∂y2

u(x)v(y)
=

−2mE


2 u(x)v(y)

u(x)v(y)
1

u(x)
∂2u(x)
∂x2 +

1
v(y)

∂2v(y)
∂y2 =

−2mE


2

1
u(x)

∂2u(x)
∂x2 =

−2mE


2 −
1
v(y)

∂2v(y)
∂y2                  

                                                         This can be solved for arbitrary u, v if each side equals a constant.

                                                         Call that constant " -2mEx


2 ".  Then we have

1
u(x)

∂2u(x)
∂x2 = −

2mEx


2                  ⇒                u(x) = 2

a
sin nπ x

a
⎛
⎝⎜

⎞
⎠⎟

     and      Ex =
n2π 2


2

2ma2

−and −
−2mE


2 −
1
v(y)

∂2v(y)
∂y2 = −

2mEx


2    ⇒ 1

v(y)
∂2v(y)
∂y2 =

−2m


2 E − Ex( )
 

                                                                                        call this Ey
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1
v(y)

∂2v(y)
∂y2 =

−2mEy


2                         ⇒ v(y) = 2

a
sin n 'π y

a
⎛
⎝⎜

⎞
⎠⎟

     and      Ey =
n '2 π 2


2

2ma2

So E = Ex + Ey =
n2 + n '2( )π 2


2

2ma2

and ψ (x, y) = u(x)v(y) = 2
a

sin nπ x
a

⎛
⎝⎜

⎞
⎠⎟

sin n 'π y
a

⎛
⎝⎜

⎞
⎠⎟

This ψ  describes a particle with:
n-th level excitation of its x-direction component, and
n'-th level excitation of its y-direction component.

Notice it would have the same energy if its 
x-component were at level n '  and its y-component were at level n.

This is called symmetry degeneracy.
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Now suppose that the well is not square, perhaps it has rectangular cross-section a × 2a

In this case we would get E =
n2

4
+ n '2

⎛
⎝⎜

⎞
⎠⎟
π 2


2

ma2 .

So we would have the same E  for (n = 2,  n ' = 2) and (n = 4,  n ' = 1).
This is called accidental degeneracy.

x̂

ŷ

2a

a
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III.  Multi (>2) particle systems in 3-dimensions
     Modify existing formulas:
(1) Convert from           1 - d        to         3 - d :
            position              x                       r
             ψ                      ψ (x)                 ψ (r )

             p                      - i ∂
∂x

               - i

∇3−d = -i ∂

∂x
x̂ +

∂
∂y
ŷ +

∂
∂z
ẑ

⎛
⎝⎜

⎞
⎠⎟

 

             V                       V (x)                 V (r )     
(2) Consider N  particles located at positions r1,  r2 ,...rN  which may interact:
For 2 particles, V (r1) +V (r2 )→V (r1,

r2 ) which is usually V (r1 −
r2 ).

Extrapolate to N  particles, all 2-body interactions, and sum:
V (r1,

r2 )→V (r1,
r2 ) +V (r1,

r3) + ...+V (r1,
rN )

             +                V (r2 , r3) +V (r2 , r4 ) + ...+V (r2 , rN )
             + ...
             +                                                    V (rN −1,

rN )
  

                        V (ri ,rj )
j
∑

i> j
∑

(3) Convert Hamiltonian from 1 particle to N  particles: H (p,  m,  V )→ H (pi ,mi ,Vi    for all 1 ≤ i ≤ N )
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The resulting Schroedinger Equation for N  interacting particles in 3-dimensions is:

- 
2

2mi

∇i
2ψ r1,

r2 ,..., rN( ) + V ri ,rj( )ψ
j=1

N

∑
i> j
∑

i=1

N

∑ r1,
r2 ,..., rN( ) = i ∂

∂t
ψ r1,

r2 ,..., rN( )
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Outline 

I.  Angular momentum introduction 
II.  Angular momentum commutators 
III.  Representing the L operators and the |λ,m’> wavefunctions in r-θ-ϕ space. 
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I.  Angular momentum introduction 

1.  Why is this important? 
Any physical system that has rotational motion has energy associated with that motion.  

That rotation must somehow be reflected in the Hamiltonian in order to correctly and 
fully describe the system’s energy (which is quantized by it).  The rotation is also 
reflected in the ψ, so the rotational status is input to the system’s characteristic as 
ψ(symmetric) or ψ(antisymmetric).  Thus the rotational behavior influences the system’s 
response to the Pauli Exclusion Principle. 

2. This gives us a motivation to discuss how to invent a Hamiltonian.  Whenever 
possible, people create quantum mechanical Hamiltonians by writing down the 
classical Hamiltonian for a system and then calling everything but known constants 
operators. 

