
Quantum Mechanics I 
Sally Seidel 
Primary textbook: “Quantum Mechanics” by Amit Goswami 

Please read Chapter 1, Sections 4-9 
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I.  10 facts to recall from previous courses 

1.  Fundamental particles (for example electrons, quarks, and photons) have 
all the usual classical properties (for example mass and charge) + a new 
one: probability of location. 

2.  Because their location is never definite, we assign fundamental particles a 
wavelength. 
•  Peak of wave – most probable location 
•  length of wave – amount of indefiniteness of location 

3.  Wavelength λ is related to the object’s momentum p 

4.  The object itself is not “wavy”...it does not oscillate as it travels.  What is 
wavy is its probability of location. 

      

� 

λ = h
p Planck’s constant 

4.13 x 10-15 eV-sec 
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Example of an object with wavy location probability distribution 

Consider a set of 5 large toy train cars joined end to end.  Each car has a lid and a door 
leading to the next car. 

Put a mouse into one box and close the lid.  The mouse is free to wander among boxes. 
At any time one could lift a lid and have a 20% chance to find the mouse in that 
particular car. 

Now equip Boxes 2 and 4 with mouse repellent 
Equip Boxes 1, 3, and 5 with cheese 
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A diagram on the outside of the boxes shows how likely it is that the mouse is in any of the 
boxes. Now the probability of finding the mouse is not uniform in space: maxima are near 
the cheese, minima are near the poison. 

very likely 
sometimes 
not likely 
sometimes 
very likely 
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Conclude: 
• the mouse does not look like a wave---it looks like a mouse 
• the mouse does not oscillate like a wave---it moves like a mouse 
• but the map of probable locations for the mouse is shaped like a wave 
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The situation for the electron or photon is almost the same, except 
• for the mouse example, Probability = Amplitude 
• for the electron (or any quantum mechanical object,  

    
     Probability = (Amplitude)*(Amplitude) 

5.  As with all waves, wavelength λ is related to frequency υ: 

  λυ = velocity of wave 
6.  QM says that the λ ( or υ) is also related to the energy: 

  E=hυ $

7.  Special relativity says that total E and momentum p are also related by 

� 

E = p2c 2 + m0
2c 4

rest mass of the 
object 

c = 3 x 108 m/s 
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8.  QM says that every object in the universe is associated with a mathematical 
expression that encodes in it every property that it is possible to know about the 
object. 

 This math expression is called the object’s wavefunction ψ. 
9.  As the object moves through space and time, some of its properties (for example 

location and energy) change to respond to its external environment. 

 So ψ has to track these 
 Conclude: ψ has to include information about the environment of the particle (for 
example location x, time t, sources of potential V) 

10. So if you know the ψ of the object, you can find out everything possible about it. 

The goal of all QM problems is: given an object (mass m, charge Q, etc.) in a particular 
environment (potential V), find its ψ.  The way to do this (in 1-dimension) is to solve 
the equation 

its charge, mass, location, energy...  

  

� 

−2

2m
∂ 2ψ
∂x 2

+Vψ = i∂ψ
∂t The Schroedinger Equation 
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II. Motivation for the Schroedinger Equation 

We can develop the Schroedinger Equation by combining 6 facts: 

FACT 1: The λ and p of the ψ produced by this equation must satisfy λ=h/p. 
FACT 2: The E and υ of the ψ must satisfy E=hυ. 
FACT 3: Total energy = kinetic energy + potential energy 

  Etota l= KE + PE  

Restricting ourselves to non-relativistic problems, we can rewrite this as 
  Etotal = p2/2m + V. 

(For relativistic problems, we would need                                        ).  
FACT 4: Because a particle’s energy, velocity, etc, depend on any force F it 
experiences, the equation must involve F.  Insert this as a V-dependence through 

To simplify initially, consider only cases where V = constant = V0.  Later we will 
generalize to V=V(x,y,z,t). 

� 

E = p2c 2 + m0
2c 4 +V

� 

F = −∂V
∂x
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FACT 5: The only kind of wave that is present in the region of a constant potential 
is an infinite wave train of constant λ everywhere. 
Example:  

• An ocean wave over the flat ocean floor extends in all directions with 
constant amplitude and λ. 
• When the wave reaches a change in floor level (i.e. a beach) then its 
structure changes. 
• Conclude: if V = constant, 

Recall that the definition of a wave is an oscillation that maintains its shape 
as it propagates.  For constant velocity v, “x-vt” ensures that as t increases, x 
must increase to maintain the arg=(x-vt)= constant.  This is a rightward-
traveling wave. 

� 

ψ ∝cos[k(x − vt)]  or sin[k(x − vt)]
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Again  

Rewrite this as 

Then 

FACT 6: ψ represents a particle and wave simultaneously.  Waves interfere.  This means if 
we combine the amplitudes of 2 waves (A(ψ1) and A(ψ2)), we get A(ψTotal) = A(ψ1) + A(ψ2). 

That is...add the first powers of the ψ1 and ψ2 amplitudes, not functions that are more 
complicated.   

Conclude: if we want the Schroedinger Equation to produce a wavelike ψ, then it too must 
include only first powers of ψ...that is, ψ, dψ/dx, dψ/dt, etc., but NOT, for example, ψ2. 

� 

ψ ∝cos[k(x − vt)]  or sin[k(x − vt)]

� 

ψ ∝cos[kx − kvt] 
units are 

So call kv = ω.   

� 

1
length

⋅ length
time

= 1
time

,   a frequency.

� 

ψ ∝cos(kx −ωt)  or sin(kx −ωt)
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� 

Start with FACT 5 :              p
2

2m
+V = E

Plug in FACT 1 for p :        h2

2mλ2 +V = E

Plug in FACT 2 for E :        h2

2mλ2 +V = hν .

Define k = 2π
λ

,   ω = 2πν,  and   = h
2π

.

Then                                        
2k 2

2m
+V = ω                          "Eq. 1"

Now use all 6 facts to construct the Schroedinger Equation: 

Notice we are already using FACT 4 (i.e. V is included. 
Consider the simplified case V = constant = V0.  This 
implies 

Recall this produces an infinite, single-λ wave. 

� 

F = ∂V
∂x

= 0.
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� 

The most general infinite single -υ wave would be ψ = δcos(kx −ωt) + γ sin(kx −ωt).

Later we will need its derivatives, so calculate them here :

∂ψ
∂x

= −δk sin(kx −ωt) + γk cos(kx −ωt)

∂ 2ψ
∂x 2 = −k 2[δcos(kx −ωt) + γ sin(kx −ωt)]

∂ψ
∂t

= −ω[γ cos(kx −ωt) −δ sin(kx −ωt)].  This is close to -ωψ but not exactly, so we say

∂ψ
∂t

~ −ωψ.

Notice ∂
2ψ

∂x 2 = −k 2ψ → k 2 = −

∂ 2ψ
∂x 2

ψ
.

and ∂ψ
∂t

~ −ωψ →ω ~ −

∂ψ
∂t
ψ

. Exchange the proportionality for an unknown constant β .  

Then ω =
+β ∂ψ

∂t
ψ

 .
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� 

Plug into 
2k 2

2m
+V0 = ω :


2

2m

−∂
2ψ

∂x 2

ψ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

+V0 = 
β ∂ψ
∂t
ψ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
.   Multiply by ψ :

−2

2m
∂ 2ψ
∂x 2 +V0ψ = β∂ψ

∂t
.                                  "Eq. 2"

Plug in ψ,  take derivatives :

-2

2m
⋅ −k 2( )δcos(kx −ωt) − 

2

2m
⋅ (−k 2)γ sin(kx −ωt) +V0δcos(kx −ωt) +V0γ sin(kx −ωt)

= β ⋅ (−ω)γ cos(kx −ωt) + βωδ sin(kx −ωt)

Collect sine and cosine terms separately :


2k 2

2m
δ +V0δ + βωγ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ cos(kx −ωt) + 

2k 2

2m
γ +V0γ − βωδ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin(kx −ωt) = 0.
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� 

This can only be solved if the coefficients of cosine and sine vanish separately:

cosine terms :    
2k 2

2m
+V0 = −βωγ

δ
           "Eq. 3"

sine terms :  
2k 2

2m
+V0 = βωδ

γ
                   "Eq. 4"

This leaves 3 equations (Eq. 1, Eq. 3, and Eq. 4) and 3 unknowns (γ,  δ,  β).  

Solve simultaneously to get β = ±i.  

