
I.  What to recall about motion in a central potential 
II.  Example and solution of the radial equation for a particle trapped within radius “a” 
III.  The spherical square well 

(Re-)Read Chapter 12 Section 12.3 and 12.4 
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I. What to recall about motion in a central potential
V = V (| r1 − r2 |) between masses m1 and m2

  

Recall the time-independent Schrodinger Equation:
H

p1
2

2m1
+

p2
2

2m2
+V (| r1 − r2 |)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
Ψ = EΨ

↓  

 Ψ = EΨ

To convert this into a separable PDE, define
1
M

=
1
m1

+
1
m2

M = m1 + m2

R =
m1
r1 + m2

r2
M

r = r1 −
r2


P = p1 +

p2
p
µ
=
p1

m1

−
p2

m2

Then you get 

H =
p2

2M
+
p2

2µ
+V (| r |)

Ignore center of mass motion 

Focus on this “Hµ” 

 

r1 −
r2

 

r1
 

r2

m1  m2 

O!
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Hµ =
p2

2µ
+V (r)

=
−2∇2

2µ
+V (r)

In spherical coordinates:

∇2 =
1
r2 r2 ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+

1

r2 sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1

r2 sin2θ

∂2

∂ϕ2

1

r2
−L2


2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

Plug this ∇2  into Hµ

Write out Hµ | Ψ〉 = E | Ψ〉
Project into 〈r,θ,ϕ| space:

−2

2µ
1
r2

∂
∂r

r2 ∂
∂r

⎛
⎝⎜

⎞
⎠⎟
−

L2


2r2

⎡

⎣
⎢

⎤

⎦
⎥ +V (r)

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
〈r,θ,ϕ | Ψ〉 = E〈r,θ,ϕ | Ψ〉

Guess that 〈r,θ,ϕ | Ψ〉 = R(r) f (θ,ϕ )
Separate the equation, the constant of separation turns out to be (+1).
f(θ,ϕ ) turns out to be Y



m (θ,ϕ )
Then the R equation is:
1
R
d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟
−

2µr2


2 V (r) − E[ ] = ( +1)        "Form 1" of the radial equation

the angular momentum operator 
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You can get an alternative completely equivalent form of this equation if you derive
µ ≡ rR
Then you get

−2

2µ
d 2u
dr2 + V +


2
( +1)
2µr2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu        "Form 2" of the radial equation

*Choose either Form 1 or Form 2 depending upon what V is--
pick whichever gives and easier equation to solve
*Remember the boundary conditions on R:
rR(r →∞)→ 0      BC1
rR(r → 0)→ 0       BC2
Procedure for finding the total Ψ(r,t) for a system in a central potential:
(i) Get V(r)
(ii) Plug it into the radial equation (either Form 1 or Form 2),
      solve for R and the energies Ei

(iii) Multiply that R by Y


m (θ,ϕ ) and e
− iEi t

  to get Ψ(r,t)=RYe
− iEi t
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II. Example-Solution of the radial equation for a particle trapped within radius "a"

V= 0   for r < a
∞   for r > a

⎧
⎨
⎩

This is also called a "spherical box"
Recall the radial equation in Form 1 (without the substitution u=rR):

1
r2

d
dr

r2 d
dr

⎛
⎝⎜

⎞
⎠⎟
+

2µ


2 E −V (r) − 
2
( +1)
2µr2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R = 0

Since V=∞ for r > a, the wave function cannot have any portion beyond r > a. 
So just solve the equation for r < a.
Plug in V=0  (r < a )

1
r2

d
dr

r2 d
dr

⎛
⎝⎜

⎞
⎠⎟
+

2µE


2 −
( +1)
r2

⎡
⎣⎢

⎤
⎦⎥
R = 0

 

expand this:                          call this "k2 "

1
r2 r2 d

2

dr2 + 2r d
dr

⎛
⎝⎜

⎞
⎠⎟

d 2

dr2 +
2
r
d
dr

+ k2 −
( +1)
r2

⎡

⎣
⎢

⎤

⎦
⎥R = 0
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                                                                        Define ρ ≡ kr, so 1
r
=
k
ρ