How to find the quantum mechanical Hamiltonian for a particle that is orbiting at a 
constant radius R about a point in 3-dimensions. 

 


Lclassical =

r × p,  so
L2 = r × p( )i r × p( ) = r ⋅ r( )



p ⋅ p( )


− r ⋅ p( )


p ⋅ r( )


                                      R2       p2           0        0     if R is constant, the motion p is ⊥  to it.

So L2 = R2 p2 ,    and  p2 =
L2

R2
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Notice: since this particle is compelled to remain at constant distance R, it cannot fall inward, so it has
no potential energy, only kinetic energy.

So Hclassical =
p2

2m
  only

                 = 1
2m

L2

R2

                                            Recall moment of interia I = mR2

                  = L
2

2I
To convert this to a quantum mechanical operator, notice that while I is a constant (like mass),
L can be an operator.

So HQM =
Lop

2

2I
To convert Lclassical → Lop ,  notice

L = r × p implies Lx = ypz − zpy
                             Ly = zpx − xpz
                             Lz = xpy − ypx
and L2 = L2

x + L
2
y + L

2
z

Replace the pi  by - i ∂
∂xi

 and treat the xi  as operators (so respect the commutation rules).
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II.  Angular momentum commutation rules
Begin by developing foundational commutators:

Lx , z[ ] = ypz − zpy( ), z⎡⎣ ⎤⎦ = ypz , z⎡⎣ ⎤⎦ 
− zpy , z⎡⎣ ⎤⎦ 

                                                            = 0 because z, z[ ] = 0 and f (y), z[ ] = 0
                                           ypzz − zypz
                                           ypzz − yzpz
                                           y pz , z⎡⎣ ⎤⎦
                                           y −i( )
Lx , z[ ]                             = - iy

Also:

Lx , pz⎡⎣ ⎤⎦ = ypz − zpy( ), pz⎡⎣ ⎤⎦ = ypz , pz⎡⎣ ⎤⎦ 
− zpy , pz⎡⎣ ⎤⎦ 

                                                 = 0 because z, z[ ] = 0 and f (y), z[ ] = 0

                                           - zpy pz − pzzpy{ }
                                           - zpz py − pzzpy{ }
                                           - z, pz⎡⎣ ⎤⎦ py
                                           - i( ) py
Lx , pz⎡⎣ ⎤⎦                             = - ipy
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Also Lx , x[ ] = Lx , px[ ] = 0

function of y, z only

Use these to find Li ,Lj⎡⎣ ⎤⎦ :

Lx ,Ly⎡⎣ ⎤⎦ = Lx , zpx − xpz( )⎡⎣ ⎤⎦ = Lx , zpx[ ]− Lx , xpz⎡⎣ ⎤⎦
             = Lxzpx − zpxLx{ } − Lxxpz − xpzLx{ }
              = Lx , z[ ]


px − x Lx , pz⎡⎣ ⎤⎦ 

              = −iy( ) px − x −ipy( )
             = −i ypx − xpy( )
Lx ,Ly⎡⎣ ⎤⎦ = -iLz

Similarly, 

Ly ,Lz⎡⎣ ⎤⎦ = -iLx
Lz ,Lx⎡⎣ ⎤⎦ = -iLy

⎫
⎬
⎪

⎭⎪
  we get these by permuting x→ y→ z→ x
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Recall that if 2 operators have a nonzero commutator, they cannot be measured simultaneously.
They have an uncertainty relation that shows how measurement of one compromises measurement of 
the other:

ΔAΔB ≥
A,B[ ]
2i

                             The L commutators indicate that we cannot simultaneously know all 3 components
                             of a particle's angular momentum.  For example,

ΔLxΔLy ≥
Lx ,Ly⎡⎣ ⎤⎦

2i
=

Lx ,Ly⎡⎣ ⎤⎦
2i

=
iLz
2i

=


2
Lz          and similarly for x→ y→ z→ x
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Now consider L2 = Lx
2 + Ly

2 + Lz
2

L2 ,Lz⎡⎣ ⎤⎦ = Lx
2 + Ly

2 + Lz
2( ),Lz⎡⎣ ⎤⎦

             = Lx
2 ,Lz⎡⎣ ⎤⎦ + Ly

2 ,Lz⎡⎣ ⎤⎦ + Lz
2 ,Lz⎡⎣ ⎤⎦
↓

 

                                                      0
             =LxLxLz − LzLx

↓


Lx + LyLyLz − LzLy
↓


Ly

                         iLy + LxLz              LyLz − iLx
             =LxLxLz

− iLyLx −LxLzLx 
+ LyLyLz − LyLzLy
  

+ iLxLy

                          Lx Lx ,Lz⎡⎣ ⎤⎦                    Ly Ly ,Lz⎡⎣ ⎤⎦
                          Lx −iLy( )                      Ly iLx( )
              = − iLxLy − iLyLx + iLyLx + iLxLy = 0

Similarly, L2 ,Lx⎡⎣ ⎤⎦ = L2 ,Ly⎡⎣ ⎤⎦ = 0
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Conclusions about this:

1) We cannot simultaneously know Lx ,  Ly ,  and Lz ,  but we CAN simultaneously

know L2  (but not L) and any one of the Li .