Two roots indicate that the Schroedinger waves travel in ± ˆ x .  Plug β = +i in Eq. 2 :

−2

2m
∂ 2ψ
∂x 2 +V0ψ = +i∂ψ

∂t

All of the assumptions that went into this were general except V = V0 (free particle).  

Guess that the equation also holds true for non - constant V =V (x, t) :

−2

2m
∂ 2ψ
∂x 2 +V (x,t)ψ = +i∂ψ

∂t
              The Schroedinger Equation.
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III. The connection between ψ and probability 

Max Born proposed (1926) that the probability of finding a particle at a specific location x 
at time t,  

       Prob(x,t) = ψ*ψ. 

Justification: 

If the particle that ψ describes is assumed to last forever [this must later be revised by 
Quantum Field Theory] then the probability associated with finding it somewhere must 
always be 1.  So probability must have an associated continuity equation like the one that 
applies to electric charge. 

In electricity and magnetism: 

  

� 

∂ρ
∂t

+
 
∇ ⋅
 
J = 0

electric current density 

electric charge density 
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We need an analogous expression to describe  
•   probability density ρProb    and 
•   probability current JProb     which can flow in space but remain conserved. 

Assume ρProb and Jprob involve ψ somehow, but in an unspecified function. 

Plan: 
1.   Use the only equation we have for ψ: the Schroedinger Equation 
2.  Manipulate it to get the form  

  

� 

∂(something)
∂t

+
 
∇ ⋅ (something else) = 0.

  

� 

Convert 1− d Schroedinger Eq to 3 - d :   −
2

2m
∇2ψ +Vψ = i∂ψ

∂t

Form [ψ * ⋅(Sch Eq)] - [ψ ⋅ (Sch Eq)*]⇒

ψ * −2

2m
∇2ψ +Vψ − i∂ψ

∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −ψ

−2

2m
∇2ψ * +V *ψ * +i∂ψ *

∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0

÷ by i and collect terms :
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� 

ψ * ∂ψ
∂t

+ψ ∂ψ *
∂t

↓
       

+ 

2mi
ψ *∇2ψ −ψ∇2ψ *( )

↓
         

+ V *−V
i

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

↓
     

= 0

      ∂
∂t

ψ *ψ( )        
2mi

(
 
∇ ⋅ [ψ *

 
∇ ψ −ψ

 
∇ ψ*])   (0 if V is real)

Rewrite :

∂
∂t

ψ *ψ( )
↓

   
+
 
∇ ⋅ 

2mi
ψ *
 
∇ ψ( ) −  ∇ ψ *( )ψ{ }⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

↓
           

= 0

     ρProb                              
 
J Prob
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IV.  Normalizing a wavefunction 

Recall that when we were deriving the Schroedinger Eq. for a free particle, we 
got to this step: 
1.  We guessed ψ=δcos(kx-ωt)+γsin(kx-ωt) 
2.  We found that γ=±iδ 

 So ψ = δcos(kx-ωt) ± iδsin(kx-ωt) 
               =δ[cos(kx-ωt) ± isin(kx-ωt)] 

 Although this function corresponds to ψfree, all ψ’s have a “δ”. 

Next goal: find a general technique for obtaining δ.  This is called normalizing 
the wavefunction. 

2 options correspond to waves traveling 
right and left.  We can choose either one. 

As-yet unspecified overall 
amplitude 



18 

To find δ, recall 
1.  P(x,t) = ψ*ψ 
2.  The sum of probabilities of all possible locations of the particle must be 1. 

� 

P(x, t)dx = 1
−∞

+∞

∫

ψ *ψ = 1∫
Example :  suppose that for some choice of V(x,t), ψ =δe-k 2x 2

e−iEt   (where δ is real).

Compute ψ *ψdx =1∫
(δe−k

2x 2

e+iEt )(δe−k
2x 2

e− iEt )dx = 1∫
δ 2 e−2k 2x 2

dx = 1∫

δ 2 1
k

π
2

= 1

δ = k ⋅ 2
π

4
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V. Expectation values 

Although particle is never in a definite location, it is more likely to be in one 
location than others, if any potential V is active. 

Recall the definition of a weighted average position: 

� 

x =
xP(x)dx

−∞

+∞

∫

P(x)dx
−∞

+∞

∫
            Use P(x) =ψ * (x)ψ(x) :

x =
ψ * xψ(x)dx

−∞

+∞

∫

ψ * (x)ψ(x)dx
−∞

+∞

∫ By convention, place x between ψ’s 

If ψ has been normalized, this 
denominator is 1. 

This is the “expectation value of x” 
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� 

We can find the expectation value of any function of x analogously as

f (x) =
ψ * f (x)ψdx∫
ψ *ψdx∫
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Please read Goswami Chapter 2. 

Outline 
I.  Normalizing a free particle wavefunction 
II.  Acceptable mathematical forms of ψ 
III. The phase of the wavefunction 
IV.  The effect of a potential on a wave 
V.  Wave packets 
VI. The Uncertainty Principle 
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Recall the free particle: 

ψ = A[cos(kx −ωt) ± i sin(kx −ωt) = Ae± i(kx−ω t )

Notice that ψ*ψ dx=∫ A2 ei(kx−ω t )e− i(kx−ω t ) dx→∞.
−∞

+∞

∫
This reflects the fact that the wave spreads to infinity in a force-free (V=0) universe.
In the physical universe, V is nowhere constant as the Coulomb and gravitational forces 
have infinite range. 
We can construct ψ bound  from Fourier superpositions of ψ free .
So we need an (artificial) way to normalize ψ free  to achieve this.
Define the Dirac delta function

δ (k − k ') = 1
2π

dxei(k− k ')x =
0 if k ≠ k'
∞ if k = k '

⎧
⎨
⎩−∞

+∞

∫
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Apply Dirac δ  to ψ free :
Consider 2 free particles with different momenta, p=k  and p'=k'.
ψ p = Ae

i(kx−ω t )

ψ p ' = Ae
i(k ' x−ω t )

for A not yet normalized.

Construct ψ p ' *ψ p dx = A
2 e− ik ' xeiω teikxe− iω t dx = A2 ei(k− k ')x dx

−∞

+∞

∫
−∞

+∞

∫
-∞

+∞

∫ =
A2 2π     if k=k'
0          if k ≠ k'

⎧
⎨
⎩

With the use of the Dirac δ , we can draw 2 conclusions:

Conclusion #1: Afree =
1
2π

,  so ψ normalized
free =

1
2π

ei(kx−ω t ).

Conclusion #2: ψ p' *ψ p dx = 0 if p ' ≠ p  →   The ψ free's are orthonormal.∫



24 

II Acceptable mathematical forms of wavefunctions 

ψ must be normalizable, so                     must be a convergent integral- 

i.e., at minimum, require 

A ψ that satisfies this is called “square integrable.”  

� 

ψ *ψdx
−∞

+∞

∫

� 

ψ *ψdx
−∞

+∞

∫ < ∞
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III The phase of the wavefunction 

FACT 1:  We cannot observe ψ itself; we only observe ψ*ψ.  So overall phase is physically 
irrelevant. 

FACT 2: The relative phase of two ψ’s in the same region affects the probability distribution, 
which is measurement, through superposition: 

Suppose ψ1 = Aeiα and ψ2 = Beiβ, where A and B are real. 
ψtot = Aeiα + Beiβ = eiα[A+Bei(β-α)], so  
Prob=ψ*ψ=[A+Bei(β-α)][A+Be-i(β-α)]=A2+B2+AB[ei(β-α)+e-i(β-α)]= A2 + B2 + 2ABcos(β-α) 

FACT 3: The flow of probability depends on both the amplitude and the phase: 
Consider ψ=Aeiα where A can be complex. 
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� 

JProb = 

2mi
[ψ *∇ψ − (∇ψ*)ψ].  Convert to 1- d for simplicity here :

= 

2mi
ψ * ∂ψ

∂x
− ∂ψ *

∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ψ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= 

2mi
A*e− iα eiα ∂A

∂x
+ Ai∂α

∂x
eiα

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − A* −i( )∂α

∂x
e− iα + ∂A*

∂x
e− iα

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Aeiα

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= 

2mi
A* ∂A

∂x
+ A* Ai∂α

∂x
+ A* Ai∂α

∂x
− A∂A*

∂x
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= A* A
m

∂α
∂x

phase dependence 

amplitude dependence 
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IV The effect of a potential upon a wave 

If everywhere in the universe, V were constant, all particle/waves would be free and 
described by ψfree=e i(kx-ωt), an infinite train of constant wavelength λ. 
If somewhere V≠constant, then in that region ψ will be modulated. 

schematic 
potential 

schematic 
wavefunction 
response 

A modulated wave is composed of multiple frequencies (i.e., Fourier components) 
that create beats or packets. 
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V. Wave packets 

The more Fourier component frequencies there are constituting a wave packet, the 
more clearly separated the packet is from others.  Specific requirements on a packet: 

1.  To achieve a semi-infinite gap on each side of the packet (i.e. a truly isolated 
packet/particle), we need an infinite number of waves of different frequencies. 

