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I. Spinors
II. The matrices and eigenspinors of Sx  and Sy
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II. Spinors 
This is an example of using the matrix formulation of Quantum Mechanics

                                                               "Matrix Mechanics"
with 2-component i  and f  states

i Recall that a particle can have 2 kinds of angular momentum
-spin angular momentum and orbital angular momentum

i Recall that spin (a kind of angular momentum) can have components,
in particular a z-component
i Recall that z-component of spin can have only 2 values:
                          Sz = up  and Sz = down

also called           +         and  −                   (no 0 )
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i Recall that a particle's m quantum number concerns the z-component of its angular momentum

If the particle has no orbital angular momentum (m

= 0)

Then m=ms  only. 
i Recall that the general operator that represents the measurement of m is J z

So in general J z Ψ = m Ψ

                                                     if =0, this is mspin

Recall on (?) we showed that quantum # j (like  but including spin) can take values given by 
integer

2

   
like Lz  but generalized to measure mspin  AND m



 

orbital angular momentum
and spin angular momentum
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I. Spinors (continued)
II. The matrices and eigenspinors of Sx  and Sy
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Also m J max = + j and m J min =-j
And (m J max −  m J min ) = integer

The way to satisfy all of this for a 2-state system is for j=
1
2

m J max = + 1
2

m J min = - 1
2

No othe m J  values allowed.
So if =0, so j = spin only then we have   mspin max = + 1

2

                                                                  mspin min = - 1
2

Make a matrix to reflect J z  when j = spin only:

Ψ f Sz Ψ i  = Ψ f mspin Ψ i  = mspin Ψ f Ψ i  = mspinδ if

Sz =  

mspin final + −

+ + 1
2  0

− 0 − 1
2 

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 
mspin initial  

δ if

  Call it "Sz "
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Recap what we know:
+  and −  exist

They are eigenfunctions of the spin measurement, Sz

Their eigenvalues are + 1
2  and - 1

2 

We can summarize this information as:
Sz +  = 2 +  and Sz −  = - 2 −

The matrix representation for Sz  is 
+ 2 0

0 - 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

What are the matrix representations for +  and − ?

To answer this we need to solve

+ 2 0

0 - 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

u+
z

v+
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= + 2

u+
z

v+
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

and

+ 2 0

0 - 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

u−
z

v−
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − 2

u−
z

v−
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Sz

 Sz

+

−

 

Dirac notation
stuff

 

Matrix notation
stuff
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The solutions are
                                       alternative symbol                                  S ,  Sz = + 1

2 ,  + 1
2

+ =
u+

z

v+
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

0

⎛

⎝⎜
⎞

⎠⎟
= χ+

z

                                                                  eigenfunctions of Sz = + 1
2 ,  - 1

2

− =
u−

z

v−
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0

1

⎛

⎝⎜
⎞

⎠⎟
= χ−

z

*Any 2 component vector is called a spinor
*These two-component column vectors which are the eigenfunctions of Sz  in the ms  basis

are called the eigenfunctions of Sz

We could also write for example a matrix Sx  to describe the measurement of the x-component of spin

That matrix would have different eigenfunctions χ+
z  and χ+

z  , the "eigenspinors of Sx "
Any pair of spinors:
(1) are orthogonal: χ+ χ+ = 0

(2) are normalized: χ+ χ+ = χ− χ− = 1

(3) form a basis in "spin space": any state of arbitrary spin χ  can be represented by a linear combination of them
      χ=aχ+ + bχ−

          coefficients

  

also called the
Sz  basis
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II. The matrices and eigenspinors of Sx  and Sy

Recall in P 491 we showed  that 
[Lx , Ly ] = iLz            (and cyclic x → y→ z)

and we postulated that
[Jx , J y ] = iJz            (and cyclic x → y→ z)

Now postulate that Sx ,  Sy , Sz  are related in the same way:

[Sx ,Sy ] = iSz            (and cyclic x → y→ z)

Also recall from P 491 the definition of the general angular momentum raising and lowering operators:
J+ ≡ Jx + iJ y

J− ≡ Jx − iJ y

Since these are general, they raise or lower both
orbital  angular momentum and spin angular momentum

When L=0, they act only on S, so we could call them in that case:
S+ ≡ Sx + iSy

S− ≡ Sx − iSy

 L  S
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To make the matrix for Sx  (in the ms  or the Sz  basis) we need the matrices for S+  and S−  in the ms  basis:
Recall:

J+ j,mj =  j( j +1) − mj (mj +1) j,mj +1

In general j=+s and m j = m

+ ms

Suppose =m

= 0

Then j=s and m j =ms

Then

S+ s,ms =  s(s +1) − ms(ms +1) s,ms +1

                                                                        But s= 1
2  only

              =  1
2 ( 3

2 ) − ms(ms +1) s,ms +1

So

s,ms
′ S+ s,ms =  3

4 − ms(ms +1)δ
ms
′ ,ms +1

Make the matrices:

   

J− j,mj =  j( j +1) − mj (mj −1) j,mj −1

S− s,ms =  s(s +1) − ms(ms −1) s,ms −1

                                                                  

              =  1
2 ( 3

2 ) − ms(ms −1) s,ms −1

s,ms
′ S− s,ms =  3

4 − ms(ms −1)δ
ms
′ ,ms −1
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                      ms :    + 1
2                  - 1

2

S+ =     ms
′ :   

+ 1
2

− 1
2

0 
3
4 − (− 1

2 )(− 1
2 +1)

0 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

             = 0 

0 0

⎛

⎝⎜
⎞

⎠⎟
              

Combine these to get

Sx =
S+ + S−

2
=

1
2

0 

0 0

⎛

⎝⎜
⎞

⎠⎟
+ 0 0
 0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

1
2

0 

 0

⎛

⎝⎜
⎞

⎠⎟
=


2
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟

Sy =
S+ − S−

2i
=

1
2i

0 

0 0

⎛

⎝⎜
⎞

⎠⎟
− 0 0
 0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
−i
2

0 

− 0

⎛

⎝⎜
⎞

⎠⎟
=


2i
0 −i
+i 0

⎛

⎝⎜
⎞

⎠⎟

Now find their eigenspinors

                         eigenvectors in the ms  basis

   

                      ms :                  + 1
2                  - 1

2

S− =     ms
′ :   

+ 1
2

− 1
2

0 0


3
4 − ( 1

2 )( 1
2 −1) 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

             = 0 0
 0

⎛

⎝⎜
⎞

⎠⎟
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To find χ±
x  and their eigenvalues λ, solve

S+χ±
x = λ±χ±

x

0 

2



2 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ux

vx

⎛

⎝
⎜

⎞

⎠
⎟ = λ ux

vx

⎛

⎝
⎜

⎞

⎠
⎟

−λ 

2



2 −λ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ux

vx

⎛

⎝
⎜

⎞

⎠
⎟ = 0

−λ 

2



2 −λ
= 0

λ2 − 
2

4 = 0

λ = ± 2

To get the eigenvectors (spinors) plug these λ  back in:

−λ 

2



2 −λ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ux

vx

⎛

⎝
⎜

⎞

⎠
⎟ = 0

                                                        Plug in λ = + 2  for (u+
x ,v+

x )

− 2 u+
x + 

2 v+
x = 0

u+
x = v+

x

Normalized

ux
+

vx
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1
2

1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= χ+

x      this is the spinor that goes with eigenvalues + 

2
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Similarly,

χ−
x =

− 1
2

+ 1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

             this is the spinor that goes with - 2

We can similarly find eigenfunctions (spinors) of Sy :

χ+
y =

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

          for λ= 2

χ−
y =

1
2

− i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        for λ=- 2

Example:
Suppose an SG filter produces an e−  in state Sz  = down.

Then the e−  enters another SG filter designed to select Sy = up or down.

What is the probability that the e−  will be found to have Sy = up?