2) The convention is to choose (or define) the Li  that we measure simultaneously as L2  and Lz .

3)  Recall that operators that commute have simultaneous eigenvectors.  
Label the eigenvectors λm '  where 
λ  is the eigenvalue of L2 :                       L2 λm ' = λ λm '
and m '  is the eigenvalue of Lz :              Lz λm ' = m ' λm '
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III.  Representing the L  operators and λm '  in r-θ-φ  space

Notice λm '  is a Hilbert space ket that describes an object with L2  eigenvalue λ  and 
Lz  eigenvalue m '.
Project it into coordinate space: x-space λm '
and choose r-θ-φ  (that is, spherical) coordinates:  θφ λm '

                                                               No "r" is needed because angular momentum concerns 
                                                               angular motion without change in radius.
Plan for this section:
(i)  Find 


L(r,  θ,  φ)

(ii) Find Lz (r,  θ,  φ) =

L ⋅ ẑ

(iii) Find L2 (r,  θ,  φ) =

L ⋅

L

(iv) Substitute in Lz θφ λm ' = m ' θφ λm '  to get
       (a) restrictions on m '  and λ
       (b) the form of θφ λm '

Carry out the plan:
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(i) Find 

L(r,  θ,  φ)    


L = r × p = r × −i


∇( )

                                  Recall r = rr̂

                                             

∇ = r̂

∂
∂r

+ θ̂ 1
r
∂
∂θ

+ φ̂ 1
r sinθ

∂
∂φ

So 

L = −irr̂ × r̂

∂
∂r

+ θ̂ 1
r
∂
∂θ

+ φ̂ 1
r sinθ

∂
∂φ

⎡

⎣
⎢

⎤

⎦
⎥

        = − ir r̂ × r̂
∂
∂r

+ r̂ × θ̂
1
r
∂
∂θ

+ r̂ × φ̂


1
r sinθ

∂
∂φ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                        0              φ̂                  -θ̂

L = −i φ̂ ∂

∂θ
− θ̂ 1

sinθ
∂
∂φ

 
⎧
⎨
⎩

⎫
⎬
⎭

(ii) Find Lz =

L ⋅ ẑ        Recall ẑ = r̂ cosθ − θ̂ sinθ

So Lz = r̂ cosθ − θ̂ sinθ⎡⎣ ⎤⎦ ⋅ −i( ) φ̂ ∂
∂θ

− θ̂ 1
sinθ

∂
∂φ

⎡

⎣
⎢

⎤

⎦
⎥

         = − i r̂ ⋅ φ̂


cosθ ∂
∂θ

− θ̂ ⋅φ̂


sinθ ∂
∂θ

− r̂ ⋅θ̂
cosθ
sinθ

∂
∂φ

+ θ̂ ⋅θ̂
sinθ
sinθ

∂
∂φ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= −i

∂
∂φ

                       0                      0                    0                      1
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(iii) Find L2 =

L ⋅

L

= −i( ) φ̂ ∂
∂θ

− θ̂ 1
sinθ

∂
∂φ

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ −i( ) φ̂ ∂

∂θ
− θ̂ 1

sinθ
∂
∂φ

⎡

⎣
⎢

⎤

⎦
⎥

= −2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1
sin2θ

∂2

∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭

(iv.a)  Find restrictions that these forms impose upon m ':
Begin with Lz λm ' = m ' λm ' .  Apply θφ  to both sides:
θφ Lz λm ' = θφ m ' λm '
                                                     Let Lz  act to the left.  Move scalar m '  outside the integral.

−i
∂
∂φ

θφ λm ' = m ' θφ λm '

∂
∂φ

θφ λm ' =
im '


θφ λm '         Integrate:

θφ λm ' = f (θ) ⋅ e
im 'φ
               We don't yet know what f (θ) is.  Call it "P(θ)".