2.  Each component is a plane wave 

3.  To center the packet at x = x0, modify 

 so at x≅x0, all the k’s (ν’s) superpose constructively. 

4.  To tune the shape of the packet, adjust the amplitude of each component 
separately---so 

� 

ψ = Aeikx,  where k = 2π
λ

,  λ ∝ 1
υ

,  so k ∝υ .

� 

eikx → eik(x−x0 )

� 

A→ A(k)
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� 

Combine these 4 requirements to get :

ψ(x,x0) = dkA(k)eik(x−x0 ).
−∞

+∞

∫

This integral is a Fourier Integral Transformation.

A(k) is called the Fourier Transform of ψ(x) 

infinite number of ν’s (k’s) 
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VI. The Uncertainty Principle 

The shape of a packet depends upon the spectrum of amplitudes A(k) of its 
constituent Fourier components. 

Examples of possible spectra: 

           
         Note this is the A(k) not the ψ(x). 

k 

A(k) 

� 

A(k) = exp −(k − k0)2

2(Δk)2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥            Gaussian

k 

A(k) A(k)=δ(k-k0)                        Dirac delta 
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Each A(k) spectrum produces a different wavepacket shape, for example  
. 

        versus 

Qualitatively it turns out that  
• large number of constituent k’s in the A spectrum (=large “Δk”) produces a short packet 
(small “Δx”). 

• So 

•   

• So ΔpΔx cannot be arbitrarily small for any wave packet. 
We begin to see that the Uncertainty Principle is a property of all waves, not just a 
Quantum Mechanical phenomenon.     

� 

Δk ∝ 1
Δx

  

� 

Since p = k,  this means Δp∝ 1
Δx

.
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The proportionality in                   is qualitative at this point.   

To derive the Uncertainty Principle from this, we need to know: 
1.  a precise definition of Δp 
2.  a precise definition of Δx 
3.  what is the smallest combined choice of ΔpΔx (or ΔkΔx) that is geometrically 

possible for a wave. 

To answer these, use the Gaussian wave packet in k-space to answer the questions 
above, in the reverse order. 

� 

Δk ∝ 1
Δx

k 

A(k) 



33 

The k-spectrum that produces the minimum product of ΔkΔx is the Gaussian.  
Find what this ΔkΔx is:

Recall ψ = dk  A(k) eik (x-x0 ).
-∞

+∞

∫

Plug in A(k) = A 'exp -(k - k0 )2

2(Δk)2

⎡

⎣
⎢

⎤

⎦
⎥

Then ψ = A '
-∞

+∞

∫ exp −(k − k0 )2

2(Δk)2 + ik(x − x0 )
⎡

⎣
⎢

⎤

⎦
⎥dk

Compute the integral and normalize (Goswami pp. 28-9) to find

ψ = Δk
π4

exp ik0 (x − x0 ) − 1
2

(x − x0 )2 (Δk)2⎡
⎣⎢

⎤
⎦⎥

   for Gaussian A's

Find this amplitude by normalization later. 
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Answer to (2)--- “What is Δx?” : 

For all A(k) spectra, the precise definition of Δx is  

For simplicity, choose center of the packet at x0 = 0.  Then  

� 

Δx ≡ x 2 − x 2

� 

x = 0 and eik(x−x0 ) → eikx

We need x2

x 2 =
ψ * x 2ψdx∫
ψ *ψdx∫

= Δk
π

e− ik0xe
−1

2
x 2 Δk( ) 2

∫ x 2e+ ik0xe
−1

2
x 2 Δk( ) 2

dx

= 1
2 Δk( )2

So Δx = 1
2Δk

.
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Now the answer to (1)---"what is Δp?"

Analogously to Δx, define Δp ≡ p2 − p 2 .

Assume packet is at the origin in momentum space, so p = 0.

Then we need only p2 = 2k2 = 2 k2 .

Consider 2 ways to find k2 :

WAY #1: k2 =
ψ * (x)k2ψ (x)dx∫
ψ * (x)ψ (x)dx∫

.  

This requires finding the functional dependence of k on x. We defer this to Chapter 3.

WAY #2:  k2 =
ψ * (k)k2ψ (k)dk∫
ψ * (k)ψ (k)dk∫

.  

ψ (k) is the form that ψ  takes when it is represented in momentum space rather than
position space.

To find ψ (k),  invert ψ (x)= A(k)e+ikx dk∫      (Note Plancherel's Theorem.)

The inverted form is A(k)= ψ (x)e-ikx dx.∫



36 
 

So A(k) IS ψ (k),  the k-dependent form of ψ .

So we need k2 =
A*(k)k2A(k)dk

−∞

+∞

∫

A * (k)A(k)dk
−∞

+∞

∫
=

Δk( )2

2

So p2 = 2 k2 =


2 Δk( )2

2
.

Then Δp= p2 − p 2 =


2 Δk( )2

2
− 0 =

Δk
2

.

Combine: ΔxΔp = 1
2Δk

⋅
Δk

2
=


2
   for a Gaussian amplitude distribution.

For all other amplitude distributions, the value is > 
2

,  so for ANY packet,

ΔxΔp ≥


2
.

We will cover the alternate uncertainty principle, ΔEΔt ≥ 
2

, after Chapter 6.
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Please read Goswami Chapter 3. 

Outline 
I.  Phase velocity and group velocity 
II.  Wave packets spread in time 
III.  A longer look at Fourier transforms, momentum conservation, and packet dispersion. 
IV.   Operators 
V.    Commutators 
VI.  Probing the meaning of the Schroedinger Equation 
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I.  Phase velocity and group velocity 

A classical particle has an unambigous velocity Δx/Δt or dx/dt because its “x” is 
always perfectly well known. 

A wave packet has several kinds of velocity:  

In general vphase ≠ vgroup.  Which velocity is related to the velocity of the particle 
that this wave represents? 

vgroup, the rate of travel 
of the peak of the 
envelope. 

vphase, the rate of 
travel of the 
component ripples 
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Recall a traveling wave packet is described by 

Bear in mind the definitions  
• k = 2π/λ     “inverse wavelength” and 
• ω = 2πυ      “angular frequency” 

Recall ω = ω(k).   
• If the packet changes shape as it travels, the function may be complicated. 
• If the packet changes shape rapidly and drastically, the notion of a packet with well-
defined velocity becomes vague. 

For clarity, consider only those packets that do not change shape “much” as they travel. 
For them, ω(k)=constant + small terms proportional to some function of k. 
Taylor expand ω about some k=k0. 

      Plug this into ψ: 

� 

ψ = A(k)exp(ikx − iωt)dk∫ ,

a superposition of traveling plane waves of different amplitudes.

  

� 

ω = ω0 + (k − k0)
dω
dk k= 0

⇓
         

+ ...
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� 

ψ = A(k)exp ikx − i ω0 + k − k0( ) dω
dk

+ ...
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ t

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dk∫

Compare ψ(t = 0) and ψ(t ≠ 0) :

At t = 0, ψ(x,0) = A(k)eikxdk.∫

At t later, ψ(x, t) = e
i -ω0 +k0

dω
dk k0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ t

     A(k)e
ik x -dω

dk k0

t
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
dk.∫

         

This is an overall phase 
which has no meaning 
in ψ*ψ, so forget it. 

This is  identical to ψ(x,0) 
except the position of the 
packet is shifted by 
so that must be the 
velocity of the packet: 

� 

dω
dk k0

t,

� 

                                        dω
dk k0

=  the group velocity.

Show that this is the same as the particle's velocity v :
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� 

Recall :

E = ω

E = p2

2m
 when V = 0

p = k

So dω
dk

= dω
dE

dE
dp

dp
dk

= 1


2p
2m


= p
m

= v.

Conclude: vgroup = dω/dk is the velocity of the packet envelope AND of the associated 
particle. 

vphase = ω/k is usually different from dω/dk. 

Notice  

 

vphase =
ω
k
=
E


p


=
E
p
=
p2
2m
p

=
p
2m

=
vgroup
2
.
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II. Wave packets spread in time 

The lecture plan: 
(1) Recall ψGeneral A’s(x,t =0) 
(2)  Specialize to ψGaussian A’s(x,t =0) 
(3)  Extrapolate from x to x-vt, so eikxei(kx-ωt) 

(4)  Find P(x,t)=ψ*(x,t)ψ(x,t). 