Answer:

α i = χ−
z = 0

1

⎛

⎝⎜
⎞

⎠⎟

α f = χ+
y =

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

P = f α α i
2
=  1

2
− i

2( ) 0
1

⎛

⎝⎜
⎞

⎠⎟

2

=
1
2

                                   complex conjugate
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Read Chapter 16

I. The Pauli Matrices
II. The Transformation Matrix
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III. The Pauli Matrices
Recall:

Sx =
0 

2



2 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=


2
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
                             "σ x "

Sy =
0 − i

2

+ i
2 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=


2
0 −i
+i 0

⎛

⎝⎜
⎞

⎠⎟
                    "σ y "

Sz =


2 0

0 − 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=


2
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
                           "σ z "

These matrices (without 2 's) are called the Pauli matrices σ i
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Facts about the Pauli matrices

1) The set of σ x ,  σ y , σ z  and I ≡ 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 form a basis for the space of 2x2 matrices

i.e. any 2x2 matrix can be expressed as a linear combination of σ x ,  σ y , σ z  and I

2) σ i
2 = 1    i=1, 2, 3

3) σ xσ y = iσ z         and cyclic x → y → z → x

4) σ iσ j +σ jσ i = 2δ ij    since there is a + instead of a -, we say they "anti-commute"

      σ i ,σ j{ }
5) σ x ,σ y

⎡⎣ ⎤⎦=2iσ z     and cyclic x → y→ z → x

6) They are Hermitian. This makes sense because

                     σ i
† = σ i

σ i = (a real number)*Si

                                         Si  measures spin, a physical observable
Operators reflecting physical observables are always Hermitian.
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So we have 3 separate matrices,

σ x =
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟

σ y =
0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟

σ z =
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

Forget for a moment that those σ i  are matrices.
Focus on the symbols. They look like the components of a 3-D vector:

" σ"=

σ x

σ y

σ z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

We will use this vector. So for example if we have some other vector v, then v ⋅ σ =
vxσ x + vyσ y + vzσ z

= vx
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
+ vy

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
+ vz

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

=
0 vx

vx 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

0 −ivy

ivy 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ vz

vz 0

0 −vz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
vz vx − ivy

vx + ivy −vz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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I. The Transformation Matrix

Plan:
(i) Present plan of what calculation we need to learn how to do
(ii) Show why one might want to do it
(iii) Show how to do it
(iv) Examples

Carry out plan:
(i) Suppose a particle is prepared in a particular basis state, example it is prepared to have Sz = up.
But we actually want to know its Sy  state

                                                             i.e. its probability of Sy = up and Sy = down

So we need a translation dictionary that says 
"If the state is Sz = _________, it has Amplitude =___________ to be found in 
state Sy = ___________  (i.e. want the projection of one set of basis vectors onto another set.)

Table:     all possible Sz  states →                
               all possible Sy  states  

                                           ↓   
                                                 
                                                 
This matrix is called the Transformation Matrix from the Sz  basis to the Sy  basis.

Call it USz →Sy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟  

 each element of this
matrix is the amplitude
that relates (projects) an
Sz  state to an Sy  state



18 

  

It's matrix elements look like

Sy = f Sz = i            where for example i = +, 0, - and f = +, 0, -

So if you know all of the elements of the matrix between 2 bases, then if you know a particle's state
in one basis, you can translate it into the other basis.

(ii) Why would you want to do that?

It is hard to see why if you consider just Sz  and Sy

Example of other possible bases: x  (position)

                                              or    E  (energy)

So you might want to know for example, x E

                  Recall how Dirac notation works:
                  E =  a state with energy, E

                   x E  means project it from Hilbert

                   space into position space
so x E = ΨE (x)

So when we say we find the elements of a Transformation Matrix we are really finding the possible
wavefunctions of a particle which is entirely specified by 2 of its properties

                                                                                                   say (E and x) or (Sz  and Sy )

  

unlike the Sz  basis,
which has 3 states for
a spin -1 particle, these 
have ∞ # of states.
But they are still  bases.
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(iii) How to construct USz →Sy

Recall what the Sz  basis is:
It is the set of ms  states which can be arranged to make the matrix representation of Sz  diagonal

                          i.e. quantum # m +s ≤  m ≤  -s 
                          like + < m


 < -

Recall that in the Sz  basis,

the eigenspinors of Sz  are χ+
z  = 1

0

⎛

⎝⎜
⎞

⎠⎟
 and χ−

z  = 0
1

⎛

⎝⎜
⎞

⎠⎟

while the eigenspinors of operator Sy  represented in the Sz  basis are

χ+
y  = 

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 and χ−
y  = 

1
2

− i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Recall that in the Sz  basis, the Sy  operator looks like

Sy =
0 − i

2

i
2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ⇒ it is not diagonal

There must be some basis in which Sy  is diagonal (i.e., we coudl diagonalize Sy )

Before we do that let's call that basis in which Sy  would be diagonalized, "the Sy  basis"

 eigenfunctions
  in Sz  basis   in Sz  basis



20 
   

In the Sy  basis, Sy  would look like

                           Sy  = +    Sy  = -

Sy  = 
Sy  = +

Sy  = +



2           0

0          

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

And in the Sy  basis, the eigenspinors of Sy  would look like

χ+
y = 1

0

⎛

⎝⎜
⎞

⎠⎟
       and      χ−

y = 0
1

⎛

⎝⎜
⎞

⎠⎟

We need a translation U which simultaneously guarantees

Name of eigen spinor            Representation in Sy  basis        =     U ⋅     Representation in Sz  basis

            χ+
y                                           1

0

⎛

⎝⎜
⎞

⎠⎟
                           =     U ⋅               

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

AND

            χ−
y                                           0

1

⎛

⎝⎜
⎞

⎠⎟
                            =    U ⋅               

1
2

− i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

The U that satisfies both is

U=
1
2

− i
2

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

The recipe to make a U that translates from some arbitrary basis to an operator's "home" basis is this:

  
 in Sy  basis   

 in Sy  basis

  
 here Sy   here Sz
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1) Because the operator is diagonal in its home basis (that is the definition of a home basis), its
eigenvectors in that basis will always look like

1
0


0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟



0
0


1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  etc.

2) Find its eigenvectors in the basis that you want to translate out  of
Suppose they are

a1



an

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

           and           
b1



bn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

           and           
c1



cn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

3) Take the Hermitian conjugate of each

                      HC=transpose complex conjugate
(a1

*  a2
*  … an

*  )   (b1
*  b2

*  … bn
*  )   (c1

*  c2
*  … cn

*  )

4) arrange the HC eigenvectors in rows in order of decreasing eigenvalues

U=

c1
*  c2

*  … cn
*

b1
*  b2

*  … bn
*

a1
*  a2

*  … an
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

where this has
the lowest
eigenvalue

 

this has the
next lowest

 

this has
the highest
eigenvalue
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So to summarize:

USz →Sy
=

1
2

− i
2

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

we could have done a similar calculation for

USz →Sx
=

1
2

1
2

−1
2

1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                                                                      save these for later
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I. The Transformation Matrix is unitary
II. Why we diagonalize matrices in QM
III. Writing the Hamiltonian operator as a matrix
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II. The Transformation Matrix U is unitary
U has the important feature that U−1 =  U†

To see this:
Recall that the inverse M−1  of any matrix M must have the property that M−1M=1.
For any matrix M,

M−1 =
1

det M
C             transpose of the matrix of cofactors of M

Example: Suppose

M= a b
c d

⎛

⎝⎜
⎞

⎠⎟

Then detM=ad-bc
Cij = (−1)i+ j ⋅det(submatrix obtained by deleting row i and column j from M)

C=
d (−1)c

(−1)b a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

C = d −b
−c a

⎛

⎝⎜
⎞

⎠⎟

So M−1 =
1

(ad − bc)
d −b
−c a

⎛

⎝⎜
⎞

⎠⎟

Also recall M† = a* c*

b* d*

⎛

⎝
⎜

⎞

⎠
⎟

Plug in the specific transformation matrix USz →Sy
 for M:
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USz →Sy
=

1
2

− i
2

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

U −1 =
1

1
2

i
2
− − i

2( ) 1
2( )( )

i
2

i
2

−1
2

1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      = -i
i
2

i
2

−1
2

1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   =  
1
2

1
2

i
2

− i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Also

U† =  
1
2

1
2

− i
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

*

  =  
1
2

1
2

i
2

− i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

So U−1 = U†

What is the physical  importance of being unitary?
1) Recall that applying U to each element of a basis α  projects it onto another basis β

For any element of basis β :

β = 1⋅ β

                       Insert 1= α α
α
∑

= α α β
α
∑

                                              β α
*
=Uβα

*
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β = α
α
∑ Uβα

*

Take the complex conjugate of this equation:
β = Uβα

* α
α
∑

Now consider some arbitrary state Ψ

Project it onto the new basis β

It will have components in that basis given by
′Ψβ = β Ψ

= β α α Ψ
α
∑                                these are the components of Ψ in the "old" basis α → Ψα

= UβαΨα
α
∑

These subscripts concern individual components of the state. Generalize to the full state

′Ψ =UΨ

Recall that changing basis is like changing coordinate systems. The length of a vector Ψ should not depend
on which coordinate system is is measured in.
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So we expect
length of ′Ψ = length of Ψ

′Ψ ′Ψ              Ψ Ψ

                                                      But ′Ψ =U Ψ

UΨ UΨ

Ψ U †U Ψ        Ψ Ψ

These can only be equal if U†U = 1
But U−1U = 1 by definition of U−1

So these can only be equal if U† = U−1

Fortunately U†  does = U−1

So unitarity transformation preserves state vector lengths

                                                             normalization

                                                             *probabilities*
under change of basis.

