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Please read Goswami Chapter 8



I. Solving the simple harmonic oscillator with the ladder operators
Recall a‘ u0> =0

Suppose we want to find the eigenfunctions in x-space

Write out a = f(x). Use —ihai for p.
X
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2h 2mh 0x
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Multiply by ~/2 and define &= o

{’g’ + (%}uo =0. Integrate:
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u, = Ce™ 2. Normalize:
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s *H (&) This is the same solution as was found with the series method.

Note, it turns out that the ‘un> are orthonormal, so
(u,|u,)=25

To find the eigenvalues, recall H|u) = hw[aTa + %}\ u)=E|u)

E 1

So a*a\u>=(—_—j\u>

ho 2



Consider |u0>
We know that a|u0> =0

Soa'alu,)=0

>—>




II. Representing an operator as a matrix

0,).

Consider the mathematical operation <um |aT
What this means i1s:

(1) Begin with an initial state |un> , the nth energy level of H or N.

(ii) Operate on it with a’, which raises it to state |u,,,)

That is, a'

un>=c

(111) Calculate the inner product of that result with <um | :

<um |C un+1> = C<um un+1>
!
éinJﬁﬁ
Now consider (um |c un>. By a similar analysis this gives c'<um u

Now find the ¢ and ¢'.

un+1> where ¢ 1s a normalization constant.

n—1

>=c'5

m,n—1°



Start with

B 1 4t n+l L
un+1>_m( ) 0>

3 1 1 (T)n+1 >
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B a’ I(T)n >
N CED RN
u,)

al
un+1> = |un> Rewrite this as:

U P

J+1)|u,, Y=a'lu,). Multiply on the left with (x,,|:

gum|«/(nj-1) u”i> = <um|aT un>

Vi + 1), |u, )
l
6m,n+1

So (u,|a’|u,)=\(n+1)8

m,n+1



Now consider the case for operator a:

o)

Recall we showed that a(a*)n = n(a’L)n_1 + (aT)n a

Start with a‘ u, : (aT)n

>=aﬁ

So a un> = %(M)n_l u0>+ﬁ(6ﬂ)nw
l
0

Now multiply on the left with (um ‘ :
n n—1
un>=<um‘ﬁ(a7) l/t0>

=(u_|n 1 at)”

1

un—l>

(,]a

)

J/

= (u, [N, ) =

un>=x/g5

So <um‘a

m,n—1



Construct a table for operator a' :

INITIAL STATES n=0 1 2 3 4
FINAL STATES

ooooo

m= 0 O 0 0 0 0
1 Jo 0 o0 o0
2 0 J2 0 0 0
3 0 043 0
4

Construct a table for operator a :

INITIAL STATES n=0 1 2 3 4
FINAL STATES

m= 0 0 J1 0 0 0
1 0 0 2 0 0
2 0 0 0 3 0
3 O 0 0 0
4



These "tables" are the matrix representations of the operators a' and a.
Notice that because the simple harmonic oscillator has an infinite number
of eigenstates, the matrices are infinite-dimensional.

The matrices encode the

-amount of overlap between states

un> and ‘um>

-the amplitude for transition between un> and ‘um>
[ l
\J

Jprobability  (caused by a ora’)



Recall we showed that the operator that evolves W in time is

U — e—iH(t—tO )/ h .

Soifz, =0,

W) =" |¥(0)).

Consider some operator A which is not itself a function of time. Suppose we want to find its
expectation value at time t:

(A), = (¥ A ¥ (1)

=(P(0)|e"™" Ae™™"| W (0))

We have a choice about whether to group the exponential functions with the A or with the ¥(0).

2 groupings:

<\_I[(O) eiHl‘/h Ae—th/h ‘\P(O)> <LIJ(0) \eiHZ/hAe_th/Fi‘\P(O»

(‘P(t)\ A\‘P(t)) (‘P(O)\ A'\ ‘P(O)>
Here A 1s not a function of ¢ but W is. Here A' is a function of # but ¥ is not.
The view that "the evolution of time The view that "the evolution of time
changes the ¥'s, not the operators" is the changes the operators, not the W's" is the

Schroedinger Picture of quantum mechanics. Heisenberg Picture of quantum mechanics.



Up to now we have viewed everything from the Schroedinger perspective (that is,
the Schroedinger Equation is a time-development equation for ‘P.
Now consider the Heisenberg Picture and find a time-development equation for A’.

Start with the definition:
A!(l,) — eth/hAe—th/h

' iHt/h iHt/h
dA' @) ™) i A i  OL€™)
dt ot 3 ot
!
0
=ﬂ\eth/hAe—th/hj n gth/hAeth/ii(_iHj
h i Y h
A'(t) A'(t)
Conclude:
dA'(t) i , .. : : : :
y = %[H A (t)]. This is the Heisenberg equivalent to the Schroedinger Equation.
4

What if A (not A') is explicitly time dependent? This is called the Interaction Picture and will
be addressed in Chapter 22.



IV. The equations of motion for x,,(¢) and p,,(¢) in the Heisenberg Picture

What we want:
X,, (1) = fi (¢, constants)
p,,(t) = f,(t, constants).
The constants are x(r = 0), p(t =0), m, h, k, and so forth.

These are constants specified by the environment of the problem.

Note these are the time-independent operators in the Schroedinger Picture.
What we know:

To find x(t) we must eventually solve some form of the equation

dx(t) i
el h[H,x(t)].

This 1s hard to solve because we do not know [H ,x(t)].
A "trick":




We know that x(¢) is related to x(0) by x(z) = e " x(0)e"™"”
a(0)+a'(0)

/2ma)
h

We know that a(0) and a'(0) are related to a(z) and a'(¢) by

We know that x(0) 1s related to a(0) and aT(O) by x(0) =

Cl(t) — e—th/ha(O)eth/h and aT(t) — e—th/haT(O)eth/h .
It turns out that we can find [H ,a(r)] and [ H,a"(+)] and work backward to get x(¢).

Plan:
() Find [H,a(t)] and [ H,a'(®)].

G :
da"(t) _ %[H,a(”(t)] to get a”(r) = £(t,a™(0)).

(iii) Work backward from a'”(t) = a”(0) = x(0) = x(¢).

(i1) Substitute these into

Carry out the plan:



(i) Find [H,a(?)]

Recall how we found [H,a(0)] = —fiwa(0) : we used [ a(0),a’(0)|=1.
So we need to find | a(r),a’(t) ]. To find this, begin with

[ a(0),a’(0)]=1. Expand it:

a,a; —aja, =1. Multiply each term by 1:
a,-1-al —a,-1-a,=1. Replace 1 = ¢ ™"t
aoe—th/he+th/hag _ age—th/he+th/ha0 — 1
Operate on everything with ™" from the left and with e™™'" from the right.

e+th/haOe—th/h e+th/ha(')§'e—th/h _ e+th/hag‘e—th/h e+th/haOe—th/h — €+th/h . 1 . e—th/h
N ; N ; N ; N ; ) ~

a(t) a'(t) - a'(t) a(t) = 1
Condense this to:
la).a' () ]=1. "Eq 1"

To find [H ,a(t)] we also need H(t):
1
Recall H = ha)(agao + 5)

As above, insert | = ¢ """ between a| and a, then
0 0

operate with e from the left and with ¢'" from the right.



We get:

+iHt/h —iHt/h

+th/hHe—th/h +iHt/h _t —iHt/h _+iHt/h —iHt/h e

e U =ho| e ae e"ae +e

'

$ i i .

/

SN =

H commutes with a'(t) a(t)

N | —

functions of H, so

reorder this as
e+th/he—th/h H
%/_J

1

1

Conclude:

H= ha)(cf(t)a(t)+%) Eq.2

Now use Eq 1 and Eq 2 to get [H ,a(t)]:

| _
[H ,a(t)] = Khw(d(t)a(tHED ,a(t) Expand, do all the same steps as for the time-indep case:

= -hwa(t)
Similarly, | H,a'(t) | = +hwa' (t)



Continue with the plan.

(T)(t) i

(ii) Substitute these into [H
dt

| H.a"@)]=hod'(t)

d. @) .
So YD _ a0,
dt
a'(t)=e"a’(0)

da(r)

({)(t)]

Integrate:

Eq. 3

Similarly, —— 7 ;[H,a(t)]zé(—hwa(t)). Integrate:

a(t)=e " a(0)
Continue with the plan.
(111) Work backward to obtain x(¢).