Notice that θφ λm '  is a wavefunction.  (We could call it "Ψλm ' θ,φ( )".)  
Like all quantum mechanically meaningful wavefunctions it must have the properties: 
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                                             Does f(q) meet these?             Does the j portion meet these?
(i)   continuous                        We will force this                                       yes
(ii)  square-integrable              We will force this                                       yes
(iii) single-valued                    We will force this                                        *

* only if we insist that θφ + 2π λm ' = θφ λm ' :

                                      e
im ' φ+2π( )

 = e
im 'φ
 = cosm 'φ


+ i sin m 'φ



                                     This works if m '


= ...− 3,−2,−1,0,1,2,3,...

                                     So m ' = m         where m = −3,−2,−1,0,1,2,3,...
                                     This is the restriction on what m '  can be.
Then,
(1) L z λm ' = m λm ' .                  We now rename this ket as λm  because either m or m' 
                                                        uniquely specify the state.
(2) θφ λm = eimφ /P(θ) = eimφP(θ).
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(iv.b)  Now find f(θ) to get the full θφ λm
Do this by demanding that P(θ) produces a θφ λm  that satisfies the original eigenvalue
equation that defined the λm :
L2 λm = λ λm

θφ L2 λm = λ θφ λm

                                       Substitute: (i) θφ L2 = −2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1
sin2θ

∂2

∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭
θφ

                                                         (ii) θφ λm = eimφP(θ)

−2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1
sin2θ

∂2

∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭
eimφP(θ) = λeimφP(θ)

−
1

sinθ
∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
eimφP(θ) − 1

sin2θ
∂2eimφ

∂φ 2

↓


P(θ) = λ

eimφP(θ)

                                                          -m2eimφ

−
eimφ

sinθ
∂
∂θ

sinθ ∂P(θ)
∂θ

⎧
⎨
⎩

⎫
⎬
⎭
+
m2eimφ

sin2θ
P(θ) = λ


eimφP(θ).                        
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Cancel all the eimφ 's
Define ζ ≡ cosθ
then sin2θ = 1−ζ 2

and ∂
∂θ

=
∂ζ
∂θ

∂
∂ζ

= − sinθ ∂
∂ζ

so 1
sinθ

∂
∂θ

= −
∂
∂ζ

For consistency, rename P(θ)→ P(ζ ).
Make all these substitutions to get:

∂
∂ζ

sinθ sinθ
↓

 

1
sinθ

∂
∂θ

↓
 

P(ζ )
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
+

m2

1−ζ 2 P(ζ ) = λ


2 P(ζ )

           1-ζ 2       - ∂
∂ζ

∂
∂ζ

1-ζ 2( ) - ∂
∂ζ

⎛
⎝⎜

⎞
⎠⎟
P(ζ ) + m2

1−ζ 2 P(ζ ) = λ


2 P(ζ )

0 =
∂
∂ζ

1-ζ 2( ) ∂
∂ζ

P(ζ ) + λ


2 −
m2

1−ζ 2

⎡

⎣
⎢

⎤

⎦
⎥P(ζ )                              Eq.  1
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This is solved by

Pm ζ( ) = 1−ζ 2( )m /2 dm

dζ m P ζ( )

Associated Legendre function            P

ζ( ) ≡ 1

2 !
d 

dζ 
ζ 2 −1( )  

Rewrite this as 

 P


m ζ( ) = 1
2 !

1−ζ 2( )m /2 d +m

dζ +m
ζ 2 −1( )

Notice: because of the form of this derivative, P


m = 0 unless  ≥ m
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Facts about the P


m :
(i)  They are orthogonal if they have the same m:

P


m

−1

+1

∫ ζ( )P '
m ζ( )dζ = δ

 '

(ii)  Normalization:

dζ P


m 2
=

2
2 +1

 + m( )!
l − m( )!−1

+1

∫
(iii) Alternative form:

P


m ζ( ) = −1( )m
2

 + m( )!
! l − m( )! 1-ζ 2( )−m /2 d −m

dζ −m
ζ 2 −1( )

(iv) They imply a surprising quantization condition.  Consider the case where m = 0.  
Then the equation they solve becomes
∂
∂ζ

1-ζ 2( ) ∂
∂ζ

P(ζ ) + λ


2
⎡
⎣⎢

⎤
⎦⎥
P(ζ ) = 0

Suppose that we did not have the P ζ( )  and wanted to solve this equation with the
series technique.  We could guess: 

P(ζ ) = cnζ
n

n=0

∞

∑
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Then dP
dζ

= ncnζ
n−1

n=1

∞

∑

1−ζ 2( ) dP
dζ

= ncnζ
n−1

n=1

∞

∑ − ncnζ
n+1

n=1

∞

∑
d
dζ

1−ζ 2( ) dP
dζ

= n n −1( )cnζ n−2

n=2

∞

∑ − n n +1( )cnζ n

n=1

∞

∑
Substitute these back in:

n n −1( )cnζ n−2

n=2

∞

∑ − n n +1( )cnζ n

n=1

∞

∑ +
λ


2 cnζ
n

n=0

∞

∑ = 0

Collect terms with like powers of ζ :

ζ 0 :    2 ⋅1 ⋅ c2                   + λ


2 c0 = 0

ζ 1 :    3 ⋅2 ⋅ c3 −1 ⋅2 ⋅ c1 +
λ


2 c1 = 0

ζ 2 :    4 ⋅ 3 ⋅ c4 − 2 ⋅ 3 ⋅ c2 +
λ


2 c2 = 0

...