This is important because probabilities are what is actually measured, and they cannot depend on choice of basis.
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III. Why do we diagonalize matrices in QM
Suppose we are working in some basis (Ex: the Sz  basis)
We have an operator that is not diagonalized in this basis
(Ex: the Sy  basis)

We find USz →Sy
 that relates the form of the eigeinvectors of the operator

                                                                        Example: χ+
y  and χ−

y

in the arbitrary basis to these in the home basis

            Sz  basis                                   Sy  basis

Thus far we have considered only the effect of U on the χ's.
Now consider the effect of U on the operator itself:

USyU
−1 =

1
2

− i
2

1
2

i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 − i
2

− i
2 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
2

1
2

i
2

− i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 = 


2 0

0 −
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

*Applying U, U−1  to the non-diagonal operator diagonalizes it.

Who cares?
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The goal of many QM calculations is to answer "What are the possible results (=eigenvalues)
I could get if Imake a particular measurement?"

(i) When an operator is in non-diagonalized form, every vector that it operates on gets changed into 
a different vector. So you learn from this what changes this operator (Ex L+ ) can cause in nature.

(ii) If you want to find what are the stationary states of an operator, the states of definite energy, the 
states that can appear as possible results of measurements, then you need the eigenvectors and 
eigenvalues of the operator.

(iii) A diagonal form of the operator is the only form that leads to an eigenvalue equation. The U 
matrix converts an aperator into a diagonal form.

(iv) As a bonus, the U gives the amplitude for observation of every possible physical state which 
can be found by that measurement (Ex: Sy ) given the initial prepared state.

  in Sz
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I. Writing the Hamiltonian operator as a matrix
Recall the time-dependent Schrodinger Equation:

i ∂
∂t
Ψ = HΨ

                            Consider situation where
                            (i) Ψ is not just a scalar but is an object that can be axpanded in a basis. So
                                 Ψ→ Ψ

                            (ii) We are interested only in the time-development of Ψ. So

                                 
∂
∂t

→
d
dt

i d
dt

Ψ = HΨ

                            Recall it is difficult to work on Ψ  as a Hilbert space object, so project

                             into some (unspecified) basis j

j i d
dt

Ψ = j H Ψ

                                           Insert 1= i i
i
∑

i d
dt

j Ψ = j H i i Ψ
i
∑

  

call this c j ,  the amplitude

that Ψ is in state j
  
H ji ,  element of the H matrix

  similarly this is ci
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Reunite:

i
d
dt

c j = H jici
i
∑

                                      This equation is true for a Ψ  with any number of components

                                      i.e any number of possible states what a measurement could find it to be in.

                                      Consider a Ψ  which can only ever be in 2 states

                                      then i:(1,2)
                                              j:(1,2)
So this represents 2 equations

When j=                              the equation reads:

   1                                          i
d
dt

c1 = H11c1 + H12c2

   2                                          i
d
dt

c2 = H21c1 + H22c2

                                                   an alternative form of this is:

                                                   i
d
dt

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

H11 H12

H21 H22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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I. The meaning of diagonal and non-diagonal matrices
II. The ammonia molecule

Read handout on NMR
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II. The meaning of diagonal and non-diagonal matrices

Consider a potential in which 2 states are theoretically possible

Ψ could be here or here but because the barrier is ∞,  Ψ can never tunnel from one state to the other.
Recall we showed in Section 6.4 that when the Hamiltonian acts on a state, it evolves the state forward in time.
If the particle can never tunnel from 1 → 2  or 2 → 1

Then H 1 =  [possibly some constant] 1

and H 2 =  [     ] 2

but H 1  = 0 ⋅ 2

and H 2  = 0 ⋅ 1

Another way to express this is

 V = ∞

 V = 0  V = 0

 

call this 
1

 

call this 
2
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initial states →       1     2

final states ↓

           H=
1

2

H11 0

0 H22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Now recall from Chapter 3 that HΨ=EΨ, so the [possible some constant] = E0

Since the 1  and 2  are both in regions where V=0, expect both to have same energy, so

H =
E0 0

0 E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Now suppose that the barrier is not infinitely high, so there is some probability that as time passes that a state 
in 1 → 2  or a state in 2 → 1

Suppose that after a certain length of time, the probability that 1 → 2  is A2

Let the amplitude = A2 = −A
Similarly for 2 → 1

Now 

H =
E0 −A

−A E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 as the H acts
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II. The Ammonia molecule

An example of a physical case where 2 states are related by 
E0 −A

−A E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 is the 2 physical states

of the NH3  molecule.
The 3 H's make a triangle which has repulsive potential

If the N is above, it sees a coulombic barrier that prevents it from moving below.
If it is below, it is barricaded from moving up.
So there are 2 states

But the Coulomb potential is not ∞ so there is some amplitude for the N to tunnel from above to below.

Compare:

H 

H 

H 

 Coulomb repulsion up

 and down

H 

H 

H H 

H 

H 
 N

 N

 and 
call this 1  

call this 2

 call it -A
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effect of a diagonal H

H=
E1 0

0 E2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Time-dependent Schrodinger Equation:

i
d
dt

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E1 0

0 E2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

i
d
dt

c1 = E1c1   and  i
d
dt

c2 = E1c2

c1 = Ae
− iE1t

              c2 = Be
− iE2t



Notice about this:
We can write Ψ  as an expansion (or linear combination)

in the basis:
Ψ = 1 1 Ψ + 2 2 Ψ

= 1 c1 + 2 c2

= Ae
− iE1t

 1 + Be
− iE2t

 2

So 1  is a stationary state with energy E1 and 

2  energy E2

and c1 and c2  are the amplitude for finding Ψ  in

"stationary state" means a measurement of the energy
and state of this system will always find one or the 
other, but no combination or other option.

  

effect of a non-diagonal H:

H=
E0 −A

−A E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

To find the stationary states we have
to diagonalize this

E0 − λ −A

−A E0 − λ
= 0

            ↓
λI = E0 + A ≡ "EI "
λII = E0 − A ≡ "EII "
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We need to find the eigenvectors (basis vectors)
I  that goes with λI

II  that goes with λII

To visualize them, let us write I  II  as linear combinations of 1  and 2

i.e. we want 
I = i i I

i
∑

= 1 1 I + 2 2 I

= 1 I 1
*
+ 2 I 2

*

                                       but I 1  and I 2  are matrix elements of the transformation matrix

                                       that transforms H from non-diagonalized form to diagonal form

So we need to find U

 

which has eigenvectors
1 ,  2

 

which has eigenvectors
I ,  II

 N above H's  N below H's
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To find U,

Recall H=
E0 −A

−A E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

*Every 2x2 matrix can be written as a linear combination of the Pauli matrices and the identity matrix:

=E0
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
− A 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
= E01 − Aσ x

So to diagonalize H we just need to diagonalize σ x

But σ x  = 2


Sx

So to diagonalize H we just need to diagonalize Sx

The U that diagonalizes Sx  is USz →Sx
 (see notes from last lecture)

1
2

1
2

−1
2

1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

← eigenvector corresponds to Sx  eigenvalue = + 

2  (or σ x  eigenvalue +1)

← eigenvector corresponds to Sx  eigenvalue = - 2  (or σ x  eigenvalue -1)

                        (Remember to arrange eigenvectors in order of decreasing eigenvalue)

Now the eigenvalues of H are 
E0 + A

E0 − A

⎧
⎨
⎪

⎩⎪

Now the eigenvalues of 1 are 1
1

⎧
⎨
⎪

⎩⎪

Now the eigenvalues of σ x  are +1
−1

⎧
⎨
⎪

⎩⎪

So to create the U that diagonalizes H, order the eigenvectors from 
Row 1 high eigenvalue    E0 + A    E0 (1) + A(−1)       eigenvector of σ x  corresponds to -1
                  ↓
Row 2 low eigenvalue    E0 − A    E0 (1) − A(−1)       eigenvector of σ x  corresponds to +1
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I. The ammonia molecule (continued)
II. Ammonia oscillation frequency

Reach Chapter 18
Feynman pages 8-10 to 9-5
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So
                    1   2

U =
I

II

−1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Now we have 

I 1 = −1
2
= I 1

*

I 2 = +1
2
= I 2

*

So I = 1 1 I + 2 2 I

          = 1 1 I
*
+ 2 2 I

*

          = 1 −1
2( ) + 2 +1

2( )
     I = 1

2
− 1 + 2( )

We could do a similar calculation to find that 

     II = 1
2

1 + 2( )

Interim conclusion #1: If H is expanded in the basis 1 ,  2  it is not  diagonal. But if it is expanded

in the basis I ,  II  it is diagonal.