Recall a(0) = m—x(O) +

\/7 p(0)

Operate on everything from the left with e

eiHr/ha(O) oI _ it mwx(()) o Hih
~ - V 2h

mae . .
— elHt/hx(O) e iHt/h + e
\ 24 - /

maw
a(t) = Ty x(1) +

Eq. 4

Eq. 5

"% and on the right with e

iHt | h
el

! —iHt
N2mho pO) e

th/hp(O) e—th/h

2mho

t
2mhw p)

—iHt/h

Eq. 6



0] ]
Similarly recall that @' (0) = ‘/m—x 0)— 0 Eq. 7
y (0) 7 (0) MP( ) q

This leads to a’(¢) =

mao [

—x(t)— (1) Eq. 8
2h \N2mho P 1
Now substitute Eq. 7 and Eq. 8 into Eq. 3:

mao ] , mao ]
el _ p(t) = wrd o x(0) = p(0 Eq.
2h x() N 2mho (B)=e { 2h ) \2mh ( )} a9

and substitute Eq. 5 and Eq. 6 into Eq. 4:

‘/m—wx(t)+ *hw p(t)—e"“”{,/—X(OH \/—p(o)} Eq. 10

Eliminate p(¢) from Eq. 9 and Eq. 10 by adding them, to get:

2[5k =[S 0) e 4 ) == p(O) =)

p(0)

ma
Similarly, eliminate x(t) from Eq. 9 and Eq. 10 to get

So x(t) = x(0)coswr + sin t

p(t)= p(0)coswt + mwx(0)sin wt



V. Ehrenfest Theorem

The message of this section is:
We found the following fact about expectation values of operators. (Consider an arbitrary operator Q):

“(0)="([H.0l)+ <8—Q>

dr h ot

d
This allows us to find relationships between (Q) and d_<Q> for various operators including x and p.
4

It turns out that the relationships we get when Q = x or Q = p have the same form as Newton's Laws.
So Newton's Laws related quantities (x, p, F, etc.) that are accurately given by quantum mechanical
expectation values (x), (p), etc.

That is why classical mechanics works in a world that is in reality quantum mechanical.

So for example, when we measure Newtonian position, what we are really measuring is (x).

To show this:

begin with %(Q) = %<[H,Q]> + <aa—?> Let Q = x. Then aa—? = % = 0. Then we have
d

dr

(x) = ([ .x])

< ZP; + V(x),x}> Expand:

m




0y L7V
0 because a function of x commutes with x.
To find this commutator, note [p2 ,x] =p’x—xp’ =p’x—(xp)p.
But [x,p] = Xxp — px =ih, so xp =ih + px.
Then [p2 ,x] = p’x—(ih+ px)p
= p*x—ifp— p(xp)
=p°x—ihp— p(ih + px)
= p’x—ihp - pili- p’x = =2ihp.

d i/ 1

—(x)=—(—(-2inh

=552t}

d p :

—(x)=(+ Ehrenfest Equation #1

dt m

Note:

(1) This is the quantum mechanical version of v = P
m

(2) This formula cannot be true for individual eigenvalues of x,, and p,,, since that would imply

simultaneous measurement of x and p.



Now consider the case where Q = p. Then again P _ 0, so we have

ot
_ifllp
p - <{2m +V(x), p}>

=7 M+[V<x> r] =%<[p,V<x>]>

0
To find [ p,V(x)], act with it on some test y:
[p,V(x)]l// = pVy - Vpy. Substitute p = -ihdi
X
d Y
-ihn—(\Vy)=V| -ih—
dx( 1//) ( dx )
d(Vv
__pldvy) | dy
dx dx
dy d
_ _lh{v_m_v _Vd_l/f} .y,
dx dx d. dx
L, dV .
So [p,V(x)|=—-ih—. Plug this in to get:



L= (-n L)

d h\ o dx
d dV . =
So —(p)=—(—)=(F, because F' =-VV,
a7 <dx> ()
This is the x-component of the vector formula
d .
—(p)=(F Ehrenfest Equation #2
AP (F) q
This is the quantum mechanical form of
dp -
P _g

dt
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[. The WKB Approximation: Introduction
II. WKB Connection Formulas



I. The WKB Approximation: Introduction

The issue: Most potentials in real applications are not simple square wells and so forth,
so generally they lead to differential equations that are hard to solve.

Generally solving these requires making approximations.

There is an approximation that works well if V varies only slowly as a function of x, so
if we look in a small region, we can say that V~ constant. This is the WKB
Approximation.

The method:

(1) Consider a confining potential that is generally arbitrarily shaped but that does not
vary rapidly:

V(x)

E

Consider a particle trapped in the well at E.
Definition: The values of x for which V=E are called the “turning points.”



(2) Write down the Schroedinger Equation, assume that because V 1s ~ constant in
a local region, y is ~ a free particle in that region: that is, a plane wave. Thus
assume that y ~ Ae*x,

Plane waves do not change their amplitudes, so assume that §°4/dx’=0.

Solve the Schroedinger Equation with this approximation.

The approximate solution is close to the exact solution everywhere except at the
turning points.

(3) To repair the problem at the turning points:

in those regions only, assume V is a linear function for which the Schroedinger
Equation is easily solved.

Find y for that V at those x’s.

(4) Connect the y’s at the turning points to the y’s that are everywhere else.

This 1s the boundary condition application. This develops equations called the
Connection Formulas.

(5) The formulas for y’s that are produced by this method are general enough to
be used 1n all problems where V is slowly varying.



Carry out the method:

(1) Consider an arbitrary smooth "slowly varying" potential which is binding a particle that
has energy E. What is meant by "slowly varying"?

A potential 1s slowly varying if its change in value across a deBroglie wavelength

V Vo

v
ox

is much less than the kinetic energy of the particle.

A

E-V
aV

0x

Or:

A<<(E-V)

Rewrite this as:
1 [V
E—-V|ox

Where this approximation works: Where this approximation does not work:

A <<1.

Let y(x) = A(x)e'*™ Where E =V (that is, at the turning points)
The general form which can accommodate

anything.



Continue the method:

(2) Write down the time-independent Schroedinger Equation

~h* o’y
+V =F
2m ox’ (DY v
O’y _|-2m(E-V)
o’ h* v
o f(E-V)
Define k = as usual, so
2
this is k* = %
Rewrite:
iy -p’ Substitute into this W=A(x)e""
I v ubstitute into this y=A(x)e
v (2, ,30),.
ox ox ox

2 2 2
TV _JIA 5040, Aa——A(a‘Dj ¢®
0x ox’ dx ox ox’ ox

2 22
8‘3+218Aa"’ zAaf—A(aq)) S Ay
ox ox ox ox ox h
Re Im Im Re Re

For this equation to be solved, the real and imaginary terms must be solved separately:



A 0 A82g0

Imaginary terms: 2 + =0
sinay 0x_0x ox’
.. C
This is solved by A = —|
el
ox
2A 22
Real terms: J > —A(awj = Iz A
X ox h

2

This is not generally solvable analytically. Make the approximation << A.

2
X

That is, since the potential is "slowly varying," the y that responds to it does not radically change

amplitude over short distances dx.
2

So ignore the term. Then we have

x2
22
_A(B_fpj _TP
X h
99 _, P
ox h
000 =+ [ p()ds




Combine the A and ¢ solutions:

V= g(p exp{iéjp(x)dx}

ox
]

C
= \/Eexp{-l‘hjp(x)dx}
h

Define C'=C\/%

!

= —p(x) exp[iéjp(x)dx}

The most general ¥ is a linear combination that uses both signs of the exponent:

C, L C _i
Y ceneral wkB = m eXp{"‘ " J’p(x)dx} + m eXP|: 7 jp(x)dx:l

Any potential can typically be divided into different regions based upon where the particle is classically

allowed or not allowed. For example:

Reg 1 Reg 2 Reg 3




For each region,

(i) use the part of the v, that will properly — 0 as x — eo. That is, set C, or C_ =0 as necessary. Also:

(i1) in Regions I and IIl where V > E, p = 2m(E — V) is intrinsically imaginary, so define P = -ip
(This is like the definition K=-ik for the square well.)