We will find that |ψ(x,t)|2 is proportional to exp(-x2/(stuff)2). 
Since the width of ψ is defined as the distance in x over which ψ decreases by e, this 

“stuff” is the width. 
We will see that the “stuff” is a function of time. 

Carry out the plan... 
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� 

(1) ψGeneral A 's(x,t = 0) = dkA(k)eikx
−∞

+∞

∫

(2) AGaussian = 1
2π4

1
Δk

e
−

k−k0( ) 2

2 Δk( ) 2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

So ψGaussian A 's(x,t = 0) = 1
2π4

1
Δk

dk
−∞

+∞

∫ e
−

k−k0( ) 2

2 Δk( ) 2 + ikx
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(3) Extend this to t ≠ 0 :

ψGaussian A 's(x,t = 0) = 1
2π4

1
Δk

dk
−∞

+∞

∫ e
−

k−k0( ) 2

2 Δk( ) 2 + i(kx−ωt )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

Recall ω
k

= p
2m

.  But p = k,  so ω = k
2

2m
,  so

ψGaussian A 's(x,t = 0) = 1
2π4

1
Δk

dk
−∞

+∞

∫ e
−

k−k0( ) 2

2 Δk( ) 2 + ik x− kt
2m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ .  Integrate to get :

ψ(x,t)∝exp
- x - k0t

m
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

2 1
Δk( )2 + it

m

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

exp ik0 x − k0t
2m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
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(4) ψ *ψ ∝ exp
- x- k0t

m
⎛
⎝⎜

⎞
⎠⎟

2

2 1
Δk( )2 + it

m
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

exp
- x- k0t

m
⎛
⎝⎜

⎞
⎠⎟

2

2 1
Δk( )2 − it

m
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∝ exp −1
Δk( )2

x − k0t
m

⎛
⎝⎜

⎞
⎠⎟

1
Δk( )4 + 

2t 2

m2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

.

Notice ψ*ψ (t=0) decreases by1/e when x=1/(Δk)2. Call this Δx(t=0).  But ψ*ψ (t ≠ 0) decreases by 1/e when

the new "advanced in time x", x- kt
m

= Δk 1
Δk( )4 +


2t 2

m2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

.  Call this Δx(t).

Notice Δx(t) = 1
Δk

1+ t 2

m
 Δk( )2

⎡

⎣
⎢

⎤

⎦
⎥

2 .

So Δx(t ≠ 0) = Δx(t = 0) ⋅ 1+ t
T

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

call this T, the characteristic spreading time. 

Notice this is Δx(t=0). 
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Conclusions: 

(1)  The width Δx of the probability distribution increases with t, i.e., the packet spreads. 

(2)  This only works because the amplitudes A are time-independent, i.e., the A(k) found 
for ψ(t=0) can be used for ψ(all t).  The A(k) distribution is a permanent 
characteristic of the wave. 

(3) Notice the “new x”:  

 The group velocity naturally appears because this Δx describes a property of the 
packet as a whole. 

(4) Recall the A(k) are not functions of t, so 
 Prob(k,t) = A*A does not have time-dependence, so Δp does not spread as Δx does. 
 This is momentum conservation. 

  

� 

x − kt
m

= x − pt
m

= x − vgroup t.
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III. A longer look at Fourier transforms, momentum conservation, and packet dispersion 

 

Recall that ψ (x) and A(k) are related by the Fourier transform equation

ψ (x)= dkA(k)eikx .
-∞

+∞

∫
When  t ≠ 0, 

ψ (x)= dkA(k)ei(kx−ω t ).
-∞

+∞

∫

One can invert this by multiplying by e
-i(k ' x-ω t )

2π
dx and integrating:

1
2π

dxψ (x,t)e-i(k'x-ω t ) =
1

2π
dx dkA(k)ei(kx−ω t )e− i(k ' x−ω t )∫∫∫

                                  = dkA(k) 1
2π

dxei(k− k ')x

−∞

+∞

∫
↓

  

   
-∞

+∞

∫

                                                         δ (k-k')
                                  =A(k')
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Rewrite this A(k '), renaming k '  as k:

A(k) = 1
2π

dxψ (x,t)e− i(kx−ω t ).
−∞

+∞

∫
                                      Notice the minus sign.
Notice that while ψ =ψ (x,t),  A = A(k  but not t).
We can use this fact to determine ψ (t ≠ 0) given ψ (t = 0).

For example, suppose ψ (x,t = 0) = Ce-βx2

.  What is ψ (x,t ≠ 0)?

We CANNOT assume that ψ (x,t) = Ce-βx2 − iω t  because ψ  is a superposition 
(packet) of frequencies.
Each component wave in the packet could have its own ω (k).
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Procedure to get ψ (x,t) from ψ (x,0):

Write ψ (x ',t)= dkA(k)ei(kx'-ω t ).∫                                "Eq. 5"

In general A(k)= 1
2π

dxψ (x,t)e− i(kx−ω t ).
−∞

+∞

∫
Because A ≠ A(t), this integral must be valid at any particular time t.  Pick t=0:

A(k)= 1
2π

dxψ (x,0)e− ikx .
−∞

+∞

∫       Plug this into Eq. 5:

ψ (x ',t)= 1
2π

dk dx∫ ψ (x,0)e-ikxei(kx'-ω t ).∫

Rewriting, ψ (x ',t)= 1
2π

dk dx∫ ψ (x,0)e-ikxei(kx'-ω t ).∫   Plug in ψ (x,0) and integrate.

These ω’s are the frequencies of the Fourier components.  
The components are plane waves---the ψ’s of free 
particles. 

  

� 

So their E = p2

2m
 (all kinetic, no potential).

So ω = E


= p2

2m
= 

2k 2

2m
= k

2

2m
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IV. Operators 

Recall earlier we wanted 

but we needed to represent p as a function of x.  How to find this representation: 

Recall the wavefunction for a free particle is ψ = ei(kx-ωt). 
Notice   

This says: if ψ represents a free particle, any time we have “pψ”, we can replace it 
with  

� 

p2 = ψ * (x)p2ψ(x)dx∫

  

� 

∂ψ
∂x

= ikψ.

But p = k,  so 

∂ψ
∂x

= ip

ψ.

Rewrite :

pψ = 
i
∂ψ
∂x

= −i∂ψ
∂x

.

−i∂ψ
∂x

.
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Q. What if ψ is NOT a free particle?...what if ψ is influenced by a potential V so is a 
packet? 

Ans. The packet is a superposition of free particle states, so the replacement is still valid. 

Use a similar method to find the operator for energy E: 
Begin with is ψfree = ei(kx-ωt). 
Notice  

 

∂ψ
∂t

= −iωψ =
−iE


ψ .

So Eψ = +i
∂ψ
∂t

.

We will use a similar procedure later to get operators for other qualities 
such as angular momentum 


L.
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Facts about this procedure: 
1.  The order of the symbols is important here: so far this applies to “pψ” not “ψp”. 
2.  when a mathematical expression (like p or E) precedes a function (like ψ) and has the 

possibility of changing the function (for example multiplying it, taking its derivative), 
call the expression an operator. 
 So p is an operator applied to ψ. 

3.  Operators can be expressed in coordinate space or momentum space: 

Operator   Coordinate Space Representation   Momentum Space Representation 
 p                p 

4.  Pick the representation that matches the space in which the function is expressed. 
 ex.—is p acting on ψ(x) or on A(k)? 

5.  Any measureable attribute of a particle has an associated operator  Examples.... 

  

� 

−i ∂
∂x
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Attribute / operator         in x - space                             in k - space

p                                    - i ∂
∂x

                                       p

x                                     x                                              + i ∂
∂p

p2                                    -i ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

-i ∂
∂x

⎛
⎝⎜

⎞
⎠⎟
= −2 ∂2

∂x2          p2

x2                                    x2                                              - 2 ∂2

∂p2

E                                    + i ∂
∂t

                                      + i ∂
∂t
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6.  If you need to apply 2 or more operators successively to a function, the order in 
which you apply them affects the answer. 

 

xpψ = x −i
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
ei(kx−ω t ) = −ix ⋅ ikψ = kxψ

pxψ = −i
∂
∂x

xei(kx−ω t )⎡⎣ ⎤⎦ = −i xikψ +ψ[ ] = kxψ − iψ .