So we can write:
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                       I           II

H =
I

II

E0 + A 0

0 E0 − A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Now we have the basis in which H is diagonal.
Now solve the Schrodinger Equation in this basis.
Recall in general the Schrodinger Equation can be written as

i
d
dt

Ψ = HΨ

                          apply j

i
d
dt

j Ψ = j H Ψ = j H i i Ψ
i
∑

i
d
dt

c j = H jici
i
∑

For 2-D, this is:

i
d
dt

c1 = H11c1 + H12c2

i
d
dt

c2 = H21c1 + H22c2

⎧

⎨
⎪⎪

⎩
⎪
⎪

                                 In the I ,  II  basis, H12 = H21 = 0 and

                                 H11 = E0 + A
                                 H22 = E0 − A

 
c j  

H ji  ci

 0

 0
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Since we are in the I ,  II  basis, call

c1 → cI ≡ I Ψ

c2 → cII ≡ II Ψ

Then we have

i d
dt

cI = (E0 + A)cI    → cI = C exp − i( E0 + A)t


⎡⎣ ⎤⎦ I

i d
dt

cII = (E0 − A)cII    → cII = Dexp − i( E0 − A)t


⎡⎣ ⎤⎦ II

⎧

⎨
⎪⎪

⎩
⎪
⎪

Ψ  can be expanded in any basis that spars its space:

Ψ = i i Ψ
i
∑

                              In particular
= I I Ψ + II II Ψ

= C exp − i( E0 + A)t


⎡⎣ ⎤⎦ I + Dexp − i( E0 − A)t


⎡⎣ ⎤⎦ II

So the stationary states of this system are

Ψ I  which has E=E0 + A

Ψ II  which has E=E0 − A

⎫
⎬
⎪

⎭⎪

*these are the only 2 possible results of a measurement on this system.              
You would never measure just E0 ,  or some linear combination of Ψ I + Ψ II

 
Ψ I  

Ψ II
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I. Ammonia oscillation frequency
II. MRI

Read Chapter 17
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I. Ammonia Oscillation Frequency

Recall that physically the ammonia molecule can be in either of 2 states, and can tunnel through a barrier
to get from one to the other. Because it can switch between them, those are NOT the stationary states.
However, they are real physical states. 
Calculate the Frequency with which the molecule changes state from 1  to 2 :

frequency at which the N tunnels back and forth 
This will help clarify the meaning of different basis we have used 
Recall the two basis we have worked in for this problem:

  

Basis 1 ,  2

correspondes to physical  states
             N
1 =

2 =

             N
In this basis,

H=
E0 −A

−A E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟   

Basis I ,  II

correspondes to stationary states
with unchanging energies
             
I :  state with E=E0 + A

II :  state with E=E0 − A

             
In this basis,

H=
E0 + A 0

0 E0 − A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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 Define time-dependent Schrodinger Equations:

   

c1 = 1 Ψ   and  c2 = 2 Ψ

i d
dt

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E0 −A

−A E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

i d
dt

c1 = E0c1 − Ac2

i d
dt

c2 = −Ac1 − E0c2

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

coupled eq.→ transitions 
"Eq 1"
"Eq 2"

We never solved for c1,  c2

The basis in which H is nondiagonal gives information
about transitions between states

Because we want to study transitions (i.e. tunnelling 
frequency) we will work in this basis.
So we need to find c1,  c2

To find c1,  c2  first
(i) Add Eq 1 and Eq 2

i d
dt

(c1 + c2 ) = (E0 − A)(c1 + c2 )

(c1 + c2 ) = ae
− i


( E0 − A)t                  "Eq 3"
                        unspecified normalization

   

cI = I Ψ   and  cII = II Ψ

i d
dt

cI

cII

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E0 + A 0

0 E0 − A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cI

cII

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

i d
dt

cI = (E0 + A)cI

i d
dt

cII = (E0 − A)cII

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

uncoupled eq.→  no transitions 

We solved for c I ,  c II :  we get

cI = C exp − i E0 + A( )t


⎡
⎣

⎤
⎦

cII = Dexp − i E0 − A( )t


⎡
⎣

⎤
⎦

Notice the basis which makes H diagonal yields
the energies (eigenvalues) which are possible
results of measurements.
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(ii) subtract Eq 1 - Eq 2

i
d
dt

(c1 − c2 ) = (E0 + A)(c1 − c2 )

c1 − c2 = be
− i


( E0 + A)t              "Eq 4"
                              unspecified normalization

(iii) Solve Eq 3 and Eq 4 simultaneously to get

c1(t) =
a
2

e
− i


( E0 − A)t +
b
2

e
− i


( E0 + A)t

c2(t) = a
2

e
− i


( E0 − A)t −
b
2

e
− i


( E0 + A)t

Question: Suppose at t=0 the molecule is in state 1 . What is the probability

that it will be found in 2  at t= ′t  ?

Answer:
starting condition:
c1(0) = 1 Ψ(t = 0) = 1   AND     c2(0) = 2 Ψ(t = 0) = 0

a
2
+

b
2
= 1                                                   

a
2
−

b
2
= 0

                                    a=b=1

Plug in a, b into c1,  c2 :
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c1(t) =
1
2

e
− i


( E0 − A)t +
1
2

e
− i


( E0 + A)t = e
− i


( E0 )t cos At


( )
c1(t) =

1
2

e
− i


( E0 − A)t −
1
2

e
− i


( E0 + A)t = ie
− i


( E0 )t sin At


( )

So the probability that the system is in 2  at t= ′t  is

2 Ψ( ′t )
2

c2 ( ′t )
2
= ie

− i


( E0 )t sin A ′t


( )
2

  =   sin2 A ′t


( )
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II. NMR = MRI

This is another example of a 2-state system
Consider a particle with charge q, mass m, and magnetic moment 


M in a magnetic field 


B.

 Recall from classical E&M that it develops potential energy E=-

M ⋅

B

Guess that the QM Hamiltonian for this process looks similar so
H=-

M ⋅

B

Recall from Chapter 13 that 

M is related to angular momentum


M=

qg

L

2mc
                     generalize this from 


L to 

S


Mdue to spin

when 

L=0

=
qg

S

2mc

                   the gyromagnetic ratio g, depends on the particle involved and whether 
                   the angular momentum is due to 


L or 

S.

                   For NMR, the particle is the proton and the angular momentum is 

S.

                   In that case, g=g p = 5.6       also q=+e    and m=m p

So H=-

M ⋅

B = 

−eg p


S ⋅

B

2mpc

                  Recall the spin operator 

S is related to the composite vector σ  made
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I. MRI (continued)
II. The medical application of MRI
III. Time Independent Perturbation Theory

Read Chapter 22, Sections 1,2,6 only
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from the Pauli matrices, so

S=


2
σ

Then 

H=

−eg
2mc


2
σ ⋅

B                σ x Bx +σ y By +σ z Bz

                                                call this µ p

If 

B is purely Bz ẑ,  then σ ⋅


B = σ z Bz   only

                                              =σ z B

                                              = 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
B

Then H would = -µ p B 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

                      sz = +    sz = −

=  
sz = +

sz = −

-µ p B 0

0 +µ p B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The diagonal form would mean that the presence of the 

B would not change the state of the p's spin.

                                                                the effect of H on the initial state of p
There are no matrix elements that convert − → +  or + → −

Now suppose we add another component to 

B

Let 

B=Bx x̂ + Bz ẑ

Bx = B1 cosωt                      still constant, call it B0. It has no time dependence.

B1 = (eiω t + e− iω t ) / 2
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Then   σ ⋅

B=σ x Bx +σ y By +σ z Bz

            
B1 eiω t + e− iω t( )

2
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
                 B0

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

H = −µ pσ ⋅

B =

−µ p B0

−µ p B1 eiω t + e− iω t( )
2

−µ p B1 eiω t + e− iω t( )
2

+µ p B0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Now there is a possibility for the proton to flip its spin between +  and −  in response to 

B.

If we define E0 ≡ −µ p B0

 and             A ≡  
µ p B1 eiω t + e− iω t( )

2

Then H=
E0 −A

−A −E0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

So we could do calculations identical to the ones we did for the ammonia 2-state system, assume that the protons 
begin with spin up, then find the probability of finding spin down at t= ′t .

For real MRI, the B field is usually a little more complicated.
Still have                    Bz = B0

and                             Bx =  B1 cosωt              ← so the B field rotates in the x-y plane
but we also have        By = −B1 sinωt
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So H MRI = −µ pσ ⋅

B

= − µ p (σ x Bx +σ y By +σ z Bz )

= − µ p
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
Bx +

0 −i
+i 0

⎛

⎝⎜
⎞

⎠⎟
By +

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
Bz

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − µ p

B0 (B1 cosωt + iB1 sinωt)

(B1 cosωt − iB1 sinωt) −B0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

want to solve

-i
d
dt

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= H

c1

c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Solve 2 equations silmutaneously c1 = ..........
                                                      c2 = ..........