1
+_—
_h.[de ul-n

no "i", and capital P

Then in those regions, ¢ e
> V'wkp ~ f
P(x)

So for a general confining potential we get

A +1
v el o

C +i C —1
l//u—mexp(?"‘p(x)dx +W€XP(;JP(X)CZX)
D -1
Vi = W“P(;_{P(ﬁc)dxj

Continue the method.

(3) Handle the turning points. Look closely at a turning point:

: : : dv
For x close to x,, V ~ a straight line. So approximate V(x near x,) = E +— - X

dx

X=Xq

Substitute this V into the Time independent Schroedinger Equation to find y/ ... oo



-n’ oY, , dv
m axzp + E+E X l/’/t.p.:El//t.p.
aZWt.p. _ 2m dV xw
ox’ h* dx N o
%/_J
2m dV "
Call this o’ (that is, a={ == | + )
neodx |,
'y,
a_xz.p. = Ofx‘//ﬁll
Now let z = ox, so
1
X=—72,
o
d dzd d
—_— = — =0 —
dx dx dz dz
d? d ( d] dz d
_2:_ o— | = -
dx dx\ dz
d*y, 1
dZ
Vip. w,, Airy's Equation

_Edz

|

d
a_
dz

)

, 4
dz*



W, , = aAi(ox) + bBi(ox)
a, b are unspecified constants

Ai and Bi are Airy functions (like Bessel functions)

What we need to know about Airy functions:

1 —2 1 +2
for 2 >> 0, Ai(z) ~ ex —zmj and Bi(z) ~ ——=——ex ( —23/2j
(2) 2 P( 3 (2) PEE p 3

|

ﬁ(_z)m Sin(%(_z)m 4 %) and Bi(z) ~ \/;(iz)m COS(%(_Z)?’/Z N g)

for z << 0, Ai(z) ~



II. WKB Connection Formulas

Continue the method.

(4) Connect ¥, ..iwke 1O W iuming poinss @t the turning points.

Technique:

(1) Write down W general WKB and V wming points -

C, L C _i
l//gemzral WKB Wexp[_l_ h J.p(x)dx:l + m eXp|: h J.p(x)dX:l

v, , = aAi(ox)+ bBi(ox)

av
(i1) Substitute V = £+ —
dx

X0

x into p(x) = \2m(E - V)

(111) Substitute the asymptotic form into Ai and Bi

(IV) COmpare l//general WKB to l//tuming points to see what

"a" and "b" must be to make them identical.

(v) Do this separately for 4 ranges in x:

Range 2 (approach

righthand turning
point from Region 2

N

Range 3 d

Range 1
(approach right
hand turning
point from
_Region 1

Range 4




(vi) To simplify the math, locate the righthand turning point at x = 0. Solve everything for
range 1 and range 2, then move that turning point back to arbitrary x. Then get connection

formulas for the lefthand turning point by symmetry arguments.

Carry this out:
Consider the righthand turning point. Call it x = 0. V)
A E
|
|
x =0
Write the y's:
1 i 1 i
Bexp| — p(x')dx']+ Cexp[— p(x‘)dx'] x<0
p(x) [h j \P(x) L J

WWKB, not t.p. =9

1 “1F
\mDeXp[;J;P(x)dx) x>0

Notice that the limits on the integral reflect the region over which we want this y to be applicable.

Substitute V = E + E)_V

X

X

X0



Sop(x)—\/Zm(EV(x))%\/2m{E(E+%V x]]z /2mg—v J=x
X X0 X Xo

2m 9V

Recall x =1 —
{ h* ox

px)= ham\/;

and

P(x) = -ip(x) = ha*x
range 1: x>0

Substitute this Into W yp tp.

Use the Region 3 y:
D —1 7

exp| — | P(x)dx

= g3 s

D —17 D P
range 1 3/2 3/2 1/2
W ontp, = NP exp[—h jha \/xdxj = P exp(—a Ix dxj
0

0

D 2 3/2
range 1
l//nongit.p. = PRESEENTE eXp(—g(ch) j Eq 1



Carry out the same calculation for ¥ g o wuming poins °

l//WKB at turning points = aAl(OCx) + bBl(OCX)

1 —2
Substitute Ai(ax large positive) ~ exp(?(ocx)m) and

2\/E(ax)lM

1 +2
Bi(ax large positive) ~ )1/4 exp(?(ax)m ]

J (ox

range 1 a —2 3/2 b +2 3/2
l//WKB@t.p. ~ 2\/;a1/4x1/4 eXp ?(a'x) + \/;al/4xl/4 eXp ?(a'x)

At the turning point, Eq. 1 and Eq. 2 must be equal. This will be assured if:

D a
B2l = 2\/%061/4 and b=0

4
a= —ED
\/ha




Now do Range 2 (still the righthand turning point). Rewrite, using the Region II y:

1 +i C ;0
Wenera,non—t..: eXpP| — p(-x')dx‘J'i' eXp(_ p(X')dX‘J
o= g0 [0 ) s[5
Substitute p(x)~ka> >/ —x'

range 2 ! m {Bexp[i%(—ax)3/2}+ Cexp[—i%(—ocx)y2 }} Eq.3

l/jgeneral,non—t.p. = \/%&3/4 (_x)

range 2

V., = aAi(ox)+bBi(ax)

Since x is < 0 in this range, use the Airy function forms for large negative ox:

1 2
Ai(ox large negative) ~ )1 /4 sin(g(—owc)y2 + %) and

Jr (—ax

1 2
Bi(ocx large negative) ~ 73 cos(g(_ax)m N %)

V7 (o)
b

range a . 2 T 2 P
Then ‘/f@fp.zz \/;(_ax)m Sln(g(_OC)C)y2 + Zj + \/E(—ocx)w COS(E(—OUC)M + Z)

4 i() _ pmil)
Substitute what we found earlier, that a = ‘/h—ﬂD and b =0. Also write sin( ) as © 2.6
(04 l

2 32 .2 32
. i=(—ox) . —i=(~ax)
471_ 1 em’/4e 3 _ e—m‘/4e 3
range 2: D E . 4
Yarp \/ ho /_71' (—OCX)M i q

Require Eq. 3 = Eq. 4. This means




| B_\/zDemm
Jhot' ho 2iot?

B =—iDe™"

Recap: now we have:
a=a(D)

b=0

B = B(D)

C =C(D).

Summarize:

l)[/WKB, both @t.p. and not @ t.p. =

\

Rework this:

i
. . —| pdx
(i) Convert ™' 4e"1I —

(ii) Convert ei“ J + e_iU

1 4 De—iﬂ'/4
and —C=—,|—
NI \ 7 2i0r"

and C = +iDe ™'*

1 . ir/4 i [ ' |
o (—zDe )exp[h :!.p(x )dx }+
1 —17 N
'_P(x) Dexp{;E!.P(x )dx }

1 T
i[fjpdx+—}
e h 4

I 2isin [ ]

1

Jp(x)

.0
(iDe"’.’”4 )exp{%_}[p(x')dx'} forx <0

forx>0

(111) Convert integral limits: 0 — x, (the arbitrary location of the turning point).



We get:

1 17
2Dsin| | p(x)dx'+ for x<x,
\P(x) hie, 4

Yk =3

1

1%
Dexp| — | P(x")dx' for x>x
M P{ . ;[ (x") ] 2

for the right side of the well, that is, for a potential shaped like:

We could also consider the left side of the well and develop equations around a downward
sloping potential:

We would get:



D' ~17 ,
e {;!P(x‘)dx} for x<x,

P (x) P

2D" (17 .. T
[%J‘p(x )dx +Z] for x> x,

m S1n

for the left side of the well.
To get D/D',require y ., =y _

Yk =

2D'

|ty . .m| 2D _|1% , ... =&
m mn[%;c':p(x )dx'+ Z:l = m mn{%!p(x )dx'+ Z}

17 T D 17 T
in| — dx'+ — |= —sin| — Ndx'+ —
sin hjp(x) X 4] '51n|:h£p(x) X 4:|

lxz 1X2 71_ 7[ D 1x2 ﬂ:
sin| {— | pdx =3 — | pdx+ =t +=|=—sin| — | p(x"dx'+=
{hip } {hlp 4} > |” D {hlp() 4}

N
N g 2'g

Call this "n" Call this "a" So this is also "a"

) T D . ) ) ) )
sm(n —a+ Ej = Esma To solve this, use sin(m -n) = sinmcosn - CoOSmsinn

T
Letm=n+5 andn=a



) T T . D .
S1n T]-I-E cosa — CoS 7]+5 SIHCZZESlna

This is solved if 17+ % =(n+l)x  forn=0,1,2, ..