ζ n :    n + 2( ) n +1( )cn+2 − n n +1( ) − λ


2
⎧
⎨
⎩

⎫
⎬
⎭
cn = 0
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This implies the recursion relation:

cn+2 =
n n +1( ) − λ


2

⎛
⎝⎜

⎞
⎠⎟

n + 2( ) n +1( ) cn

As n →∞, this P ζ( )  series ∝ζ n ,  so it diverges.  Force it to truncate at some n =  as follows.
Notice that since n ∈ 0,1,2,...{ }  by definition of the P


 series, then also ∈ 0,1,2,...{ }.  So λ

must be (integer) ⋅2 .
(1) Set λ =   +1( )2 .

     Then c
+2 =

  +1( ) −   +1( )2


2

⎛
⎝⎜

⎞
⎠⎟

 + 2( )  +1( ) c

= 0

(2) If  is odd, set c0 = 0;  if  is even, set c1 = 0
(3) Because λ~, relabel λm → m

Summarize all the restrictions on m' and λ:
(i)  L2

m =   +1( )2
m ,        where  = 0,  1,  2,  ...

(ii)  Lz m = m m ,                  where m = 0,  ±1,  ± 2,  ...,±
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I.  Graphical representation of angular momentum 
II.   Spherical harmonics 
III.   The rigid rotator 
IV.   Generalized angular momentum 
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I.  Graphical representation of angular momentum
Represent 


L as a vector (using the arrow)

Since L2
m =   +1( )2

m ,

L =   +1( )
Draw a vector of length   +1( ) :


L  has a limited number of orientations permitted to it relative to the z-axis: Lz = m,  where m ≤ .
Example: 
if  = 2,  then Lz = 2,  1,  0,  -1,  -2

but L = 2(2 +1) = 2.45

 
  +1( )
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Notice:
(i)  The length of L  is quantized
(ii)  The direction of L  is quantized.  It behaves as if it must "fit" into specific "slots" in space
relative to the z-axis.  There are 2+1 slots available.

(iii) L can never align exactly with the z-axis: m <   +1( ).  So Lx  or Ly  is always nonzero.
(iv) Only 1 component is quantized.  We choose to call it Lz .  Lx  and Ly  can take any values

consistent with the requirement that Lx
2 + Ly

2 + Lz
2 =  L2 .
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II.  Spherical harmonics

Recall we found that θφ λm ~ P


m cosθ( ) ⋅ exp imφ( ).  Insert the normalization term N


m .  Then
θφ λm = N



mP


m cosθ( ) ⋅ exp imφ( )
Facts about the θφ λm :
(i)  These are the simultaneous eigenfunctions of L2  and Lz .
(ii)  They are a family of mathematical functions called "spherical harmonics."
(iii)  Alternative symbol: Y

m (θ,φ) = θφ λm
(iv) Normalization:

for m ≥ 0,  N


m =
2 +1

4π
 − m( )!
 + m( )!

⎡

⎣
⎢

⎤

⎦
⎥

1/2

−1( )m

for m < 0 Y
m = −1( )m Y *

,−m

                 negative

(v) Y
m

2 =
2 +1

4πm=−

+

∑
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(vi)  Parity:
Recall the parity operation reflects every coordinate through the origin.  In rectangular coordinates,
that means 
                                         x→ -x,  y→ -y,  z→ -z.    Notice this is not really the same as mirroring.
In spherical coordinates:
                                         r→ -r
                                         θ → π −θ
                                         φ → π + φ

Recall Y
m θ,φ( ) ~ eimφ 1− cos2θ( )−m /2 d −m

d cosθ −m
cos2θ −1( )

 So Y
m π −θ,π + φ( ) = eim π +φ( )

 1− cos2 π −θ( )
  

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−m /2

d −m

d cos π −θ( )−m
  

cos2 π −θ( )
  

−1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟



                   

                      eimπeimφ = −1( )m eimφ
  

     cos2θ              d −m

d cos −θ( )−m
       cos2θ


−1
⎛

⎝
⎜

⎞

⎠
⎟



  

                                                                                   −1( )−m cos2θ −1( )
     Y

m π −θ,π + φ( )  =   −1( )m  −1( )−m eimφ  P


m = −1( )Ym
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Conclusion: PY
m = −1( )Ym .....an eigenvalue equation.