Now assume that at t=0 c1 = 1 Ψ = 1 and c2 = 2 Ψ = 0

This gives normalization so you get
c1(t) = ...................

c2(t) =

iµ p B1



µ p B0


− ω

2
⎛

⎝
⎜

⎞

⎠
⎟

2

+
µ2

p B2
1


2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1
2

⋅ sin
µ p B0


−
ω
2

⎛

⎝
⎜

⎞

⎠
⎟

2

+
µ2

p B2
1


2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1
2

t
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

e− iω
2

t

At any time t= ′t , the probability that a spin has flipped from + to - is

c2 ( ′t )
2
=
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I. The medical application of MRI
II. Time-Independent Perturbation Theory
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c2(t)
2
=

µ2
p B2

1


2

µ p B0


− ω

2
⎛

⎝
⎜

⎞

⎠
⎟

2

+
µ2

p B2
1


2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⋅ sin2
µ p B0


−
ω
2

⎛

⎝
⎜

⎞

⎠
⎟

2

+
µ2

p B2
1


2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1
2

t
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

when ω=
2µ p B0


,  the denominator is minimized so the probability of spin flip is maximal. 

This is a magentic resonance.
How to use this for medical imaging

I. The medical purpose of MRI is to distinguish normal from non-normal tissue. How this works:

(i) When B0( ẑ) is turned on but B1(xy) is off, then 

Sz = +  is a lower  energy state          (H11 = −µ p B0 )

Sz = −                                                (H22 = +µ p B0 )

So most protons are in the Sz = +  state. If N0 =  total # protons

#  protons in Sz = +

#  protons in Sz = −
=

N0 exp −E+
kT( )

N0 exp −E−
kT( )  = 

exp − −µp B0( )
kT( )

exp − +µp B0( )
kT( )  = e xp 2µp B0

kT( )
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(ii) Turn on B1 →  most spins flip from +  to −

(iii) Turn off B1

the spins in normal tissue relax to +  at a different rate than do the spins in abnormal tissue.

Measure relaxation rate by placing a coil near the tissue (but outside the body) and measure 


Mi∑
by the current induced in the coil.
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I. Intro to addition of angular momentum
II. Example method for Clebsch-Gordan coefficient construction

Read Chapter 8 Section 2 (WKB approximation)
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I. Intro to Addition of Angular Momentum

A) Why total angular momentum is important in QM:
i Most physical systems actually have > angular momentum contributor
Example: e−  in Hydrogen has 


L and 


S

                multi-atom system has multiple J i 's

i only the total J for the system is conserved (ie Ψ J Ψ ≠ f ) is called a "constant of motion"

(responds only to external forces)
commutes with the Hamiltonian H
has stationary states with definite eigenvalues
i Those eigenvalues occur as measurements (eg reflected in spectroscopy of allowed energy levels of a system)
Example: In particular relativistic corrections introduced into the hydrogen atom Hamiltonian a 
term ~L ⋅S so need to describe the probabilites for different composite J values correctly

B) What we typically have:
math expressions for eigenfunctions, eigenvalues in terms of:
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Call these eigenfunctions J1,m1  and J2 ,m2

Then characteristic that
J1

2 j1,m1 = j1( j1 +1)2 j1,m1

J2
2 j2 ,m2 = j2 ( j2 +1)2 j2 ,m2

J1z j1,m1 = m1 j1,m1

J2z j2 ,m2 = m2 j2 ,m2

C) What we typically want is eigenvalues , eigenfunctions for J tot
2 ,  mtot .

Call them j,m  such that J tot
2 j,m = j( j +1)2 j,m  and J z  tot j,m = m j,m

So we need a transformation matrix
from j1,m1 j2 ,m2 → j,m

i.e. Need this
j,m = j1,m1, j2 ,m2 j1,m1, j2 ,m2 j,m

m1 +m2 =m
∑

  

J1
2

total angular momentum
(of particle) 1   

J2
2

total angular momentum
(of particle) 2  

m1

eigenvalue of J z

(of particle) 1   

m2

eigenvalue of J z

(of particle) 2
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They are called the Clebsch-Gordan coefficients. They tell how much of each old j1,m1, j2 ,m2  eigenket 

contribute to each new j,m  eigenket.

Note: the j1,m1, j2 ,m2  form a basis

       the j,m  form a different basis

members in each basis are orthoganol

Show that the eigenfunctions of a mermitian operator (for example J) are orthogoanl; as this is important in 
constructing the C-G coefficients
Let hermitian operator be A=A†

Let eigenfunctions be Ψ1  and Ψ2 ,  so
AΨ1 = a1Ψ1             Eq 1
and
AΨ2 = a2Ψ2            Complex conjugate this:

[AΨ2 ]* = a*
2Ψ

*
2         but Herimitian operators have real eigenvalues so a2

* = a2. Then

[AΨ2 ]* = a2Ψ
*
2            Eq 2
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Take dxΨ*
2 ⋅ Eq1           ∫  ⇒ dxΨ*

2 AΨ1∫ = dxΨ*
2a1Ψ1∫                Eq 3

and   dx ⋅ Eq2 ⋅Ψ1           ∫ ⇒ dx[AΨ2 ]*Ψ1∫ = dxa2Ψ2
*Ψ1∫             Eq 4

Eq3− Eq4 :
dxΨ*

2 AΨ1∫ − dx[AΨ2 ]*Ψ1∫ = (a1 − a2 ) dxΨ2
*Ψ1∫

                                              
LHS:

dxΨ*
2 AΨ1∫ − dx[AΨ2 ]*Ψ1∫ = dxΨ*

2 AΨ1∫ − dxΨ2
* A†Ψ1          for hermitian A∫

= dxΨ2
*( A− A† )Ψ1∫ = 0

RHS:
If a1 ≠ a2 ,  dxΨ2

*Ψ1∫ = 0

i.e. Ψ1  and Ψ2  are orthogonal

II. Examples of Clebsch Gordan Coefficient construction
The C-G are available in tables--example of how some are constructed:
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Let j1 = j2 = 1. There are 9 possible combined states j1,m1, j2 ,m2 :

1 1 1 1
1 1 1 0
1 1 1 -1
1 1 0 1
1 1 0 0
1 1 0 -1
1 1 -1 1
1 1 -1 0
1 1 -1 -1

For fixed j1 = 1,  j2 = 1,  call these states m1,m2  to simplify notation.

There are 9 possible jm  states to which they contribute.

How to see this:
m=m1 + m2     (sum of z-components)
Bothe m1 and m2  can separately be 1, 0, -1
So m can be {2,1,0,-1,-2}
But m is the eigenvalue of J z
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Jz ≤ J

So J can be 0, 1, or 2.
The 9 possible jm  states are

2 2
2 1
2 0
2 -1
2 -2
1 1
1 0
1 -1
0 0

For notation, use prime to indicate j,m

i.e. 1,1 ′ ≡ j = 1,m = 1

Use unprimed to indicate m1,m2

i.e. 1,1 ≡ m1 = 1,m2 = 1

Notice 2,2 ′ = 1,1

as both refer to state where m1 = m2 = 1 and m1 and m2  are parallel

Similarly −2,−2 ′ = −1,−1
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So we can find all the states for j=2 either by apply J−  to 2,2 ′  or J+  to 2,−2 ′

                                                                                Do this:

2,2 ′  = 1,1

                      but J− = (J1−
 + J2−

)

J− 2,2 ′  =(J1−
 + J2−

) 1,1

                       recall for any J− :  J− j,m =  j( j +1) − m(m −1) j,m

                                                   (on j1 = 1,  m1 = 1)                (on j2 = 1,  m2 = 1)

 2(2 +1) − 2(2 −1) 2,1 ′ =  1(1+1) −1(1−1) 0,1 +  1(1+1) −1(1−1) 1,0

 ⋅2 2,1 ′ =  2 0,1 +  2 1,0

2,1 ′ =
1
2

0,1 + 1,0( )

         C-G Coefficient

Now repeat. Apply J−  to both sides
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I. Constructing C-G coefficients for the j1 = j2 = 1 system (continued)
II. Symmetric and antisymmetric multi-particle states
III. Example application of C-G coefficients
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J− 2,1 ′ =
1
2

J1− + J2−( ) 0,1 + 1,0( )
 2(2 +1) −1(1−1) 2,0 ′ =

             (on j1 = 1,m1 = 0)                 (on j2 = 1,m2 = 1)             (on j2 = 1,m1 = 1)               (on j2 = 1,m2 = 0)
1
2
 1(1+1) − 0(0 −1) −1,1 + 1(1+1) −1(1− 0) 0,0 + 1(1+1) −1(1− 0) 0,0 + 1(1+1) − 0(0 −1) 1,−1{ }

6 2,0 ′ =
1
2

2 −1,1 + 2 0,0 + 2 0,0 + 2 1,−1{ }

2,0 ′ =
1
6

−1,1 +
2
6

0,0 +
1
6

1,−1
⎧
⎨
⎩

⎫
⎬
⎭

Similarly,

2,−1 ′ =
1
2

0,−1 + −1,0{ }
and

2,21 ′ = −1,1

Note all 9 m1,m2  kets needed to form the five j = 2,m  kets. 