We use "n + 1" rather than "n" here to ensure that 71 is not negative.

D "
Then — = (-1
en Y (-1)

Pick D =1,then D'= L (-1)"

The final v, :

\(/;’1(7))0 exp{%jP(x‘)dx':l x<x
=) ZSin[%j’P(X')dx#%:l X, <x<Xx, \

\P(x)
\/%exp[%j‘P(x')dx'] x> x,




How to find the energy levels in the WKB approximation:
Recall we found that

n+§ =(n+1)x

J%p(x)dx = (n + %jﬂ:h

X1

But p=,2m(E - V(x))

So plug in a specific V(x), evaluate the integral, and solve for E .



Outline

I. Systems with 2 degrees of freedom: Introduction
II. Exchange Degeneracy

III. The Exchange Operator

Please read Goswami Chapter 9.



I. Systems with 2 degrees of freedom: Introduction
Examples of kinds of degrees of freedom:
(1) 2 particles free to move in 1 dimension

(i1) 1 particle free to move in 2 dimensions

Each of these leads to energy degeneracy.



II. Systems of 2 particles in 1 dimension have exchange degeneracy

Consider 2 particles in the same 1-dimensional infinite square well of width "a".

Both have mass m.

The particles do not interact with each other. That is, they are "invisible" to each other.

Since their wavefunctions overlap/superpose (and this does NOT imply that the particles interact!),
there is only 1 wavefunction in the well. It is the wavefunction of the system of two particles.
That is, it does not make sense to describe the 2 particles' wavefunctions separately.

How to handle this mathematically:

Label particle 1's position = x,

Label particle 1's momentum = p,

Label particle 2's position = x,

Label particle 2's momentum = p,

Suppose the particles can be in energy levels n, and n, .
The Hamiltonian for this system is

)2
2m
Note we indicate that the particles are non-interacting by not having a V(x, — x,) term.

p;

H=—+V(x)+ +V(x,)=H(x)+ H(x,)
2m



Suppose we want to find v, (x1 ,xz) and £, (x1 , X, )

Since the H is separable, we GUESS that v, (x1 ,xz) can be written as the product:

YV (xl ’xz) =V, ('xl ) v, (xz)
where v, (xl) 1s the solution of H (x, )l/fn1 (xl) = En1 v, (xl)
and v, (xl) is the solution of H (x, )l,l/n1 (xl) = En1 v, (xl)

n’n’h’
2

/2
For the infinite square well, y = ,[— sin(—) and E =
a 2ma

a

Note the "n" indicates the level number, not the particle number!

Check whether the GUESS works:
Hl//nlnz ('xl 7x2) = [H('xl) + H(XZ)]l//nlnz ('xl 7x2)

_p . A .
= {2 + V(xl)}Wnl ('xl) l/jnz (x2)+ {zm T V(x2)}l/j”1 (xl) l//”Z (.XZ)

m

d
l//(xz) is unaffected by x, or i l//(xl) is unaffected by x, or —.
ox, ox,

=V, (xz)H(xl )l//n1 ('xl ) TV, ('xl )H(xz )l//n2 (xz)



So HY,,. (x.5)=v,, (%) H@)y, (x)+ v, (x) Hoow,, (<)

l )
Enl l//nl ('xl) En2 l//n2 (x2)
=(En1 + En2)l//nll//n2
_ [(nf + nzz)ﬂzhz \/zsin(nlnxlj \/gsin(nznxzj
2ma’ a a a a

So we confirm that:

O v,, (x1 ,xz) =y, (xl) Y, (xz) 18 an eigenfunction of H = H(x,)+ H(x,)

(11) Its eigenvalue is (En1 +E, )

THIS math formula describes a system in which

Particle 1 is in energy level n, (we know this because n, is the argument of the sine that has x,)
—and —

Particle 2 1s in energy level n, (we know this because n, is the argument of the sine that has x, ).

(n]2 +n, )7r2h2
2

Notice that we would get the SAME total energy, , 1f

2ma
Particle 1 were in energy level n, and Particle 2 were in level n,.



So we say that "y, ()c1 ,xz) is degenerate in energy with v, (x2 , X, ) .
The degeneracy reflects the effect of exchanging the positions (levels) of the 2 particles,

so it is called "exchange degeneracy."



II. The Exchange Operator

We just considered two 2-particle wavefunctions:

Vo, (xl,xz) : Particle 1 in level n,, Particle 2 in level n,

Vo, (xz,xl): Particle 1 in level n,, Particle 2 in level n,

Define the Exchange Operator: P, (not Parity!) which represents the effect that

exchanging the positions of the particles has upon their total wavefunction.

Mathematically the effect of P, is:
PV, (50%) =W, (15,3,
Notice that because E(l//nln2 (x1 ,xz)) = E(l//nln2 (x2 , X, )) ="E", we expect [H,Plz]
Show this:
[H.B, ]y, (x.x,)= HPy,, (x.5,) = PHY,, (x,.x,)
=Hy,, (x,.x)=-P.Ey,, (x.x,)
=Ey,,, (5,,%) = ERY,,, (x.%,)

= El//nlnz (‘x2 ’xl) - El//nln2 ('XZ "xl)
=0

We showed (Goswami p. 122) that if 2 operators commute, they have simultaneous

eigenfunctions. Find those eigenfunctions for H and P, :

0.



(n]2 +n, )n'zhz
2

Wrtlnz ('xl ’x2)

Notice: v/, (x1 ,xz) is an eigenfunction of H : Hy/, (x1 ,x2) = { 5
ma

But it is NOT an eigenfunction of £, : P,y (x1 ,xz) =Y, (x2 2 X )
because these are not the same.

Similarly v, (x2 ,xl) 1s an eigenfunction of H but not of P, .

How many eigenfunctions do we expect for P,?  2...because (P12 )2 v = +1y, for arbitrary y.
The eigenvalues of P, must be £1.

These are the 2 simultaneous eigenfunctions of P, and H :
1
2

(s)
Wnll’lz

[l/ln1 (xl)l,//n2 (x2 ) +tv, ()cz)t,//,12 (x1 )] The "symmetric y" has eigenfunction +1 under operator P,,.

(a)

I//nl ny

-

> [l//nl (xl)l,//,12 (x2 ) -V, (xz)t//n2 (x1 )] The "antisymmetric y" has eigenfunction -1 under operator P, .

Facts about symmetric and antisymmetric:

(1) Mathematically it seems that if you have 2 particles, they should be free to arrange their y's in either the

(5) (@)
14
detect whether they were in w*” or y

or the Y'“’ combined state so that if you had an ensemble of pairs of particles, and you could somehow

@ you would find half in each. (Of course we cannot measure y directly.

We can only measure |l//|2 = probability.

(2) A surprising fact about nature is that they choose NOT to do this.

(s) or l//(a) )
(s)

Example: electrons always pick w'“, photons always pick y".

Each kind of particle always picks y



(i11) How do we know this?

Example for the electrons:

(1) We determine indirectly that they satisfy the Pauli Exclusion Principle. That is, if we try to add
more and more electrons to an atom, they enter higher and higher energy levels and "refuse" to be

all in the same level.
%/_J

same Y/
So we have experimental data that 2 e's will not occupy the same state. Now check how occupying

the same state would affect their combined y:

Suppose that 2e's were in Yy 1y = %[Wnl (x)w,, (x)+v, (x,)w, (x, )]

Force them to be in the same state, n, :

(S)=1

Vi, = ﬁ[wm (xl)ll/n1 (x2)+ v, (xz)ll/nl ('xl):|
:\/Ellfnl (‘xl)l/jnl (xz)'

Now suppose that 2 €'s are in y'“ = ﬁ[w’” (x)w,, (%)-v, (x,)v, (xl)]

Force them to be in the same state n, :

1
Then we have v/, = [ v, (x)v, ()~ v, (x.)w, (x)]=0.



Conclusion:

(s) (a)

If we do not know whether 2 e's are in ¥/ and we try to force them to be in the same state,

or
they will not do it. Their way of "refusing" to do it is to maintain a y,,, that becomes O if we
force that situation. The kind of v, , that can become 0 under this situation is y'“.