The Y
m's are simultaneous eigenfunctions of Parity and L2.  We expect to find that P,L2⎡⎣ ⎤⎦ = 0.
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III.  An example use of L2  in quantum mechanics: the rigidly rotating molecule

                              m
                                                                         R
                                                                                                                         m

Recall H =
L2

2I
H ψ = E ψ

L2

2I
ψ = E ψ         Since we know that the eigenfunctions of L2  are the m ,  replace  ψ → m

E =
1
2I
m L2

m

E

=

1
2I
  +1( )2

Recall each -type level has 2+1 m-type sublevels.

All 2+1 of them have the same energy: 1
2I
  +1( )2 .  This is a degeneracy.

If we observe the spectrum of a molecular substance and find that the spectral lines are separated by
a pattern involving whole numbers  like this, we know that the molecules have rotational excitation
(as distinguished from, for example, vibrational excitation, which would give a pattern of lines

separated by ω n +
1
2

⎛
⎝⎜

⎞
⎠⎟

.
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IV.  Generalized angular momentum

Recall we have operators Lx ,  Ly ,  and Lz  whose action on a wavefunction represents the act
of measuring the states' angular momentum components.
Generalize these to include the possibility of other forms (that is, spin) of angular momentum.

The generalized angular momentum operators are called
Jx ,  Jy ,  and Jz    

                               Later we will see that J  and L  are related by 

J =

L +

S

Because the J's are generalized versions of the L's we can include in their definition the following:

(1) Jx , Jy⎡⎣ ⎤⎦ = iJz          and x→ y→ z→ x

(2) J 2 = J 2
x + J

2
y + J

2
z

(3) Because of relations (1) and (2), it will turn out that J 2 , Ji⎡⎣ ⎤⎦ = 0   (we will focus on i = z).

Then J 2  and Jz  have simultaneous eigenfunctions.
                                   Call these λJmJ ' ,  NOT NECESSARILY the same as m

So J 2 λJmJ ' = λJ λJmJ '  

and  Jz λJmJ ' = mJ ' λJmJ '
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We don't yet say what mJ '  is.  Especially, we do not yet see whether it is an integer.
However divide  out of it to define a related number:
Let mJ ' ≡ mJ            where mJ  is unknown, not necessarily integer
Then we can rename λJmJ ' → λJmJ

Question :  What are λJ ,  mJ ,  and λJmJ ?

*Why we CANNOT find them in the way we found λ, m, and so forth for the L  operators:
When we were examining the L's we found λ,  m ',  and λm '  by guessing that the form of

Lop  mimics the form of 

Lclassical =

r × p.  Then we substituted Lop (r, p) = L(θ,φ) and solved

the equation L2 = λ .  Here J  is an operator which we define ONLY on the basis of 
having commutation relations similar to those of the L's.  We have NOT said "J = r × p".

So we cannot get J(θ,φ).  We only know the J's in the Hilbert space of λJmJ ,  not in 

θφ λJmJ .  To find λJ ,  mJ ,  and λJmJ ,  we need to define ladder operators for the states
of J.
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II.  Finding mJ and λJ 
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IV.   Lz is the generator of rotations 
V.  Conservation of angular momentum in quantum mechanics 
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I.  Angular momentum ladder operators
Define J+ ≡ Jx + iJy  and
            J− ≡ Jx − iJy
To demonstrate that these are raising and lowering operators, we will need to use their
commutators.  Work out the commutators here:

Jz , J+⎡⎣ ⎤⎦ = Jz , Jx + iJy( )⎡⎣ ⎤⎦ = Jz , Jx⎡⎣ ⎤⎦ 
+ i Jz , Jy⎡⎣ ⎤⎦ 

                                            iJy( )       −iJx( )            BY DEFINITION of the J's

                                       =  iJy + Jx( )
Jz , J+⎡⎣ ⎤⎦ = J+

Similarly, 
Jz , J−⎡⎣ ⎤⎦ = −J−
J+ , J−[ ] = 2Jz

Also notice J+J− = Jx + iJy( ) Jx − iJy( ) = Jx2 + Jy2
 

+ i JyJx − JxJy( )
  

                                                                  J 2 − Jz
2           - iJz

Thus  J+J− = J
2 − Jz

2 + Jz
Similarly,  J−J+ = J

2 − Jz
2 − Jz
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Now show that J+  and J−  are ladder operators:
Consider JzJ+ λJmJ

                                        Recall Jz , J+⎡⎣ ⎤⎦ = J+ ,  so
                                                     JzJ+ − J+Jz = J+
                                         So JzJ+ = J+Jz + J+ = J+ Jz + ( ).  Use this:

JzJ+ λJmJ = J+ Jz + ( ) λJmJ

                  = J+ Jz λJmJ +  λJmJ{ }
                  = J+ mJ λJmJ +  λJmJ{ }
                   = mJ +1( )J+ λJmJ

We interpret this to mean that J+  acting on λJmJ  raises the mJ  level by 1 (to mJ +1).  This is
evident when Jz  acts on the result.  The definition of Jz  is "the operator that extracts the
m-eigenvalue," and we see that Jz  extracts eigenvalue mJ +1. So J+  is a raising operator which
raises the eigenvalue of Jz  by 1.
Similarly, 
JzJ− λJmJ = mJ −1( )J+ λJmJ ,  so J−  is a lowering operator which lowers the eigenvalue of
Jz  by 1.
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Notice that J+  and J−  have no effect upon λ, which is the eigenvalue of J 2 .

This allows us to predict that J 2 , J+⎡⎣ ⎤⎦ = 0.  Check it---it is true.
Summarizing:
J+ λJ ,mJ = cλJ mJ

λJ ,mJ +1

J− λJ ,mJ = dλJ mJ
λJ ,mJ −1

                  These normalizations (cλJ mJ
,  dλJ mJ

) have not yet been specified.
Note, if we are working on a problem in which we are explicitly considering J = L
(that is, we know that spin is not involved), then we can call these operators L+  and L− .
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II.  Finding mJ  and λJ

First we show that m is bounded.  That means, there exists an mJMAX
< ∞ and an mJMIN

< −∞.
To see this, note 
the length of a component is ≤  the length of its vector:
                                        Lz ≤ L

                      eigenvalue m ≤ eigenvalue λ
To find m JMAX

:
By definition of "max," there can be no state with higher m than mmax .  To enforce this, insist 

that J+  cannot raise a state with λJ ,mJMAX
 higher.  Demand

J+ λJ ,mJMAX
= 0.

                                 Apply J−  to both sides:

J−J+ λJ ,mJMAX
= J− 0 = 0

J 2 − Jz
2 − Jz( )

  

λJ ,mJMAX
= 0

λJ − m
2
JMAX


2 −  mJMAX
( ) λJ ,mJMAX

= 0

λJ − mJMAX
mJMAX

+1( )2 = 0                         "Eq.  1"
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Similarly begin with J− λJ ,mJMIN
= 0.

Apply J+  to both sides to get

λJ − mJMIN
mJMIN

−1( )2 = 0                         "Eq.  2"

Eliminate λJ  from Eq. 1 and Eq 2. to get

mJMAX
mJMAX

+1( )2 = mJMIN
mJMIN

−1( )2

This has 2 solutions:

mJMIN
= mJMAX

+1( )                            and                    mJMIN
= −mJMAX

Impossible by the definitions                                   So this is the only solution.
of mJMIN

 and mJMAX
.                                                    Name mJMIN

= "− j".
                                                                                 Then mJMAX

= + j
Now substitute mJMAX

= j  into Eq. 1 to get

λJ = j j +1( )2

What values can j take?
Note that if we begin at level mJMIN

,  we can arrive at mJMAX
 by applying Jz  some

number of times.
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So mJMAX
− mJMIN

=  integer (or 0)
j - (- j) = integer
2 j = integer

j =
integer

2
              Not like the  from L!

We will see that J  concerns spin "S" (when it is half-integer) and 
orbital angular momentum "L" (when it is whole-integer).
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III.  Normalizing the λJ ,mJ

First, since λ=λ(j), we can rename the states j,mJ

Then to be clear we should call the eigenvectors of L2  the ,m


                                                                                                           Note subscript
We want to find cλJ mJ

≡ cjm  which is defined through J+ λJ ,mJ = cλJ mJ
λJ ,mJ +1

and dλJ mJ
≡ djm  which is defined through J− λJ ,mJ = dλJ mJ

λJ ,mJ −1

To get cjm :  Find jm J−J+ jm = jm J 2 − Jz
2 − Jz jm        Note J− = J

†
+ . 

jm J †
+J+ jm = jm J 2 − Jz

2 − Jz jm      Apply J †
+  to the left, all other operators to the right.