                "old kets"                                             "new kets"
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In general call "new kets" with a particular m values are linear combinations of old kets for which m1 + m2 = m
So we foresee that 
m         m1,m2       m1,m2

1,1 ′ = a 0,1  +  b 1,0

But we also know that 1,1 ′  must be orthogonal to 2,1 ′  so specifically

1,1 ′ =
1
2

0,1 − 1,0( )

Again apply J−  to both sides to get:

1,0 ′ =
1
2

1,−1 − −1,1( )
1,−1 ′ =

1
2

0,−1 − −1,0( )

Now foresee that 

0,0 ′ = a 1,−1  +  b 0,0  + c −1,1
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and must be orthogonal to both 2,0 ′  and 1,0 ′

Require

2,0 ′ 0,0 ′ = 0

1
6

1,−1 +
2
6

0,0 +
1
6

1,−1
⎧
⎨
⎩

⎫
⎬
⎭
⋅ a 1,−1 + b 0,0 + c −1,1{ } = 0

1
6

a 1,−1 1,−1 +
2
6

b 0,0 0,0 +
1
6

c 1,−1 1,−1 +  all cross terms like 1,−1 0,0 = 0

                1                         1                          1                                 0

a + 2b + c = 0          "Eq1"

Also require

1,0 ′ 0,0 ′ = 0

1
2

1,−1 −
1
2

−1,1
⎧
⎨
⎩

⎫
⎬
⎭
⋅ a 1,−1 + b 0,0 + c −1,1{ } = 0

1
2

a 1,−1 1,−1 +
1
2

c −1,1 −1,1 +  all cross terms like −1,1 0,0 = 0

               1                           1                              0

a - c = 0                   "Eq2"
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Solve Eq1 and Eq2 simultaneously:

Eq2: c=a
Then Eq1 is:
a+2b+a=0
b=-a

So 0,0 ′ = a 1,−1 − a 0,0 + a −1,1

normalize →  a=
1
3

0,0 ′ =
1
3

1,−1 − 0,0 + −1,1{ }

Facts about C-G coefficients
1) Handout for values of low j systems

2) j1m1 j2m2 jm = (−1) j1 + j2 − j j2m2 j1m1 jm

3) j1m1 j2m2 jm = (−1) j1 + j2 − j j1,−m1, j2 ,−m2 jm

4) j1m1 j2m2 jm = (−1) j1 −m1
2 j +1
2 j2 +1

⎛

⎝⎜
⎞

⎠⎟

1
2

j1,m1, j,−m j2 ,−m2



69 

  

II. Symmetric and antisymmetric multiparticle states

Consider 2 identical spin 1/2 particles. Each can be independently spin up or spin down so there are 4 possible 
combined states.
                                                                                                      msi

= + 1
2        msi

= − 1
2

ms1
,ms2

+ 1
2  + 1

2

+ 1
2   - 1

2

− 1
2  + 1

2

− 1
2   - 1

2

Find form of combined state s,ms

Analogous to converting m1m2 → jm

Note ms = ms1
+ ms2

 can be

         1     + 1
2( )   + 1

2( )
         0     + 1

2( )   − 1
2( )   or  − 1

2( )   + 1
2( )

        -1     − 1
2( )   − 1

2( )
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Since Sz ≤ S

if ms max
= 1,  then Smax = 1,  so S can be 0 or 1.

Then allowed S ,ms
′  are

                        1   1
                        1   0
                        1  -1
                        0   0

Begin with 1,1 ′ = 1
2 , 1

2  (both spin up) Apply S−  to both:

S− 1,1 ′ = S1− + S2−( ) 1
2 , 1

2       (analogous to J's)

1,0 ′ =
1
2

−1
2 , 1

2 + 1
2 , −1

2( )

Note 0,0 ′  has ms = 0 so must be built of kets with m1 + m2 = 0,  i.e. also 1
2 , −1

2  and −1
2 , 1

2

But also 0,0 ′  must be orthogonal  to 1,0 ′  so it is 

0,0 ′ =
1
2

−1
2 , 1

2 − 1
2 , −1

2( )
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Lastly by inspection   1,−1 ′ = −1
2 , −1

2       (both particles spin down)

Rewrite the 4 coupled states

1,1 ′ = 1
2 , 1

2

1,0 ′ =
1
2

−1
2 , 1

2 + 1
2 , −1

2( )
1,−1 ′ = −1

2 , −1
2

0,0 ′ =
1
2

−1
2 , 1

2 − 1
2 , −1

2( )

Where Pauli Principle demands
Fermions: total wavefunction antisymmetric

                  (spatial) ⋅ (spin)
                       Ψnm ⋅ χ

Ψnm  are hydrogenic wavefunctions
These are χ

  

Set of 3 "Triplet States"
all are symmetric under interchange ms1

↔ ms2

  

"Singlet State"
is anti-symmetric under interchange ms1

↔ ms2
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I. Example application of coupled basis
II. Intro to WKB
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I. Example application of couples basis
Goswami problem 17-7

Consider a 2-particle Hamiltonian for a spin system
H=A+BS1 ⋅ S2

Calculate the eigenvalues and eigenstates for 2 identical spin 1/2 particles

(i) using uncoupled representation ms1
,ms2

(ii) using coupled representation s,ms

Solution:
(i) H=A+B(S1xS2x + S1yS2 y + S1zS2z )

Recall S+ = Sx + iSy  and S− = Sx − iSy ,  so

Sx =
S+ + S−

2
  and  Sy =

S+ − S−

2i

Then H=A+B(S1xS2x + S1yS2 y + S1zS2z ) =

             A+B
S1+ + S1−

2
⎛

⎝⎜
⎞

⎠⎟
S2+ + S2−

2
⎛

⎝⎜
⎞

⎠⎟
+

S1+ − S1−

2i
⎛

⎝⎜
⎞

⎠⎟
S2+ − S2−

2i
⎛

⎝⎜
⎞

⎠⎟
+ S1zS2z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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= A+
B
4

S1+S2+ + S1−S2− + S1+S2− + S1−S2+ − S1+S2+ − S1−S2− + S1−S2+ + S1+S2−⎡⎣ ⎤⎦ + BS1zS2z

= A+
B
2

S1+S2−⎡⎣ ⎤⎦ +
B
2

S1−S2+⎡⎣ ⎤⎦ + BS1zS2z

A ms1
,ms2

= A ms1
,ms2

BS1zS2z ms1
,ms2

= B2ms1
ms2

ms1
,ms2

B
2

S1+S2− =
B
2


2 1
2

1
2 +1( ) − ms1

ms1
+1( ) 1

2
1
2 +1( ) − ms2

ms2
−1( ) ms1

+1,ms2
−1

B
2

S1−S2+ =
B
2


2 1
2

1
2 +1( ) − ms1

ms1
−1( ) 1

2
1
2 +1( ) − ms2

ms2
+1( ) ms1

−1,ms2
+1

 1
2 , 1

2
1
2 , −1

2
−1
2 , 1

2
−1
2 , −1

2

1
2 , 1

2 A+
B2

4
0 0 0

1
2 , −1

2 0 A−
B2

4
B2

2
0

−1
2 , 1

2 0
B2

2
A−

B2

4
0

−1
2 , −1

2 0 0 0 A+
B2

4
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2 eigenvectors are given by diagonals:

1
2 , 1

2   has E=A+
B2

4
−1
2 , −1

2   has E=A+
B2

4

To find others, diagonalize 2x2 submatrix to get:
1
2

1
2 , −1

2 + −1
2 , 1

2
⎡⎣ ⎤⎦   with E=A+

B2

4
1
2

1
2 , −1

2 − −1
2 , 1

2
⎡⎣ ⎤⎦   with E=A-

3B2

4

(ii) In the coupled basis:
Recall H=A+BS1 ⋅ S2

                                      If we let S=S1 + S2 ,  then

                                       S2 = (S1 + S2 )2 = S1
2 + S2

2 + 2S1S2

                                       Then S1S2 =
S2

2
−

S1
2

2
−

S2
2

2
S2 s,ms = 2s(s +1) s,ms

S1
2 s,ms = 2s1(s1 +1) s,ms

S2
2 s,ms = 2s2 (s2 +1) s,ms
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Eigenvalues:
when S=1, S1 =

1
2 ,  S2 =

1
2

                                           

s = 1,ms = 1

s = 1,ms = 0

s = 1,ms = −1

⎧

⎨
⎪⎪

⎩
⎪
⎪

E = A+
B
2


2 1(1+1) − 1
2 ( 1

2 +1) − 1
2 ( 1

2 +1)⎡⎣ ⎤⎦ = A+
B2

4

When S=0, S1 =
1
2 ,  S2 =

1
2     s = 0,ms = 0{

E = A+
B
2


2 0(0 +1) − 1
2 ( 1

2 +1) − 1
2 ( 1

2 +1)⎡⎣ ⎤⎦ = A−
3B2

4
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 I. Time-independent perturbation theory
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I. Time-independent perturbation Theory
For every kind of interaction in the world there is a Hamiltonian H

                            force measurement etc.
In general one wants to predict the results that could be

                                                        eigenvalues, eigenvectors = possible
                                                        stationary states and their energies
obtained by studying that interaction.
So one wants to diagonalize the H to get
H Ψn = En Ψn      for all states n.