So we conclude: pairs of e's always arrange themselves in antisymmetric combined y/'s.
Similarly, photons preferentiall occupy the same energy level. We conclude that they arrange

themselves in symmetric combined y's.

(iv) There is a direct connection between the spin of a particle and the symmetry of the y's

it makes with other particles that are identical to it.

Spin Votal Name Examples
half integer (1/2) y'* fermion electron, quark

integer (0,1) A boson photon, W*, Z, gluon



Outline
[.  System of 2 interacting particles in 1 dimension
II. System of 1 particle in 2 dimensions

[II. Multi (>2) particle systems in 3 dimensions

Please read Goswami Chapter 11.



I. Systems of 2 interacting particles in one dimension

Allow them to have different masses, m, and m,.

2 2
By P +V(x,—x,).
2m, 2m,

In this case H =

Find the eigenvalues E and eigenvectors ¥ (x,x,) for this H.
Note there is no reason to expect these y(x,x,) to be the product y(x,)- w(x,) that occured
for separable (that is, non-interacting) H .
So we want to solve the equation:

oot o
(_ 2m, ox; - 2m, ox;

The way to solve this is to define:

]W(xlxz) + V(Xl — xz)l//()ﬁxz) = Ey(xx,)

X=X —X, "Eq. 1"
= ml‘xl + m2x2 "Eq 2n
I’I’l1 + I’I’l2
1 1 1



Rewrite the Schroedinger Equation in terms of these variables:

0 ox d dX 0 0 m, 0
= + =1—+

ox, oJx,ox oJx, dX  Ox 0X

82:8 8+ m, d | ox 0 8+ m, 8+8X8 8+ m, d
dx; ox,|ox \m+m, )X | ox ox|ox \m+m, JOX | ox dX|dx \m +m, |oX

9’ m, 9’ m, 9’ m, 9’
=1l —+ + + >
ox m, +m, ) dxdX m +m, )| doxdX \ m, +m, )oX

o @ +( m, jz g

m, +m2

x> m, +m, 0xdX \m +m, ) 0X°
Similarly,
9 oxd o0X 9 a(mz)a

= + —_- +
dx, ox,dx odx, dX ox 0X

82_8_8+ m, 8_8x8_8+ m, 8+8X8_8+ m, 0
ox> ox,| ox \m +m, )oX | ox,ox| ox \m +m,)0X | ox oX| ox \m +m,)oX

_ J° L m 0’ L™ B 9’ L m J°
x>\ m, +m, |0x0X m, +m, dxdX \m, +m, |oX’

2
o 2m, o +( m, ] 9’

“ox® m, +m, dxoX X’

m, +m2

m, +m2



Also V(x,—x,) = V(x) and w(x,,x,)=w(x,X).
Substitute all of this into the Schroedinger Equation:

Pl 2m )@ m ) @
_ + 1 + 1 l//
2m,| ox* \m,+m, JoxoX \m,+m, ) 0X°
o ( 2m ) & m, )
_ _ + +Vy=F
2m2[8x2 (ml+m2]8x8X [ml+m2] oX’ vy =Y
2 2 2 2
_h[l+1]82_h 1 ]82+V}W=Ew
2\m, m,)ox” 2\ m+m,)dX
R

—~ —~ +V ,X)=Ey(x,X
2uox*  2M oX’ pnX)=Ey(x.%)

oo’ n o’
4+ V(x)- X)=Ey(x,X
o T (%) M X v(x,X)=Ey(x,X)
N - |\

H(x) H(X)

Now the Hamiltonian is separable into functions of x and X, so we expect the y to be
expressible as a product: y(x,X)=U(X)-u(x)
Substitute this U(X)-u(x) above. We get:



HX))U (X )u(x)+ HX)U(X)u(x)= EU(X)u(x)
UX)HX)u(x)+u(x)H(X)U(X)=EU(X)u(x)
U(X)H (x)u(x) N u(x)H(X)U(X) _ EU(X)u(x)

U(X)u(x) U(X)u(x) U(X)u(x)
1 1
@H(x)u(x)+ U0 HX)UX)=E
1 1

y—xH(x)u(? = E_TX)H(X)U(X)

fn of x only fn of X only These functions can be equal only

if both equal the same constant. Call it £,

Then we have

L Hoou=E, = {_h 8—2 + V(x)}u(x) =E,_ u(x)
u(x 21 Ox
—and —

52 2

1
E- —XH(X)U(X) =(E-E,)UX)= .y U(X)

U N/ 0X>

Thisis E_,



Conclusions about this:

(1) The X equation concerns the motion of the center of mass. Note that there is no } acting
on the center of mass.

(2) The x equation concerns the motion of the reduced mass (this is mathematically
equivalent to a body of finite mass orbiting in the 7 of an immobile, infinitely massive
other body. Since the reduced mass does respond to the V, the V' is in that equation.

(3) When the Schroedinger Equation is expressed in terms of u(x) U(X), the motion of M and
u are decoupled, independent. But when the Schroedinger Equation is expressed in
terms of (x,, x,), the behaviors of the real physical particles (m,, m,) cannot be
decoupled. They remain really physically correlated, even when separated by great
distances. This implies a philosophical question: are the 2 particles truly correlated---for
example, does measuring the position of m; disrupt the momentum of m,? This 1s the
Einstein-Podolsky-Rosen (EPR) Paradox.



II. System of 1 particle in 2 dimensions

First convert 1-dimensional concepts to 2-dimensional concepts:

Concept 1-d 2-d
: | B | | R L i(poxp,y)im
Free particle ePh el g ilpeten)
P 4 N27h N21h N2mh 21h
. 0]
D, -ih—
ox | i ih(ijfc in| 25 —ihV,_,
., 0 ox dy
P, - ih—
dy |
Vv V(x) V(F) where 7 = xX + yy
2 2 2
K%
H Pyt vix) ol V()= —V2_ + V()
m 2m 2m
Consider a particle in a 2-dimensional square well:
0 if0<x<a and 0<y<a
V(x,y) = .
0 ifx<0,x>a or y<0,y>a

The infinite walls cause the particle to be completely confined by the well, so we solve
the Schroedinger Equation for the region inside only.

nlwxy) I y(x,y)
om0’ 2m dy’

OCY(x,y) , IY(x.y) —2mE
ox” dy’ n’

= Ey(x.y)

v(x,y)



Reduce this to 2 ordinary differential equations by separation of variables.
GUESS that w(x,y) =u(x)-v(y).
Make this substitution, then divide through by v = uv.

J [uéxzv(y)] 9 [u(va(y)] _ —2;?E W (W)
X dy h
v()0* [u(x)] u(x)0’[v(y)]  —2mE
A u(x)v(y)
u(x)v(y) u(x)v(y) u(x)v(y)

1 u(x) 1 0°v(y) —2mE
+ =
u(x) ox’ v(y) 9y’ h
1 0%u(x) _ 2mE B 1 9°v(y)
u(x) ox> R v(y) o9y’

This can be solved for arbitrary u, v if each side equals a constant.

X

Call that constant "% ". Then we have
1 2 2 Ex 2 2222
L u(zx):_ m2 = u(x)= —sin(—mrx) and E‘=" n}';

u(x) ox h a a 2ma
—and —
2mE 1 9o 2mE* 1 o0° -2

nE_ L) I, L9V dnp_p

h v(y) dy h v(y) dy /N

call this E’



1 o’ —2mE’
v(zy): Wzl = v(y)=,/—sIn
v(y) dy h a
(n2 + 11'2)71'2?12
SoE=E"+E’ = >
2ma
2 |
and ¥ (x,y) =u(x)v(y) = —sin(@)sin(n n'y)
a a a

This ¥ describes a particle with:
n-th level excitation of its x-direction component, and

n'-th level excitation of its y-direction component.

Notice it would have the same energy if its

x-component were at level n' and its y-component were at level n.

This is called symmetry degeneracy.



Now suppose that the well is not square, perhaps it has rectangular cross-section a X 2a

y

2a

a

2 212
: T h

In this case we would get E = LI =
4 ma

So we would have the same E for (n=2,n'=2)and (n=4, n'=1).

This is called accidental degeneracy.