So (xp-px)
↓


ψ =iψ

This expression is called "the commutator of x and p" and is abbreviated as [x, p].
The expression [x, p] = i is called "the commutation relation of x and p."
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Why do we care about commutators? 

An operator represents a measurement. 

A commutator’s value indicates whether the order of doing 2 measurements matters. 

It does not matter in all cases----this depends upon the particular pair of measurements. 

If the order does matter, this means that the first measurement disrupts the system in a 
way that influences the result of the second. 

This is the Uncertainty Principle. 

7.  In QM we care mostly about operators that represent measureable quantities. 

8.  This kind of operator 
•  always produces real, not complex, expectation values 
•  is called “Hermitian.” 

“observables” 
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V. How to calculate a commutator 

(1) Act with it on a dummy wavefunction 

Then remove the dummy wavefunction and see what is left over: 

(2) If the operators in the commutator are functions of simpler operators whose 
commutators you know, expand the commutator with the functions expressed 
explicitly and look for simpler commutators whose value you know. 

  Example: Find [x,p2]. 

� 

Example :  What is x, ∂
∂x

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥   ?

Apply it to a free particle eikx

x, ∂
∂x

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ e

ikx = x ∂(eikx )
∂x

− ∂
∂x

xeikx( ) = −1⋅ eikx

So x, ∂
∂x

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = −1.
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� 

x, p2[ ] = xpp − ppx

= (xp)p − p2x                                Use [x,p] = xp - px = i,  so xp = i +px

= (i +px)p - p2x                           Reassociate (px)p as p(xp)

= ip +p(xp) - p2x                         Use again xp = i +px

= ip +p(i +px) - p2x

= ip + pi + ppx − p2x
0

     

= 2ip.
The student will show all of the following commutator identities in homework.  Once they 
have been proven explicitly one time, they can afterward be used whenever convenient 
without re-proof: 

• [A,B]=-[B,A] 

• [A,B+C]=[A,B]+[A,C] 

• [AB,C]=[A.C]B+A[B,C] 

• [A,BC]=[A,B]C+B[A,C] 
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VI. A longer look at the Schroedinger Equation 

Recall the equation 

These operator relationships were the basis of Schroedinger’s thought when he 
discovered the equation.  He thought: 

•  Assume ψ is built of plane waves  ei(kx-ωt) 

•  Find the operators 
•  Guarantee non-relativistic energy conservation, p2/2m + V = E. 

The operator                    

represents the total energy and is also called the Hamilton operator H.  Applying H to 
ψ evolves ψ in time.  Time itself is not an operator.   

  

� 

− 
2

2m
∂ 2

∂x 2
ψ +Vψ = i ∂

∂t
ψ

Notice this is poperator
2/2m Notice 

this is 
Eoperator 

� 

pop
2

2m
+V
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Please read Goswami Chapter 4 

Outline 
I.  How to solve the Schroedinger Equation 
II.  Why do we concentrate on ψ’s that are separable? 
III. Why E is real if ψ=u(x)T(t) 
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I.  How to solve the Schroedinger Equation 

Recall the equation:  

Why we want to solve it: 
Solving it gives us Ψ(x,t), which includes EVERYTHING that can be known about a 

particle, including its mass, energy, location, response to V, etc. 
Once we have Ψ(x,t), we extract these properties by using Ψ to compute expectation values. 

How to solve the Schroedinger Equation 
•  Consider the case where V=V(x only, not t).  [Later we will consider more general V. 
•  GUESS that Ψ(x,t)=u(x)T(t) and plug this guess into the equation: 

  

� 

−2

2m
∂ 2

∂x 2
Ψ(x,t) +VΨ(x, t) = i ∂

∂t
Ψ(x, t)
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−2

2m
∂ 2

∂x2 u(x)T (t)[ ] +V (x)u(x)T (t) = i ∂
∂t

u(x)T (t)[ ]
−2

2m
T (t) d

2

dx2 u(x)[ ] +V (x)u(x)T (t) = iu(x) d
dt

T (t)[ ]
÷ both sides by u(x)T (t):
−2

2m
T (t) d

2

dx2 u(x)[ ]
u(x)T (t)

+
V (x)u(x)T (t)
u(x)T (t)

↓
  

=
iu(x) d

dt
T (t)[ ]

u(x)T (t)
↓

  

           function of x only                   function of t only

These 2 functions can be equal only if both actually equal something that is neither a f(x) nor a f(t).
i.e., both = a constant "G".      This leads to 2 ODE's:

i
1

T (t)
dT (t)
dt

= G

↓
  

        "Eq 1"       and            1
u(x)

-2

2m
d 2u(x)
dx2 +V (x)u(x)

⎧
⎨
⎩

⎫
⎬
⎭

=G 

↓
  

        "Eq 2"

      T = e
-iGt
                                                       -2

2m
d 2u(x)
dx2 +V (x)u(x) = Gu(x)

What is G?  To answer this, examine the solution to Equation 1:    
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Recall that e - i(stuff) can be written as cos(stuff) – i sin(stuff), so 

The argument of these trigonometric functions must be dimensionless, so  

  

� 

So T = cos Gt


⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − isin Gt



⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ,  a sum of waves.

G


 must be an angular frequency "ω".

So G = ω.  But ω is the total energy of this quantum mechanical system.

So G = Energy E .

Then T(t) = e
-iEt

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Return to Eq 2:
-2

2m
d 2u(x)
dx2 +V (x)u(x) = Gu(x)

Replace G→ E.
Rename u(x)→ψ (x).

Then   -2

2m
d 2ψ (x)
dx2 +V (x)ψ (x) = Eψ (x)     The Time-Independent Schroedinger Equation

Facts about the Time-independent Schroedinger Equation: 

1.  The ψ’s are called the eigenfunctions of the Hamiltonian  

2.  Sometimes, depending on the form of V,  more than one value of ψ can solve it. 

 For example: if V is the Coulomb potential of a nucleus, then each ψ includes 
information about the properties an electron would have in one of the energy 
shells around the nucleus.    

3.   Method: Plug in a V, solve for u(x) (which is ψ), then solve for E.  [We will work 
examples of this.]  Then insert u(x) into the full solution  

  

� 

-2

2m
d2u(x)
dx 2

+V (x)

 Ψ = uT = ue− iEt /
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II.  Why do we concentrate on Ψ’s that are separable? 

Note, some systems have                            so separable Ψ’s are not the most general kind. 
Reasons why they are interesting: 

1.  The energy E associated with them is mathematically real; i.e. measureable in the lab. 
      Note one can’t take this for granted since Ψ itself is complex.  The reality of E leads to 

2.  The probability density is not a function of time, so the states do not change their 
properties with time. 

3.  These states have a definite energy; i.e. uncertainty ΔE=0.  

The next lecture topics demonstrate these 3 points. 

� 

Ψ ≠ u(x)T(t)
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Plan of this section: First show that E  is real if Ψ = u(x)e-iEt / .  
Then show why E  being real is important.

To show the condition under which E  is real, begin by assuming that E  could be complex.
Then show that E - E* = 0, i.e., E = E*, so E  must be real.

Recall probability density ρPr ob = Ψ *Ψ = u *ueiE*t /e− iEt / = u *ue− i(E−E*)t / .

Recall probability current JPr ob =


2im
Ψ * ∂Ψ

∂x
−
∂Ψ *
∂x

Ψ⎡
⎣⎢

⎤
⎦⎥
.

Recall the 1-dimensional continuity equation for probability: ∂ρProb

∂ t
+
∂JProb

∂x
= 0.

Generalize this to 3 dimensions: ∂ρProb

∂ t
+

∇ ⋅

JProb = 0.
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Substitute ρProb  and JProb  and take ∂ /∂ t: -i


(E − E*)u *ue− i(E−E*)t / +

∇ ⋅

J = 0.

Integrate over all space:-i


(E − E*)e− i(E−E*)t / u *u
Vol
∫ d(Vol) = −


∇ ⋅

J

Vol
∫ d(Vol).  

(Use the Divergence Theorem (

∇ ⋅

V

Vol
∫ d(Vol) =


V ⋅d

A

Area
∫ ))

                                                                                             =-

J ⋅d

A

r→∞
∫

But Ψ must be square integrable: Ψ*Ψd(Vol)<∞, so Ψ(r→∞)→ 0.∫
So J, being proportional to Ψ, also → 0 as r →∞.  So 


J ⋅d

A

r→∞
∫ = 0.