Recall H=
−2

2m
+V

It turns out that most physical V's are so complicated that it is not possible to solve H Ψn = En Ψn  analytically for them.

For some of these H's we can still get an approximate solution IF we can write them in this form:
H=H known

eigenfunctions
+ ′H        where ′H  is "small" compared to H. We will say what "small" means.

Call this H0                        Return this ′H =λH1

                                          *Assume for now that ′H ≠ f(t)
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 I. Time-independent perturbation Theory (continued)
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So H=H0 + λH1   and our goal is to solve get En  and Ψn( )
H0 + λH1( ) Ψn = En Ψn

To solve this we make the following assumption:
i) there exist known solutions "En

(0) " and ϕn  to the equation

H0 ϕn = En
(0) ϕn

ii) If λ → 0, the unknown Ψn →  the known ϕn  and

the unknown En  →  the known En
0

iii) Because the ϕn  are eigenvectors, they form a basis, so we can expand Ψn  in terms of them 

Ψn = ϕk ϕk Ψn
k
∑

= ϕk Ψn ϕn + ϕk ϕk Ψn
k≠n
∑

             the amount this overlaps depends on the value of λ.
             call this term N(λ)

= N(λ) ϕn + ϕk

ϕk Ψn

N(λ)k≠n
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                          call this Cnk
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In order that Ψn λ→0⎯ →⎯⎯ ϕn ,  must have N(λ = 0)=1

(iv) The cnk  represent the amount of admixture between Ψn  and the unperturbed states ϕk .

So the cnk  are functions of λ.
Assume they can be written as
cnk (λ) ≡ c(0)

nk   + λc(1)
nk   + λ2c(2)

nk   + ...

                                                    we assume that when λ=0, Ψn = ϕn  (there is no admixture between

                                                     Ψn  and Ψn≠ k ),  so cnk (λ = 0) = 0. this means c(0)
nk  =0.

(v) Also assume En ≡ En
(0) + λEn

(1) + λ2 En
(2) + ...

So En λ→0⎯ →⎯⎯ En
(0)   naturally

Plug in the expansions:
H0 + λH1( ) Ψn = En Ψn

H0 + λH1( )N(λ) ϕn + ϕk cnk
k≠n
∑⎧

⎨
⎩

⎫
⎬
⎭
= En

(0) + λEn
(1) + λ2 En

(2) + ...( )N(λ) ϕn + ϕk cnk
k≠n
∑⎧

⎨
⎩

⎫
⎬
⎭

              plug in cnk =  λc(1)
nk   + λ2c(2)

nk   + ...
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H0 + λH1( ) ϕn + λc(1)
nk ϕk

k≠n
∑ + λ2c(2)

nk ϕk
k≠n
∑ + ...

⎧
⎨
⎩

⎫
⎬
⎭
=

En
(0) + λEn

(1) + λ2 En
(2) + ...( ) ϕn + λc(1)

nk ϕk cnk
k≠n
∑ + λ2c(2)

nk ϕk cnk
k≠n
∑ + ...

⎧
⎨
⎩

⎫
⎬
⎭

Require that this equation be true for arbitrary λ, so the coefficients of each power of λ  on both sides must be equal.

λ0 :  H0 ϕn = En
(0) ϕn           presumably all these terms are known

λ1 :  H0 c(1)
nk ϕk

k≠n
∑ + H1 ϕn = En

(0) c(1)
nk ϕk + En

(1) ϕn   
k≠n
∑

λ2 :  H0 c(2)
nk ϕk

k≠n
∑ + H1 c(1)

nk ϕk
k≠n
∑ + H2 ϕn = En

(0) c(2)
nk ϕk + En

(1) c(1)
nk ϕk

k≠n
∑ + En

(2) ϕn   
k≠n
∑

λ3 :  .............

We will solve for En
(1) ,  c(1)

nk ,  En
(2) ,  N(λ)

To find  En
(1): Rewrite the λ  coefficients' equations emphasize En

(1) :

En
(1) ϕn = H1 ϕn + c(1)

nk H0 ϕk
k≠n
∑ − En

(0) c(1)
nk ϕk

k≠n
∑

                                                                                              plug in
En

(1) ϕn = H1 ϕn + c(1)
nk Ek

(0) ϕk
k≠n
∑ − En

(0) c(1)
nk ϕk

k≠n
∑

= H1 ϕn + Ek
(0) − En

(0)( )c(1)
nk ϕk

k≠n
∑                                     "Eq1"

Multiply equation by ϕn :
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En
(1) ϕn ϕn = ϕn H1 ϕn + Ek

(0) − En
(0)( )c(1)

nk ϕn ϕk
k≠n
∑

            1                                                               δnk → 0

 So En
(1) = ϕn H1 ϕn

        λEn
(1) = ϕn λH1 ϕn

the first order             =   the diagonal element of the matrix of the 
correction to the              perturbative hamiltonian
energy 
                                         the expectation value of λH1

To find c(1)
nk :

Multiply Eq1 by ϕm          (m ≠ n):

En
(1) ϕm ϕn = ϕm H1 ϕn + Ek

(0) − En
(0)( )c(1)

nk ϕm ϕk
k≠n
∑

            0                                                               δmk → 1 only when k=m

0= ϕm H1 ϕn + Em
(0) − En

(0)( )c(1)
nm

c(1)
nm =

ϕm H1 ϕn

En
(0) − Em

(0)
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I. Time-independent perturbation theory (continued)
II. The Stark Effect
III. Degenerate perturbation theory

Read Chapter 22 Sections 1 and 2 only
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Facts about the first-order mixing coefficient c(1)
nm :

(i) H1 will naturally have some off-diagonal elements (if it did not, we would not have had to 
define a "λH1 ", we could have incorporated it into H0 ).

Call some non-diagonal H1 element "H1mn ". Then we say that "states ϕm ϕm  are connected by the 

pater bation" i.e., H1 causes the system to make transitions between ϕm  and ϕn .

(ii) Recall cnk  represents the amount of admixture ϕk  that the perturbation causes to be superposed into 

ϕn . We see that the magnitude of admixture depends on 2 things:

                                               size of cnk

1) the overlap ϕk H1 ϕn   i.e. "how much H1 changes ϕn  to be like ϕk "

2) the unperturbed energy deifference between the states: En
(0) − Ek

(0)

      so the closer in energies the unperturbed states ϕn  and ϕk  are, the more of ϕk  will be mixed

      into ϕn  by the perturbation.

3) The size of cnk
(1)  defines whether a perturbation is "small", i.e. whether it was ok to expand everything in 

     terms of λ.
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I. Time-independent perturbation theory (continued)
II. Example of T-I-P-T: Stark Effect Energies
III. Degenerate perturbation theory
IV. Example of DPT: Stark Effect wavefunctions

Read Goswami Chapter 22 
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To find En
(2) :

Recall the λ2  coefficient's equation:
H0 c(2)

nk ϕk
k≠n
∑ + H1 c(1)

nk ϕk
k≠n
∑ + H2 ϕn = En

(0) c(2)
nk ϕk + En

(1) c(1)
nk ϕk

k≠n
∑ + En

(2) ϕn   
k≠n
∑

Rewrite to emphsasize En
(2) :

En
(2) ϕn = c(2)

nk H0 ϕk
k≠n
∑ + c(1)

nk H1 ϕk
k≠n
∑ − En

(0) c(2)
nk ϕk

k≠n
∑ − En

(1) c(1)
nk ϕk

k≠n
∑

                    Ek
(0) ϕk

Multiply on left with ϕn :

En
(2) ϕn ϕn = c(2)

nk Ek
(0) ϕn ϕk

k≠n
∑ + c(1)

nk ϕn H1 ϕk
k≠n
∑ − En

(0) c(2)
nk ϕn ϕk

k≠n
∑ − En

(1) c(1)
nk ϕn ϕk

k≠n
∑

            1                               0                                                             0                              0
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I. Time-independent perturbation theory (continued)
II. Example of T-I-P-T: Stark Effect Energies
III. Degenerate perturbation theory
IV. Example of Degenerate Perturbation Theory
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En
(2) ϕn ϕn = c(1)

nk ϕn H1 ϕk
k≠n
∑

                                                        plug in c(1)
nk =

ϕk H1 ϕn

En
(0) − Ek

(0)

=
ϕk H1 ϕn

En
(0) − Ek

(0) ϕn H1 ϕk
k≠n
∑

                                                          ϕk H1 ϕn

*

En
(2) =

ϕk H1 ϕn

2

En
(0) − Ek

(0)
k≠n
∑

Notice:
1) To get En

(2)  for any level n, you have to sum over the connections to all other states
2) when n=0, we are considering the ground state. Then since k ≠ 0 all Ek  are by definition higher

energy states, so all the En
(0) − Ek

(0)  are negative.