[I. Multi (>2) particle systems in 3-dimensions

Modify existing formulas:

(1) Convert from 1-d to 3-d:
position X r
v v(x) v(r)
%, — 0 0 0
-ih— -ihV,_, =-ih| —X+—y+—2Z
P T ¥ aa [axx ayy 8ZZ)
Vv V(x) V(r)

(2) Consider N particles located at positions 7, 7,,.../r,, which may interact:
For 2 particles, V(7)) + V(r,) = V(r,,7,) which is usually V(r, = 7,).
Extrapolate to N particles, all 2-body interactions, and sum:

V(7 ) = VLB +VEE)+ ot VLR

+ V@, )+ V@, r)+ ...+ V(E,,1y)
+ ...
+ V(FN_I,FN}
ZEV(FN’?)
i>j j

(3) Convert Hamiltonian from 1 particle to N particles: H(p, m, V) — H(p,,m,,V, forall 1<i<N)



The resulting Schroedinger Equation for NV interacting particles in 3-dimensions is:

h’ o 9
sz V2 l’l,rz, +22V(1;,r) r],rz,...,rN)zlhgl//(iq,rz,...,r]v)

l:1 1 l>J ] 1




Outline

[.  Angular momentum introduction
II. Angular momentum commutators

ITI. Representing the L operators and the |4,m’> wavefunctions in r-0-¢ space.




[.  Angular momentum introduction

1.  Why is this important?

Any physical system that has rotational motion has energy associated with that motion.
That rotation must somehow be reflected in the Hamiltonian in order to correctly and
fully describe the system’s energy (which is quantized by it). The rotation is also
reflected in the y, so the rotational status is input to the system’s characteristic as
(symmetric) o yy(antisymmetric) -~ Thyg the rotational behavior influences the system’s
response to the Pauli Exclusion Principle.

2. This gives us a motivation to discuss how to invent a Hamiltonian. Whenever
possible, people create quantum mechanical Hamiltonians by writing down the
classical Hamiltonian for a system and then calling everything but known constants
operators.

How to find the quantum mechanical Hamiltonian for a particle that is orbiting at a
constant radius R about a point in 3-dimensions.

iclasswal F X ﬁ
L =(F x p)(F x ) (7-7)(B-p)-(7-p)(p-F)
AL A SRS A
R® p’ 0 0 ifRis constant, the motion pis L to it.
L2



Notice: since this particle is compelled to remain at constant distance R, it cannot fall inward, so it has

no potential energy, only kinetic energy.
2

S0 H jyicar = - only
2m
1 r
“2m R’
Recall moment of interia I = mR”
L2
21

To convert this to a quantum mechanical operator, notice that while 1 1is a constant (like mass),

L can be an operator.
2

SoH, K =—*%
Mg

To convert L

—> Lop, notice

classical
L =7 x p implies L. =yp.—zp,
L,=zp —xp,
L. =xp,—yp,
and =L +L +L

. 0 .
Replace the p, by - zha— and treat the x; as operators (so respect the commutation rules).
X .

l



II. Angular momentum commutation rules

Begin by developing foundational commutators:

[L.z]=] (.- ,) 2 ]= [yp 2]~ [ZPy z]

=0 because [z,z]=0 and [ f(1),z]=0

Yp.2— 2P,
Yp.2— y2p,
yLp..2]
y(~in)

[Lx,z] =-ihy

Also:

[L..p.]=|(3p. - 2,).0.|=[yp..p.]-[,-P. ]

Pz P: |

=0 because [ ] 0 and [f(y) z] 0
'{Zpypz - PZZPy}
'{ZPZPy - PZZPy}

_I:Z’pz:lpy
-(in) p,
[Lx,pZ] =-ihp,



Also [Lx,x] = [Lx,px] =0

function of y, z only

Use these to find [Ll. ,Lj] :
I:LX’L)’] = I:Lx’(sz B xpz)] = [Lx’sz] - I:Lx’xpz:l
={Lzp, -p L }-{Lxp.—xp.L,|
= [Lx’z]px _XI:LX’pz:I
— - — U

= (~ihy) p, - x(~inp,)

= —ih(ypx - XPy)
[L..L,|=-ilL,
Similarly,
[L,.L |=-ifL,

we get these by permutingx >y —>z—>x
[L,.L, |=-i’L,



Recall that if 2 operators have a nonzero commutator, they cannot be measured simultaneously.

They have an uncertainty relation that shows how measurement of one compromises measurement of
the other:

([4.5])

2i

AAAB >

The L commutators indicate that we cannot simultaneously know all 3 components
of a particle's angular momentum. For example,

(e [zt (o

h
AL AL = . = . = . > = —<LZ> and similarly forx -y = z— x
' 2i 2i 2i 2




Now consider L’ = L + L + L
[(2.L])=[(2+2+L1).L,]

=[L.L ]+ L ][L ]

0
=LLL-LLL+LLL-LLL,
\J \J

ihL, + L.L, L,L —ihL,

=L LL —ifL L ~LLL +LLL ~LLL +ihiLL,
~— - ~— - ~ J
L[L,.L] L|L,L]
L (-inL,) L,(inL,)

=—ihL L —ihL L +ihL L +ihL L, =0
Similarly, [ 27,L, |=[ L’,L, |=0



Conclusions about this:

1) We cannot simultaneously know L _, L, and L_, but we CAN simultaneously

know L’ (but not L) and any one of the L.

2) The convention is to choose (or define) the L, that we measure simultaneously as L’ and L..

3) Recall that operators that commute have simultaneous eigenvectors.

Label the eigenvectors |Am') where
A is the eigenvalue of L : L*|Am") = A|Am")

and m' is the eigenvalue of L : L|Am'y=m'|Am")



III. Representing the L operators and |Am') in r-6-¢ space

Notice |Am') is a Hilbert space ket that describes an object with L’ eigenvalue A and

L. eigenvalue m'.
Project it into coordinate space: (x-space|Am')

and choose 1-0-¢ (that is, spherical) coordinates: (6¢|Am")

No "r" 1s needed because angular momentum concerns
angular motion without change in radius.

Plan for this section:

(i) Find L(r, 6, ¢)

(ii) Find L_(r, 0, ¢)=L-Z

(iii) Find L*(r, 6, ¢)=L- L

(iv) Substitute in L_{6p|Am") = m'(0p| Am') to get
(a) restrictions on m' and A
(b) the form of (6¢| Am')

Carry out the plan:



Recall ¥ = rr

gopdipld 5 L 9
or rdfl  rsinf d¢

SoL-—zhrrx{ri+éla 51 8}

or radfl  rsinf d¢

=>Jm{?xﬂi+fxélji+rx$ : a}
——

or —™—radf ——rsinb J¢

0 o -6

] .3 A1 9
[=-in]pL—6—2
’ {%9 sin6 99 }

()Find L. =L-7  Recall Z=7cos6—0sinf

So Lzz[fcose—ésiné?]( ){(b—— ﬁ%}
%) o ~c0SO 0 A asinf 0 0
=—ih 6——0- 0—-r-6 +6-6 —ih—
l { Peos 00 qbsm 00 L"‘sm@ d0p —sin6 8¢} ol0)

0 0 0 1



(i) Find *=L-L

N 20 A~ 1 0 N 20 A1 0
_(_lh)[d)aH_GsinHE)qﬁ](_m)[qj%_esmO%}

2
=i’ .1 i(sin@ d j+ .12 82
sin@ 06 00 ) sin“ 6 d¢

(iv.a) Find restrictions that these forms impose upon m':
Begin with L_|Am')=m'|Am'). Apply (64| to both sides:
(09| L.[Am') = (60| m'| Am’)

Let L_ act to the left. Move scalar m' outside the integral.

—in=2 (09| 2m") = m" (60| Am")
d9
a%w(p\ ) =gl ') ntegrate
im'¢
<9¢\ Am ') =f(0)-e " We don't yet know what f(0) is. Call it "P(0)".

Notice that (6p|Am') is a wavefunction. (We could call it "V, .(6,0)".)

Like all quantum mechanically meaningful wavefunctions it must have the properties:



Does f(q) meet these? Does the j portion meet these?

(1) continuous We will force this yes
(i) square-integrable We will force this yes
(111) single-valued We will force this *

* only if we insist that (6 + 27| Am') = (6p| Am") :

im'(¢p+27) im' ' '
e " =et :cosm—(p+isinm—¢
h h
. .m
This works 1f ? =..—3,-2,-1,0,1,2,3,...