So lefthand side of the equation,  -i


(E − E*)e− i(E−E*)t / u *u
Vol
∫ d(Vol) = 0

(E − E*) = 0
E = E*,    E  is real.
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Outline 

I.    Stationary States 
II.   If Ψ is a stationary state, its ΔE=0. 
III.  Degeneracy 
IV.  Required properties of eigenfunctions 
V.    Solving the time-independent Schroedinger Equation when V=0$
VI.  Solving the time-independent Schroedinger Equation for a Barrier Potential 
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I.  Stationary States

Recall that Ψ is separable as u(x)T(t), then
Ψ = u(x)e-iEt / .

If E were complex (E = ER + iEI ),  then we would have
Ψ = u(x)e-i(ER + iEI )t / .
Then Ψ*Ψ  would be u *u e-2tEI /

 .

i.e., Probability of locating the particle would be time-dependent.

Expectation values f (x) =
Ψ * f (x)Ψdx∫
Ψ *Ψdx∫

 of all the properties of Ψ would involve e-2tEI /  too.

But since E is real when Ψ = u(x)T (t), Probability, expectation values ≠  f (t).
So once we know something about the state, it remains true for ever.
These are called stationary states. 
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II.  If Ψ is a stationary state, its ΔΕ=0 

Recall when Ψ=u(x)T(t), this leads to 
•  the Time-dependent Schroedinger Eq: 

•  the Time-independent Schroedinger Eq: 

  

� 

T = e−iEt / 

−2

2m
d2

dx 2 +V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

↓
       

u = Eu

Hamiltonian H

 

Notice 〈H 〉 = Ψ *HΨdx = u * e+ iEt /Hue− iEt / dx∫∫ = u *Hu
↓
dx∫ = E u *udx∫

↓
 

= E

                                                                                            Eu                   1

Also 〈H 2 〉 = Ψ *H 2Ψdx = u *H Hu
↓
dx∫∫ = E u *Hu

↓
dx∫ = E2 u *udx∫

↓
 

= E2

                                                          Eu                     Eu                     1
Then ΔE ≡ 〈E2 〉 − 〈E〉2 = 0.
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III. Degeneracy 

If 2 states of the same system have the same energy, we call them degenerate. 
Example: the rightward and leftward traveling components of the free particle Ψ: 

Ψ = δ cos kx ±ωt( ) ± i sin kx ±ωt( )⎡⎣ ⎤⎦ ⇒δe± i kx±ω t( )

δe+ i kx−ω t( ) :   traveling rightward 

δe− i kx+ω t( ) :   traveling leftward 
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IV. Required properties of eigenfunctions 

-in addition to being square integrable- 

(1) Recall Probability density(x,t)=Ψ*Ψ.  This means Ψ is related to the probability 
of locating an object at (x,t). 

By definition of probability, no probability can be > 100%, and especially, no 
probability can be infinite. 

So Ψ must be finite in amplitude. 

(2) Recall 

Momentum in the physical world cannot be infinite, so  
dΨ/dx must be finite.  

(3) Recall the Schroedinger Equation 

In the physical world, V, E, and m cannot be infinite, so 
d2Ψ/dx2 must be finite. 

  

� 

〈 p〉 = Ψ* −i∂Ψ
∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ∫ dx.

  

� 

−2

2m
∂ 2ψ
∂x 2

+Vψ = Eψ

∂ 2ψ
∂x 2

= 2m

2 (V − E)ψ
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(4) Recall the continuity relations: 

If a variable (Ψ) is discontinuous, 
then its first derivative is infinite at the discontinuity. 

So conversely, if dΨ/dx is finite, then Ψ is continuous. 

We already showed this.    This is not really new information but it deserves emphasis. 

(5) Similarly, if d2Ψ/dx2 is finite, then dΨ/dx is continuous. 

(6) If the amplitude of Ψ represents information about a physical object, Ψ must be single-
valued (i.e, one value at each x, not necessarily same value at all x).  

(7) If Ψ is single-valued, dΨ/dx is single-valued. 
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V.  Solving the time-independent Schroedinger Equation when V = 0
−2

2m
∂ 2ψ
∂x2 +Vψ = Eψ                             Plug in 0:

One can check by substitution that 2 possible solutions are

ψ 1 = e
i 2mE



⎛

⎝⎜
⎞

⎠⎟
x

 and ψ 2 = e
− i 2mE



⎛

⎝⎜
⎞

⎠⎟
x

.

So the general solution is the linear combination

ψ general, time-indep, free particle = Ae
i 2mE



⎛

⎝⎜
⎞

⎠⎟
x

+ Be
− i 2mE



⎛

⎝⎜
⎞

⎠⎟
x

.

Notice since this is a free particle (V=0), the E here is Ekinetic  only.

But Ekinetic =
p2

2m
=


2k2

2m
,  so         2mE


 is really 1


2m 

2k2

2m
= k.

So ψ general, time-indep, free particle = Ae
ikx + Be− ikx .

To get the time-dependent solution, just multiply by e-iEt / :
ψ general, free particle = (Aeikx + Be− ikx )e-iEt / .
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VI. Solving the Time-independent Schroedinger Equation for a Barrier Potential 

Consider: 

Region 1     Region 2      Region 3 

The procedure to solve this: 
(a)  Solve the Time-indep Schroedinger Eq separately in each of the 3 regions. 
(b)  Incorporate initial conditions. 
(c)  Make sure that 3 solutions join smoothly at boundaries between regions (this is 

the continuity requirement on ψ and dψ/dx). 
(d) Normalize the final ψ over the full range                     .  

� 

−∞ < x < +∞

particle with E<Vmax 

    x=-a                    x=+a 
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Notes                                             Region 1                            Region 2                                Region 3
                                                         V = 0                                 V = V0                                   V = 0

Time-indep Schr Eq becomes:  −
2

2m
∂ 2ψ
∂x2 = Eψ                     −

2

2m
∂ 2ψ
∂x2 = (E −V0 )ψ             −

2

2m
∂ 2ψ
∂x2 = Eψ

Solution to Schr Eq is:                 ψ Reg 1 = Ae
ik1x + Be− ik1x          ψ Reg 2 = Fe

ik2 x +Ge− ik2 x           ψ Reg 3 = Ce
ik1x + De− ik1x

where                                             k1 =
2mE


                         k2 =
2m(E −V0 )


               k  same as in Region 1

Focus on the meaning of 

Notice we are considering the case where E <V0, so (E-V0) is a negative number, so this √ is 
intrinsically imaginary.  To show the imaginary nature explicitly, write 

This means that in Region 2, the ψ components are real decaying exponentials, e.g.  

  

� 

k2 =
2m(E −V0)


 

  

� 

k2 =
2m(−1)(V0 − E)


 = i

2m(V0 − E)

↓

       

                                           call this K2,    so k2 = iK2

� 

Feik2x = Fei( iK2 )x = Fe−K2x
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Now apply initial conditions: 

Assume incident wave comes from the left: this is           .  
It can reflect at the x=-a boundary, so in Region 1 there can also be a leftward-going 
wave: this is            . 

The wave can be transmitted through the x=-a boundary (           ), 
 then reflected at the x=+a boundary (             ).  So in Region 2 there are both leftward 
and rightward going waves. 

Transmit rightward through the x=a boundary into Region 3 (          ). 

In Region 3 there is no way to develop a leftward-traveling wave since there is no 
boundary to cause reflection there.  So D = 0. 

� 

Aeik1x

� 

Be− ik1x

� 

Feik2x

� 

Ge−ik2x

� 

Ceik1x
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Boundary Condition #                 implies

1:  ψ is continuous at x = -a         Aeik1 (−a ) + Be−ik1 (−a ) = Feik2 (−a ) + Ge−ik2 (−a )

2 :  ∂ψ
∂x

 is continuous at x = -a    ik1Ae
ik1 (−a ) − ik2Be

−ik1 (−a ) = ik2Fe
ik2 (−a ) − ik2Ge

− ik2 (−a )

3 :  ψ is continuous at x = +a       Feik2 (a ) + Ge− ik2 (a ) = Ceik1 (a )        (Remember D = 0.)