To get N(λ):
Require Ψn Ψn = 1
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1= N 2 (λ) ϕn ϕn + λ2 cnk
(1)

n≠ k
∑

2
ϕk ϕk + ...

⎧
⎨
⎩

⎫
⎬
⎭

                      1                                1

1= N 2 (λ) 1+ λ2 cnk
(1)

n≠ k
∑

2
+ ...

⎧
⎨
⎩

⎫
⎬
⎭

So to first order in λ, N(λ)=1

Plug in N and cnk
(1)  to Ψn :

Ψn = ϕn +
ϕk H1 ϕn

En
(0) − Ek

(0)
n≠ k
∑ ϕk + ...

II. Example use of time-independent Perturbation Theory: Stark Effect Energies

Regular hydrogen atom normally experiences V=
−e2

r
 only.

Suppose it is embedded in an external electric field 

E.

How does this effect its energy levels?

So we want to find  λEn
(1) = ϕn λH1 ϕn  and λEn

(2) =
ϕk λH1 ϕn

2

En
(0) − Ek

(0)
n≠ k
∑

Now absorb λ  in En  and H1( )
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Recall the ϕn  are the unperturbed eigenfunctions. For the hydrogen atom these are the 

Ψnm = RnYm = ϕn

To find λH1 recall that an 

E only affects an object's energy if that object has a dipole moment qr. Here q=e

So H1 = e

Er

                         Let 

E=Eẑ

H1 = eEz

Then En
(1) = Ψnm eEz Ψnm                     where z=rcosθ

=eE Rn
* rRnr

2 dr
r
∫ Y *

m cosθY
m sinθ

θ ,φ
∫ dθdφ

                                              0

So En
(1) = 0     for any level n

To ilustrate how to find En
(2) ,  choose a specific set of quantum numbers n=1, =0, m=0 (ground state)

E100
(2) = e2 E2

Ψnm z Ψ100

2

E100
(0) − Enm

(0)
nm≠100
∑
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I. Degenerate Perturbation Theory
II. Using Degenerate Perturbation theory on the Stark Effect
III. Time-Dependent Perturbation Theory
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Ψnm eEz Ψ100  = r 2 drRn
* rR10

r
∫ sinθ dθ dφY *

m cosθY00
θ ,φ
∫

                                                                                            1
3Y10    list of Y

m 's Goswami eq 11.43

                                                            
1
3
δ
1δm0

So

E100
(2) =

e2 E2

3
δ
1δm0 r 2 drRn

* rR10
r
∫
⎡

⎣
⎢

⎤

⎦
⎥

2
1

E100
(0) − Enm

(0)
nm≠100
∑

                                this is an infinite sum over n.

III. Degenerate Perturbation Theory
Recall with Perturbation Theory,

cnk
(1) =

ϕk H1 ϕn

En
(0) − Ek

(0)    and   En
(2) =

ϕk H1 ϕn

2

En
(0) − Ek

(0)
n≠ k
∑

So if 2 levels (k and n) have the same UNperturbed energies Ek
(0)  and En

(0) , that will cause a ÷ 0 which will make 
these expressions meaningless.
This ÷ 0 is a sign that here is a case where the perturbation expansion is not being done right. Recall the
expansion is only allowed if the cnk

(1)  are small, i.e. if ϕk H1 ϕn  En
(0) − Ek

(0)( )
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I. Degenerate Perturbation Theory (continued)
II. Stark Effect eigenfunctions
III. Time-Dependent Perturbation Theory

Read Goswami Chapter 23
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General plan to fix this
(i) diagonalize the part at the H1 matrix which connects ϕk  and ϕn →  then these ϕk H1 ϕn

 will = 0
(ii) Recall perturbation theory depends on H0  being diagonal (must have known eigenvalues and eigenfunctions)
so we do not want to damage that.
(iii) It is not in general possible to change the basis to one which diagonalizes H1 without 
"undiagonalizing" H0. So to be careful we have to actually diagonalize H0 + H1   (absorbed λ  into H1)

So in general:
H = H0 + H1  =

E1

E2

Ei A

A Ei

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

                            diagonalize this (call is "matrix Ei ")



96 

   

(iv) A trick: if matrix Ei  is the whole matrix or if you don't care about the states outside of it, the you
only have to diagonalize H1,  not H0. This is because in the matrix Ei ,  H0  is not just diagonal but also
proportional to the unit matrix 1. Since H1 (and all matrices) commute with 1,  in this subspace you can 
diagonalize H1 without affecting H0. This is what we will do. But if one does this it is important afterwards
not to discuss the re-diagonalized Ei  subspace states and the non-Ei  subspace states together, the are in 
different bases.

(v) Limit focus to the Ei  subspace. Diagonalize H1

                                                          call it H1
′  

(vi) Get the new Ei
′ ,  cnk

′   , Ψn
′  associated with H1

′

(vii) Apply non-degenerate perturbation theory within this subspace since the Ei
′  are all different. If some of 

the Ei
′  are still degenerate must diagonalize their  subspace and iterate (this is called second order Degenerate

Perturbation Theory; we will not do it.)



97 

 

I. Example of degenerate perturbation theory: the Stark Effect
II. Time-dependent Perturbation Theory
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IV. Example of Degenerate Perturbation Theory: The Stark Effect
Recall H0 + H1 =

p2

2m
−

e2

r
⎛

⎝⎜
⎞

⎠⎟
+ eEz

Coulomb field              static electric field in ẑ

(i) Recall that the solutions to H0  are the Ψnm 's
Recall their energies are determined only by their "n" quantum number

E=
−mZ 2e4

22n2

So for example 

Ψ200

Ψ211

Ψ210

Ψ21−1

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 all have the same energy

Ignore Ψ211  and Ψ21−1  for now and apply degenerate perturbation theory to Ψ200  and Ψ210  :
(ii) Recall usually we would have to diagonalize H0 + H1 but if we confine our attention to the degenerate
state only, then we can just diagonalize H1 for the states that are degenerate.
Do this:
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H1

u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E (1) u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                          Ψ200                     Ψ210

Ψ200

Ψ210

Ψ200 eEz Ψ200 Ψ200 eEz Ψ210

Ψ210 eEz Ψ200 Ψ210 eEz Ψ210

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E (1) u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Calculate the elements of the H1 matrix: (use r=zcosθ)

Ψ200 eEz Ψ200 = eE r 2 dr∫ R20rR20 sinθ dθ dφY00 cosθY00∫    = 0

                                                                                   ~Y10

                                                                                δ1,0

Similarly, Ψ210 eEz Ψ210 = 0

Ψ200 eEz Ψ210 = Ψ210 eEz Ψ200 =

r 2 dr 1

2a0( )3
2

2 1−
r

2a0

⎛

⎝⎜
⎞

⎠⎟
e

− r
2 a0r

0

∞

∫
1

2a0( )3
2

1
3

r
a0

⎛

⎝⎜
⎞

⎠⎟
e

− r
2 a0 ⋅ Y00 cosθY10 sinθ dθ dφ∫ = −3a0eE

                                                                                        ~Y10
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Then H1

u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E (1) u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 becomes

0 −3eEa0

−3eEa0 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E (1) u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Diagonalize:

−E (1) −3eEa0

−3eEa0 −E (1)
= 0

E (1) = ±3eEa0

For   E+
(1) = +3eEa0 ,   

u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

=
1
2

1
−1

⎛

⎝⎜
⎞

⎠⎟
                  remember this is in the basis 

Ψ200

Ψ210

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

For   E−
(1) = −3eEa0 ,   

u1

v1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−

=
1
2

1
1

⎛

⎝⎜
⎞

⎠⎟

*Conclusion:

The perturbations converts Ψ200  and Ψ210  both with E=
−mZe4

22n2 + 3eEa0   into

Ψ+ = 1
2
Ψ200 − Ψ210( ),    with energy E=

−mZe4

22n2 + 3eEa0

and

Ψ− = 1
2
Ψ200 +Ψ210( ),    with energy E=

−mZe4

22n2 − 3eEa0