Som'=mh where m = -3,-2,-1,0,1,2,3,...
This is the restriction on what m' can be.
Then,
() L_|Am'y=mh|Am'). We now rename this ket as |Am) because either m or m'

uniquely specify the state.
(2) (69| Am)=€"""" P(0) = " P(6).



(iv.b) Now find f(0) to get the full (6p|Am)
Do this by demanding that P(0) produces a {6¢|Am) that satisfies the original eigenvalue
equation that defined the |Am):
L’|Am) = A| Am)
(60112 | Am) = (09| )
. . 1 o(. 0 1 9
Substitute: (i) (6p|L° = —h’ {sin@ £(81n9 89) ey 35 }(9(])\
(i) (6| Am) = ™’ P(0)

2
—hz{ ! i(Sin@ 0 )+ L 0 }eim¢P(9):/leim¢P(9)

sin@ 00 00 ) sin’ 0 d¢’

1 o d ), 1 9%e™ A
————| sin@— |¢"*P(6) - PO)=—e""P(O
sineae(sm ae)e ©) sin0 d¢° ©) ne ©)
\2

_ mZeim(P

im¢ 2 im¢
e 9 {sin@ IP(6) } +2° _p@o)= A s pg),
sin” 6 h




Cancel all the ¢ 's
Define { = cos6
then sin’0 =1-¢>

and d :BC d :—sint9i
00 0009¢ 14
1 o %)
SO ———=——
sin6 06 8{

For consistency, rename P(8) — P({).
Make all these substitutions to get:

0 1
BC sm9¢81n98m % P+ - § P ()
L l
, 0
1-¢ 3
i( 1-¢? )[-i]P@H P(C)——P(C)
d¢ d¢ -

1-
§1§ — PO+ { }P(C)



This is solved by

P(O=0-0)"

P,($)

(¢ -1)

Associated Legendre function P (&)=

Rewrite this as

1 omiz d7
PZ”(C): 2%!(1_C ) acer (C _1)

Notice: because of the form of this derivative, " = 0 unless / > |m|



Facts about the P," :
(1) They are orthogonal if they have the same m:

_[ijm (Z;) 4 (g)d/:: = 5%’
(i1) Normalization:

42 (f4m)
_{dg‘Pf ‘ 2041 (1—-m)!
(1i1) Alternative form:
m( (-=1)" (£+m)! -miz dT Y
P, (C)_ X €!(l—m)!(1_C ) dé«z—m (C 1)

(iv) They imply a surprising quantization condition. Consider the case where m = 0.

Then the equation they solve becomes

%(C)CHO+{}H® 0

Suppose that we did not have the P (C ) and wanted to solve this equation with the

series technique. We could guess:

PO)=c



Then ——ch ¢!

(1_ Cz)— _ chné/n—l . incnénﬂ

d N ¢
AL I I

n=2 n=1
Substitute these back in:

%) oo A’ [e%)
;n(n— 1)c " - Z;n(n +1)c,g" +h—22(;cn§” =0

Collect terms with like powers of (:

A
' 21, +h—200=0

A
g 3'2'03_1'2'01"‘?01:0

A
- 4-3-04—2-3-c2+?02=0

<§ (n+2)(n+1)cn+2—{n(n+1)—h—);}cn=()



This implies the recursion relation:

(n(n +1)— ;2)

C =
" (n+2)(n+1) "
As n — oo, this P() series o {", so it diverges. Force it to truncate at some n = / as follows.

Notice that since n € {0,1,2,...} by definition of the P, series, then also ¢ €{0,1,2,...}. So 4

must be (integer) - #°.
(1) Set A = €(£+1)h2.

[€(£+1)_€(€+1)h2j

hZ

Thenc,,, = c,=0

(0+2)(¢+1)
(2) If 7 1s odd, set ¢, = 0; if £ 1s even, set ¢, =0
(3) Because A~/, relabel | Am) — | lm)

Summarize all the restrictions on m' and A:
(i) L*|¢m)=¢(L+1)n*|¢m),  where /=0, 1, 2, ...
(ii) L.|¢m)= mh|im), where m=0, £1, £2, .../
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I. Graphical representation of angular momentum

Represent L as a vector (using the arrow)
Since L*|¢m) = ((£+1)h*|(m),

L] =Je(e+1)n
Draw a vector of length /(£ + 1)

L has a limited number of orientations permitted to it relative to the z-axis: L. = mh, where |m| < /.

Example:
if /=2, then L, =2h, 1k, Oh, -1k, -2h 4

+2h L - - -
but L =22+ 1)ha=245h ggg

N\

0

Al
S &
w/

84



Notice:

(1) The length of L is quantized

(i1) The direction of L is quantized. It behaves as if it must "fit" into specific "slots" in space
relative to the z-axis. There are 2/+1 slots available.

(iii) L can never align exactly with the z-axis: mh < /£(¢+1)A. So L, or L, is always nonzero.

(iv) Only 1 component is quantized. We choose to call it L_. L, and L, can take any values

consistent with the requirement that L2 + L’ + L2 = I*.




II. Spherical harmonics

Recall we found that (6¢|Am) ~ P (cos6)-exp(im¢). Insert the normalization term N;". Then
(0p| Am)= N,'P" (cos6)- exp(zmq))

Facts about the (6¢|Am):

(i) These are the simultaneous eigenfunctions of L* and L..

(i1) They are a family of mathematical functions called "spherical harmonics."

(iii) Alternative symbol: Y,, (6,0) = (6¢|Am)

(iv) Normalization:

1/2
w | 20+1(L—m)! m
form=0, N, ={ py E€+m;'} (1)

form<0Y, =(-1)"Y,

{,—m

negative

2 2€ 1
W 3 [ =22

m=—/




(vi) Parity:

Recall the parity operation reflects every coordinate through the origin. In rectangular coordinates,
that means

xX—-x,y—-y, Z—>-z. Notice this is not really the same as mirroring.
In spherical coordinates:

r—-r
6—>n-6
p—>m+¢
l—m
Recall ¥,,(6,0) ~ ™ (1 cos’ 9)_m/2 d—g_m(cos2 60— 1)€

d cos

-m/2 L
. d!f—m
SoY (m—-0,t+0¢)= m(z+0)| 1 _ cos® (-0 cos’(m—0)-1
fm( ¢) 6\ ,[ N (V 2] dCOS(ﬂ: . Q)K—m [\ ( 2 ]

eimﬂeimq) — (—l)m eim(p COSZO

e df_m [ )f




Conclusion: PY,, = (—l)g Y, ....an eigenvalue equation.

The Y,,'s are simultaneous eigenfunctions of Parity and L’. We expect to find that | P,L* | =0.



III. An example use of L’ in quantum mechanics: the rigidly rotating molecule

"0;,“

2

RecallH:i
21
Hly)=Ely)

2
%| v)=E|y) Since we know that the eigenfunctions of L are the |¢m), replace |y)—> |im)

E:%@mﬂzwm)

1
E =—/(/+1)h*
= o(e+1)
Recall each /-type level has 2/+1 m-type sublevels.
1
All 2/+1 of them have the same energy: Ef(f +1)h*. This is a degeneracy.

If we observe the spectrum of a molecular substance and find that the spectral lines are separated by
a pattern involving whole numbers ¢ like this, we know that the molecules have rotational excitation

(as distinguished from, for example, vibrational excitation, which would give a pattern of lines

1
separated by ha)(n + 5)



IV. Generalized angular momentum

Recall we have operators L, L, and L_ whose action on a wavefunction represents the act

of measuring the states' angular momentum components.

Generalize these to include the possibility of other forms (that is, spin) of angular momentum.

The generalized angular momentum operators are called
J ., J b and J,

Later we will see that J and L are related by J = L+ S
Because the J's are generalized versions of the L's we can include in their definition the following:
() [J,.0, |=inJ. andx = y—z—x
QI =T+, +J:
(3) Because of relations (1) and (2), it will turn out that [J > J i] =0 (we will focusoni= 7).
Then J* and J . have simultaneous eigenfunctions.

Call these |A,m, "), NOT NECESSARILY the same as | (m)

SoJ*|A,m, Y= 2,|A,m,")
and JZ‘/lJmJ ') =m, ‘MJmJ '>



We don't yet say what m, ' 1s. Especially, we do not yet see whether it is an integer.
However divide 7 out of it to define a related number:

Letm,'=m;h where m, 1s unknown, not necessarily integer

Then we can rename |A,m, ') —|A,m,)
Question : Whatare A,, m,, and |A,m,)?