4 :  ∂ψ
∂x

 is continuous at x = +a   ik2Fe
ik2 (a ) − ik2Ge

− ik2 (a ) = ik1Ce
ik1 (a )

We have 4 equations and 5 unknowns (A, B, C, F, and G). 
Solve for B, C, F, and G in terms of A. 
Then get A by normalizing. 
This produces the complete wavefunction.  What it looks like: 

wave with E<V0 decays inside the barrier 

wave with E>V0 is amplified above the barrier 
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Outline 

I.   Reflection and Transmission Coefficients 
II.   The response of a particle to being trapped in a square well potential 
III.   Energy of a particle trapped in a square well 
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I. Reflection and transmission coefficients 

Consider 2 questions: 

1.  What is the probability that the original particle is transmitted past any particular 
boundary? 

2.  What is the probability that it is reflected at any particular boundary? 

Recall probability density ρ(x,t) = ψ*ψ. 
This is the probability per location x and time t; i.e., the probability that the particle is 

located AT point x if one tries to observe it at time t. 
Now suppose the particle has velocity v, and you want to know its 

“probability flux”: probability density PER SECOND that the particle crosses location 
x, heading in a particular direction. 
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Consider a volume: 

Area dA 

                    v dt 

particle somewhere 
inside has velocity v 

   

Choose the orientation of the volume so the particle is moving parallel to the edge “v dt”. 

If the particle is somewhere in the box at t = 0, and has velocity v, then by the time dt, the 
particle is guaranteed to have crossed through dA.  The probability that this will happen 
is  (Probability per unit volune that particle is in box) ✕ (Volume of box) 

    (ψ*ψ )                                            ✕ (v dt dA) 

So the probability of crossing dA during dt per unit volume per unit area is  

  Probability Flux  = ψ*ψ v. 
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Now consider a specific particle of velocity =v, approaching step potential V.  It 
passes through dA on its way there: 

 v dA 

Define the probability of an initial pass through dA as P(I), “probability of incidence upon 
the step”. 

At the moment when it reaches x=-a, there is  
some probability that it reflects P(R) and some probability that it is transmitted P(T). 
If it reflects, then some time later it will pass through dA at x=-vdt, traveling leftward. 
If it is transmitted, then some time later it will pass through dA at x=+vt, traveling rightward. 

 
              -v dt                                      +v dt 
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Define Reflection Coefficient ≡ P(R)
P(I )

≡ "R2 " =
ψ reflected

* ψ reflectedvreflected
ψ incident

* ψ incidentvincident
To substitute into this, recall 2 things:
(1) In the region x < -a,  ψ = Aeik1x

 + Be− ik1x


(2) mv = p = k, so v=k /m
krefleced = k1,  so vreflected = k1 / m
kincident = k1,  so vincident = k1 / m

⎫
⎬
⎭

 these are equal.

Now substitute to get:

R2 =
B * e+ ik1xBe− ik1x k1

m
A * eik1xAe− ik1x k1

m

=
B * B
A * A

                                            

leftward-going reflected 
particle = ψreflected 

rightward-going incident 
particle = ψincident 
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� 

We can similarly define

T2 ≡ ψtransmitted
* ψ transmittedvtransmitted
ψincident

* ψ incidentvincident

Notice for transmission from Region 1 to Region 2,

vtransmitted = k2

m

vincident = k1

m

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

 they do NOT cancel

However from Region 1 to Region 3, vinc = vtrans = k1 /m

Substituting all of the above into T2 for transmission from Region 1 to Region 3 yields

T2 = (2k1K2)2

(k1
2 + K2

2)2 sinh2 2K2a + (2k1K2)2 .

The fact that this is nonzero even when E < V0 is called "tunneling."
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Recall sinh x = ex − e− x

2
.

Consider the case where V0 − E
↓


>> 0   (particle is far below the height of the barrier)

                                           K2    >> 0
AND                                   a>>0        (barrier is very wide)

Then sinh  2K2a =
e2K2a − e−2K2a

2
→

e2K2a

2

so sinh2 2K2a→
e4K2a

4

Then T 2 →
(2k1K2 )2

(k1
2 + K2

2 ) e
4K2a

4
+ (2k1K2 )2

→
1

k1
2 + K2

2

(2k1K2 )2

⎡

⎣
⎢

⎤

⎦
⎥
e4K2a

4
+1

≈ e−4K2a

Since exp is a rapidly varying function, transmission depends sensitively on 
the magnitudes of (V0 − E) and a.  This fact is useful in designing electronic devices.

neglect 
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II.  The response of a particle to being trapped in a square well potential 

Consider: 



x=-a/2              x=+a/2 

a particle with energy E<V0 
is in the well. 

How did the particle get in there in the first 
place, if E<V0? 

This is an approximation to the situation of a 
proton bound in a nucleus or an electron bound 
in an atom.  (They are not really square.) 

Perhaps before it was bound (i.e., trapped down 
in the well), it was in the vicinity of –a/2<x<+a/
2, had E>V0, then lost some energy (“gave up 
binding energy”)/ 
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Goal for this section: 

(1)  Find the ψ of the particle.  Remember: once we know ψ, we know everything it is 
possible to know about the particle in this situation.  Everything is encoded in ψ. 

(2)  Learn that if a potential has a shape that can bind a particle, then the particle can 
NOT have arbitrary energy. 

The particle must have an energy selected from a limited set of allowed energies. 

Examples of potentials that can bind particles: 

Examples of potentials that do NOT bind particles: 

restrict it to a limited region 



The method to find ψ... 

...is almost identical to the method for the Barrier Potential: 

(a)  Write the Schroedinger Equation for each region 
(b)  Solve the Schroedinger Equation for each region 
(c)  Match ψ’s at boundaries to find A, B, C, D, etc. 

The discovery we will make is that energy E of the particle cannot be arbitrary.  It has to be 
treated like A, B, C etc.  That is: only particular values of E will allow ψ to satisfy the 
boundary conditions. 

86 

x=-a/2              x=+a/2 
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Notes                                                Region 1                            Region 2                          Region 3
                                                         V = V0                                V = 0                               V = V0

Time-indep Schr Eq becomes:     −
2

2m
∂ 2ψ
∂x2 +Vψ 0 = Eψ          −

2

2m
∂ 2ψ
∂x2 = Eψ                 −

2

2m
∂ 2ψ
∂x2 +V0ψ = Eψ

Solution to Schr Eq is:                    ψ Reg 1 = De
ik2 x + Ce− ik2 x        ψ Reg 2 = He

ik1x + Je− ik1x      ψ Reg 3 = Ge
ik2 x + Fe− ik2 x

where                                                k2 =
2m(E −V0 )


             k2 =
2mE


                    k2  same as in Region 1

Recall (Goswami, Appendix F):
e± ikx = coskx ± i sin kx
So ψ Region 2 = H cosk1x + iH sin k1x + J cosk1x − iJ sin k1x
                 =(H+J )

↓


cosk1x + i(H − J )
↓

 
sin k1x

                  call this "B"       call this "A"
So we can rewrite ψ Region 2  as
ψ 2 = Asin k1x + Bcosk1x
Also as previously, k2  is intrinsically imaginary so define the real number K2  such that k2 = iK2 .



88 
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Then :  ψ1 = De−K2x + Ce+K2x

            ψ3 = Ge−K2x + Fe+K2x

Now apply boundary conditions 

(1)  Initial conditions.  Whereas for the barrier potential we might say “particle is travelling 
rightward”, here the particle is bound: not traveling. 

(2)  ψ must be finite everywhere.  This was true automatically for previous shapes of V so 
we did not explicitly consider it.  Her we have to enforce it.  

To guarantee ψ finite as x  -∞, D must =0. 
To guarantee ψ finite as x  +∞, F must =0. 
(3) ψ continous at x=-a/2 

� 

Asin k1
−a
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + Bcos k1

−a
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = Ce

K2
−a
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

                                                                 Use sin(-x) = -sin x and cos(-x) = cos x

Asin k1a
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + Bcos k1a

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = Ce

−K2a
2               "Eq. 1"
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(4) ∂ψ
∂x

 is continuous at x = -a / 2 ⇒

Ak1 cos k1
−a
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+ Bk1 − sin k1

−a
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
= CK2e

K2
−a
2

⎛
⎝⎜

⎞
⎠⎟

Ak1 cos k1a
2

+ Bk1 sin k1a
2

= CK2e
−K2a

2                          "Eq. 2"

(5) ψ  is continuous at x=+a/2 ⇒

Asin k1a
2

+ Bcos k1a
2

= Ge
−K2a

2                                    "Eq. 3"

(6) ∂ψ
∂x

 is continuous at x=+a/2 ⇒

Ak1 cos k1a
2

+ Bk1 − sin k1a
2

⎧
⎨
⎩

⎫
⎬
⎭
= G(−K2 )e

−K2
a
2

⎛
⎝⎜

⎞
⎠⎟

Ak1 cos k1a
2

− Bk1 sin k1a
2

= −GK2e
−K2a

2                        "Eq. 4"

We have 4 equations and 4 unknowns (A,  B,  C,  G).              
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We could solve for the unknowns immediately, however it is
easier to convert the equations to a different form:
Subtract Eq 3 - Eq 1 to get:

2Asin k1a
2

= (G − C)e
−
K2a

2                                      Eq. 5

Add Eq 1 + Eq 3 to get

2Bcos k1a
2

= (G + C)e
−
K2a

2                                      Eq. 6

Subtract Eq 2-Eq 4 to get:

2Bk1 sin k1a
2

= (G + C)K2e
−
K2a

2                                Eq. 7

Add Eq 2 + Eq 4 to get:

2Ak1 cos k1a
2

= −(G − C)K2e
−
K2a

2                             Eq. 8

(Still 4 independent equations, "Eqs. 5, 6, 7, and 8", for 4 unknowns.
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Consider 2 possibilities :

Possibility #1                                                                   Possibility #2

If B≠ 0 and (G +C) ≠ 0                                                   If A ≠ 0 and (G - C) ≠ 0

then it is permitted to divide Eq 7
Eq 6

 which leads to          then it is permitted to divide Eq 8
Eq 5

 which leads to 

2Bk1 sin k1a
2

2Bcos k1a
2

= (G + C)K2e
−K2a / 2

(G + C)e−K2a / 2  which leads to              
2Ak1 cos k1a

2
2Asin k1a

2

= −(G −C)K2e
−K2a / 2

(G −C)e−K2a / 2  which leads to

 k1 tan k1a
2

= K2                                                                  k1 cot k1a
2

= −K2

Note, we do not care what values A and (G - C) have.   Note, we do not care what values B and (G +C) have.

They could be zero.                                                         They could be zero.

For a given k1, a, and K2, it is mathematically impossible to have both relations 
simultaneously true.  So we continue to treat them separately: 
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Possibility #1   ("Class 1")                                               Possibility #2   ("Class 2")

Defined by :  (1) A and (G -C) can be anything;              Defined by :  (1) B and (G +C) can be anything;

so pick the simplest option :  A =G -C = 0, and              so pick the simplest option :  B =G +C = 0, and

(2)  k1 tan k1a
2

= K2                                                             (2)  k1 cot k1a
2

= −K2

- - - - - - - - - - - - - - Our goal :  to use these conditions to relate A, C, and G to B - - - - - - - - - - - - - - - - - - - - -

If A = 0, then Eq 3 becomes :                                            If B = 0, then Eq 3 becomes :

Bcos k1a
2

= Ge−K2a / 2,  so                                                      Asin k1a
2

= Ge−K2a / 2,  so

G = Bcos k1a
2
e+K2a / 2                                                           G = Asin k1a

2
e+K2a / 2

If G - C = 0, C = G, so                                                       If G +C = 0, C = -G, so

C = Bcos k1a
2

= Ge−K2a / 2                                                     C = -Asin k1a
2

= Ge−K2a / 2

- - - - - - - - - - - - - - -Now substitute these formulas for A, B, C and G back into the ψ 's - - - - - - - - - - - - - - -

Recall ψRegion 1 = Ce+K2x

           ψRegion 2 = Asink1x + Bcosk1x

           ψRegion 3 = Ge−K2x
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               Class 1                                                       Class 2

ψ1 = Bcos k1a
2
e+K2a / 2e+K2x                                          ψ1 = −Asin k1a

2
e+K2a / 2e+K2x

ψ2 = Bcosk1x                                                            ψ2 = Asink1x

ψ3 = Bcos k1a
2
e_ K2a / 2e−K2x                                         ψ3 = Asin k1a

2
e+K2a / 2e−K2x

- - - - - - - - The last step is to normalize to get A and B.  We do not show that here.- - - - - - - - - -

Some important points :

(1) Terms that do not include "x" (such as Bcos k1a
2
e_ K2a / 2) are just complicated normalization 

coefficients.  They are not variables once a and K2 (∝m,  E,  V0) are known.  Ignoring these 

terms, the structure of the ψ's is :

ψ1 ~ e+K2x                                                                   ψ1 ~ −e+K2x

ψ2 ~ cosk1x                                                                ψ2 ~ sink1x

ψ3 ~ e−K2x                                                                   ψ3 ~ e−K2x
} { 
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(2) The exponentials in Regions 1 and 3 are like those in the barrier potential.

(3) In Region 2, the ψ can be either cos or sine.  So the full time - dependent wave functions are

Class 1                                                        Class 2

Ψ2 ~ cos(k1x)e−iEt /                                       Ψ2 ~ sin(k1x)e−iEt / 

Notice :  as t changes, x does not need to change to preserve the cosine or sine waveform- - -

so both cases are standing waves :  the particle is trapped in the well, not traveling.
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III. Energy of a particle trapped in a square well 

The message of this section is: 

A particle in a well cannot have any arbitrary energy.  To satisfy all the boundary 
conditions, only certain energies are allowed. 

How to find the allowed energies: 

Recall that there are 2 classes of wavefunctions ψ supported by the square well.  Each has 
its own relationship between k1 and K2: 

  

� 

             Class 1                                         Class 2

k1 tan k1a
2

= K2                                           k1 cot k1a
2

= −K2

where :

k1 ≡
2mE


    and    K2 ≡
2m(V0 − E)


.

Substitute for k1 and K2 and solve for E :
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                 Class 1     (The Class 2 solutions will be computed as homework.)

2mE


tan a
2

2mE


⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

2m(V0 − E)


Multiply through by a
2

:

a
2

2mE


tan a
2

2mE


⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = a

2
2m(V0 − E)


mEa2

22 tan mEa2

22

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = mV0a

2

22 − mEa
2

22        Define ε ≡ mEa2

22 .  Then,

ε ⋅ tanε
↓

                          = mV0a
2

22 −ε2

↓
       

Call this "p(ε)"             

                                   Call this "q(ε)"    

Graph both p and q on the same plot, versus ε :

ε 



97 

  

� 

The meaning of the graph is :  the points where the curves cross are the only values

of ε for which p(ε) = q(ε).  That is, these are the only cases for which k1 tan k1a
2

= K2 .

But ε ≡ mEa2

22 ,  so E = 22ε2

ma2 .

The only E's that this well permits, are the ones corresponding to the ε's at the

intersections.

The "bottom line" in this example, the particle in the well can have one of only

3 possible energies (there are 3 intersection points).  If you try to give it some

energy other than those, it will not absorb it. 
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What is important about this energy result: 
1.) A particle in a well cannot have arbitrary energy.  It has a limited set of options.   

This well is a rough approximation to the nuclear potential that binds protons in a nucleus 
or the Coulomb potential that binds electrons in an atom.   So these permitted energies 
correspond to the allowed energy shells in which electrons.  (Protons in the nucleus are 
restricted to shells too.) 

2.) Consider the radius of the quarter-circle 
that is the graph of q(ε) versus ε. 
The larger that radius is, the more 
intersections there will be: that is, the more 
allowed energy solutions that exist. 

The radius length is given by  

so larger a (well width) or larger V0 (well 
depth) both produce more allowed energies. 

 

  

� 

mV0a
2

22
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3.)  The ability of the potential to limit the allowed energies of the particle 
is not unique to the square well.  It is a property of any potential that binds 
a particle (i.e. limits it to a specific region of space).  So we would get a 
limited set of allowed energies for potentials shaped like: 

4.)  The fact that the set of allowed energies is limited and that a particle 
cannot ramp up or down its energy in transitioning from one energy level 
to another is called “energy quantization.” 

5.) There is  a one-to-one association between allowed ψ’s and allowed E’s.  
Consider Class 1 (cosine) solutions only: 
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lowest energy 
“Class 1 E1” is 
½ cycle of 
cosine. 

next higher 
energy “Class 2 
E1” is 1 cycle 

Class 1 E2, 3/2 
cycle, etc. 

The Class 1 E’s come from here, where  

  

� 

ε1 leads to Class 1 E1 = 22ε1

ma2

  

� 

ε2 leads to Class 1 E2 = 22ε2

ma2

ε 

Notice  higher energy goes 
with more cycles.  This is 
reasonable as more cycles 
means higher frequency, and 
we know that E=hν.  
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Recall each ψ is called an eigenfunction of the Hamiltonian.  The E that goes with 
it is called its eigenvalue or “eigenenergy.” 

6.) Recall we only plotted Class 1.  We must not forget Class 2 solutions---these 
are defined by 

The E’s for Class 2 solutions are different from the E’s for Class 1 solutions and 
interspersed with them:  

� 

k1 cot
k1a
2

= −K2

Class 1 cosine 

Class 2 sine 

Class 1 cosine 