J †
+ jm J+ jm = jm J 2 − Jz

2 − Jz jm  

cJm
* j,m +1 cJm j,m _1 = jm j j +1( )2 − m2

J
2 − mJ jm

cJm
2 j,m +1 j,m _1
  

= j j +1( )2 − m2
J

2 − mJ jm jm
 

            Require =1                                                 Require =1

cJm
2 = j j +1( ) − m2

J − mJ⎡⎣ ⎤⎦
2

So cJm =  j j +1( ) − mJ mJ +1( )
Similarly, dJm =  j j +1( ) − mJ mJ −1( )
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IV.  Lz  is the generator of rotations in space
Recall that:

(i)  p = -i ∂
∂x

 is the generator of translations in space: f (x + x0 ) = eipx0 / f (x)

(ii) H = +i
∂
∂t

 is the generator of translations in time: ψ (t + t0 ) = e− iHt0 /ψ (t)

Now show that Lz  is the generator of rotations:
Consider f (φ + φ0 ).  Expand in a Taylor Series for small φ0 :

f (φ + φ0 ) = 1
n!n=0

∞

∑ φ0
n ∂

n f φ( )
∂φ n

                                                But Lz = −i
∂
∂φ

,  so ∂
∂φ

=
i

Lz

              = 1
n!n=0

∞

∑ φ0
n i


⎛
⎝⎜

⎞
⎠⎟
n

Lz( )n
  

f φ( )

                   This is the exponential series.
f (φ + φ0 ) = eiLzφ0 / f φ( )
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V.  Conservation of angular momentum in quantum mechanics

Recall we showed that for any Hermitian operator Q,
d Q
dt

=
i


H ,Q[ ] +
∂Q
∂t

So if Q ≠ Q(t),  Q is conserved if H ,Q[ ] = 0.
Li ≠ Li (t).
Evaluate H ,Li[ ]  for V = V r = r1 − r2( )

H ,Lx[ ] = p2

2m
+V (r)

⎛
⎝⎜

⎞
⎠⎟

,Lx
⎡

⎣
⎢

⎤

⎦
⎥

            = 1
2m

p2 ,Lx⎡⎣ ⎤⎦ + V (r),Lx[ ]

            = 1
2m

px
2 ,Lx⎡⎣ ⎤⎦ + py

2 ,Lx⎡⎣ ⎤⎦ + pz
2 ,Lx⎡⎣ ⎤⎦{ } + V (r),Lx[ ]

                                           Recall that for any commutator involving products, AB,C[ ] = ABC − CAB
                                           Add to the righthand side: 0 = -ACB + ACB
                                           AB,C[ ] = ABC - ACB + ACB − CAB
                                            AB,C[ ] = A B,C[ ] + A,C[ ]B
H ,Lx[ ] = 1

2m
px px ,Lx⎡⎣ ⎤⎦ + px ,Lx⎡⎣ ⎤⎦ px + py py ,Lx⎡⎣ ⎤⎦ + py ,Lx⎡⎣ ⎤⎦ py + pz pz ,Lx⎡⎣ ⎤⎦ + pz ,Lx⎡⎣ ⎤⎦ pz{ } + V (r),Lx[ ]
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H ,Lx[ ] = 1
2m

px ⋅0 + 0 ⋅ px + py ⋅ −ipz( ) + −ipz( ) ⋅ py + pz ⋅ ipy( ) + ipy( ) ⋅ pz{ } + V (r),Lx[ ]

           = i
2m

− py pz − pz py + pz py + py pz{ }
  

+ V (r),Lx[ ]
  

                                           0                           V (r), ypz − zpy( )⎡⎣ ⎤⎦
           =                                                         y V (r), pz⎡⎣ ⎤⎦ + V (r), y[ ]

 
pz − z V (r), py⎡⎣ ⎤⎦ + V (r), z[ ]

 
py

                                                                                                 0                                         0
Another useful commutator identity:  Recall x, p[ ] = i.
                                                            Notice x2 , p⎡⎣ ⎤⎦ = x x, p[ ] + x, p[ ]x = 2ix.

                                                            Then by induction, xn , p⎡⎣ ⎤⎦ = nix
n−1.

                                                            Consider a general function f (x) = anx
n .

n
∑

                                                            Then f , p[ ] = an xn , p⎡⎣ ⎤⎦ = anni
n
∑ xn−1 = i

n
∑  ann

n
∑ xn−1 = i

∂f
∂x

So H ,Lx[ ] = y i
∂V
∂z

⎛
⎝⎜

⎞
⎠⎟
− z i

∂V
∂y

⎛
⎝⎜

⎞
⎠⎟
= i r ×


∇V{ }

x

Thus 
d Lx
dt

=
i

i r ×


∇V{ }

x
= − r ×


∇V{ }

x
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Apply this to the full vector 

L = Lx x̂ + Lyŷ + Lzẑ :

d

L
dt

= − r ×

∇V

                                    r = rr̂

                                    If V = V (r),  

∇V =

∂V
∂r

r̂

d

L
dt

= − r
∂V
∂r

r̂ × r̂ = 0.

                        0