*Why we CANNOT find them in the way we found A, m, and so forth for the L operators:

When we were examining the L's we found A, m', and |Am') by guessing that the form of

L,, mimics the form of L =r X p. Then we substituted L, (r, p) = L(6,¢) and solved

classical

the equation L*| )= A| ). Here J is an operator which we define ONLY on the basis of

having commutation relations similar to those of the L's. We have NOT said "J =r X p".

So we cannot get J(0,¢). We only know the J's in the Hilbert space of M ,m J>, not in

(69| A,m,). Tofind A,, m,, and |A,m,), we need to define ladder operators for the states
of J.
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I. Angular momentum ladder operators
Define J, = J +iJ, and
J_=J —-iJ;
To demonstrate that these are raising and lowering operators, we will need to use their

commutators. Work out the commutators here:

[1.0,])=| 1.1, +1,)]= M+zw

(in,)  (=ind,) BY DEFINITION of the J's
=n(iJ, +J,)
(., J, |=1J,
éimilar_ly,
[ J,J_|=-hJ
J,,J_|=2nJ.

Also notice J,J_=(J,+iJ,)(J, —iJ,) =T + T} +i(J,J, - T J,)

H_/ o J
g

JP=J? -ihJ
Thus J.J =J>—J2+nJ,
Similarly, J J, = J? — JZ2 —nJ,



Now show that J, and J_ are ladder operators:
Consider J_J, |A,m, )
Recall [JZ,J+:| =nJ,, so
JJ, —J J. =hJ,
SoJ J,=J,J +hJ, =J, (J +h). Use this:
JJ | Am,y=J (], +h)|A,m,)
=J, {JZ‘/ljmJ>+ h‘ljmj>}
=J, {mjh‘/lJmJ>+ hMJmJ>}
=(m, +1)nJ, |A,m,)
We interpret this to mean that J, acting on ‘/’L ,m J> raises the m, level by 1 (to m, +1). This 1s
evident when J, acts on the result. The definition of J, is "the operator that extracts the
m-eigenvalue," and we see that J, extracts eigenvalue m; +1. So J, is a raising operator which
raises the eigenvalue of J, by 17.
Similarly,

JJ_|A,m,y=(m, —1)AJ,|A,m,), soJ_is alowering operator which lowers the eigenvalue of
J. by 1nh.



Notice that J, and J_ have no effect upon A, which is the eigenvalue of J°.
This allows us to predict that [J 2 ,J+] = (0. Check it---it 1s true.
Summarizing:

J |2, m,)= Corm, A,,m, +1)

J A, ,m,)= d; |A,,m, —1)

These normalizations (¢, ,, , d, , ) have not yet been specified.

Note, if we are working on a problem in which we are explicitly considering J = L

(that 1s, we know that spin is not involved), then we can call these operators L, and L_.



II. Finding m, and 4,
First we show that m is bounded. That means, there existsanm, <eoandanm, < -—oo.

To see this, note

the length of a component is < the length of its vector:
L=<l
eigenvalue mh < eigenvalue JA
Tofindm,  :
By definition of "max," there can be no state with higher m than m__ . To enforce this, insist

that J, cannot raise a state with ‘/I yomy > higher. Demand

J—‘r

lj,mJMAX> =0.
Apply J_ to both sides:
)=J.0=0

M.

J J

-+

A, ,m,

(Jz — J:Z — hjzj

l,,mJMAX>=O
Ay —mj I’ —h(mJMAXh)‘)LJ,mJMAX>=O
A—my (mJMAX + 1)712 =0 "Eq. 1"



0.

Similarly begin with J_ |7L Jomy >
Apply J, to both sides to get
Ay—m, (m, —1)r*=0 'Eq. 2"
Eliminate A, from Eq. 1 and Eq 2. to get

m; (mJMAX + l)h2 =m, (mJMIN — l)h2

This has 2 solutions:

m']MIN = (mJMAX + 1) and mJMIN = _mJMAX
Impossible by the definitions So this is the only solution.
otm, —andm, . Namem, —="-j".

Thenm, =+
Now substitute m, = j into Eq. 1 to get
A, =j(j+1)R’
What values can j take?
Note that if we begin at level m, , we can arrive at m, by applying J_ some

number of times.



Som, —m, = imnteger (or0)

j-(-j) = integer

2 j = integer
Int
j= der Not like the ¢ from L!

We will see that J concerns spin "S" (when it is half-integer) and

orbital angular momentum "L" (when it i1s whole-integer).



III. Normalizing the ‘/’Lj,m J>

First,

)

Then to be clear we should call the eigenvectors of L the

Note subscript
We want to find ¢, ,, = c,, which is defined through J, A,,m,) = Chrm, A, ,m, +1)
andd, , =d,, whichis defined through J_ A,,m,)=d —1)
To getc,, : Find (jm|J_J,|jm)=(jm|J* - J} - hJZ\Jm) Note J =J".

(jm|J T, | jm)y=(jm|J* —J> —hJ_|jm) Apply J| to the left, all other operators to the right.
(JLjm| T jm)={jm|J* = JZ =1J | jm)

(cindsm+1c,, j.m_1)=(jm| j(j+1)h* —min* — hm, | jm)

‘ij‘2< , . )zj(j+1)h2—m3h2—hmﬁ(jm\jm)
- J H_J

Require =1 Require =1
e =[iG+ )=} =m0

So ¢,,, =iy j(j+1)—m, (m, +1)

Similarly, d, —h\/] (j+1)- mj(m 1)



IV. L_ is the generator of rotations in space
Recall that:

0 .
) p= -iha— is the generator of translations in space: f(x + x,) = """ f(x)
X

(ii) H = +lh8_ is the generator of translations in time: (¢ +1,) = e ™™y (1)

Now show that L_ is the generator of rotations:

Consider f(¢ + ¢,). Expand in a Taylor Series for small ¢, :

9"f(9)
5

f(@+9,)= Zwo

But L, ——zhi soi i.L
E)d) 00 h °

=§%¢3(%)H(Lz)”f(¢)

/

Vo

This 1s the exponential series.

f@+0,)=e"""f(9)



V. Conservation of angular momentum in quantum mechanics

Recall we showed that for any Hermitian operator Q,

19 —~([1.0])+ <BQ>

dt ot
Soif Q # Q(t), Q is conserved if [H,Q]=
L #L.(t).

Evaluate :H,Ll.] forV = V(r =rn— rz)

2

[H.L,]= (p—+V(r) ,Lx}

2m

I, :
=%[p ,Lx]+ _V(r),Lx]

1
=ﬂ{|:pi,Lx]+ [p2.L ]+ [p2.L b+ [v.L]
Recall that for any commutator involving products, [AB,C ] = ABC - CAB
Add to the righthand side: 0 =-ACB+ ACB
|AB,C|= ABC - ACB+ ACB - CAB
|AB,C|=A[B.C]+[A,C|B

[H.L ]——{Px[Px L)+[poL .+ p,[pyL )+ [Pl ]y + P 2oL ]+ P L ] p b+ VL]




[H,Lx]:ﬁ{px-O+O-px+py-(—ihpz)+(—ihpz)-py+pz-(ihpy)+(ihpy)-pz}+[V(r),Lx]
=ﬁ;{ PP PPy PP+ PP } [V(r),L,]

2 —

0 [V(r),(ypz - Zpy)]
- y[V).p, ]+ [V).y]p, -2 Ve).p, |+ [V().2]p,

0 0

Another useful commutator identity: Recall [x,p|=i%.
Notice [xz ,p] = x[x,p]+[x, p]x = 2ihx.
Then by induction, [x” , p] = nifix"™"!
Consider a general function f(x) = Eanx”.

Then [ f,p]= Y a, [x”,p] =Y anibx""' =ihY anx"" =ih gf
n n " *
oV V) . &
So [[—],Lx] (lha—z) z[zha—yj lh{r XVV}X

Thus d(L,) _ %<ih{7 X ?V}x> = —<{7 X W}x>

dt




Apply this to the full vector L = L X + Ly+Lz:

cjl—l;:—<7><§v>
F=rr

IfV=V(@), VV= %—V;ﬁ

r
dL v, .
—=—(r—rXxr)=0.
dt or —

0