                                                                         Then d
dr

=
dρ
dr

d
dρ

= k
d
dρ

                                                                         d
2

dr2 =
d
dr

k
d
dρ

⎛
⎝⎜

⎞
⎠⎟
=
dρ
dr

d
dρ

k
d
dρ

⎛
⎝⎜

⎞
⎠⎟
= k2 d 2

dρ2

Plug this in:

k2 d 2

dρ2 +
2k2

ρ
d
dρ

+ k2 − ( +1) k
2

ρ2

⎡

⎣
⎢

⎤

⎦
⎥R = 0

d 2

dρ2 +
2
ρ
d
dρ

+ 1− ( +1)
ρ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R = 0

The solution of this equation is R(ρ) = Cj

(ρ) + Dn


(ρ)

                                                         j

(ρ) ≡ π

2ρ
⎛
⎝⎜

⎞
⎠⎟

1/2

J
+

1
2

(ρ)

                             "spherical Bessel function"          "ordinary Bessel function
                                                                                   of half-odd integer order"

                             examples: j0 (ρ) = sinρ
ρ

                                              j1(ρ) = sinρ
ρ2 −

cosρ
ρ

Normalization not yet specified 

Spherical Neuman function,  
Irregular @ r=0, so get D=0 
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I.  Particle in 3-D spherical well (continued) 
II.  Energies of a particle in a finite spherical well 

Read Chapter 13 
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Now apply the BC: the wave function R must = 0 @ r = a

                                                         j

(ka) = 0

      whenever a Bessel function = 0 its argument (here: (ka)) is called
      a "zero" of the spherical Bessel function
      
                                     and these columns are labelled by n
                                                               n=1   n=2   n=3   etc.

                              

S     j
=0   for ka =  3.14  6.28  9.42   ...

P    j
=1   for ka =  4.49  7.73    ...     ...

  D    j
=2   for ka =  5.76  9.10    ...     ...

  F     j
=3    ...

etc.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Summarize:
Ψ3−D

central potential

time-independent  = R ⋅Y


m

                                        spherical harmonic
                         where R=C ⋅ j



                                           Because each j

 has zeros at several n's,

                                           we have to specify n too,
                                            so R ≡ Rn

In spectroscopy 
the rows are 
labelled by: 
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Because k2 ≡  2µE


2 ,  the boundary condition that j

(ka) = 0 gives the allowed energies.

Recipe to find an allowed energy:
(i) Pick the n,  levels that you want.  (Example: pick n = 2,  = 0)

(ii) Find the zero of that Bessel function ka
n = 2
j

= 0

⎛

⎝
⎜

⎞

⎠
⎟ = 6.28

⎛

⎝
⎜

⎞

⎠
⎟

(iii) Plug into j

(ka) = 0

                     ka
n = 2
j

= 0

⎛

⎝
⎜

⎞

⎠
⎟ = 6.28

                                                                       use k2 ≡  2µE


2

                    k2a2  = (6.28)2

                   2µE
=0
n=2


2 a2  = (6.28)2

                    E
=0
n=2  = (6.28)2


2

2µa2
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I. Energies of a particle in a finite spherical square well 
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III. Energies of a particle in a finite spherical square well

Consider

        V(r) = 
−V0      for r < a
   0      for r > a

⎧
⎨
⎪

⎩⎪

This actuall looks very much like the potential between 2 nucleons in the nucleus
Solve this analogously to 1-D square well procedure
(i) Define regions I and II
(ii) Plug in V into radial equation in each region

                            Pick Form 2, so solve for u=rR
(iii) Apply BC @ r = 0, a, ∞
                  This leads to quantized E
                     (we'll stop here)
(iv) Normalize if you want the exact form of Ψ
  
Carry out this procedure, first for  = 0 only, then for general :

V(r) 

a 

0 

-V0 

r 
I II 

0 
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Case I: Find allowed energies of a particle in an  = 0 state of a finite spherical square well

(i) define regions I and II

Notice that the particle in the well will have E < 0 just because of the way we defined the potential
*This is just a convention (i.e. a choice of the origin for the V scale), but since it is common we will use it.
Notice this is a different convention that the one we used for the 1-D square well

        That was:

but the forms of the solution inside and outside of the well (sinkx or e−kx ) are unaffected by the choice of origin.

V(r) 

a 

0 

-V0 

r 
I II 

0 

0

+V0 
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Because E is intrinsically negative, we can write:
        E = -|E|   when we wish
Recall Form 2 of the radial equation:

−2

2µ
d 2u
dr2 + V +


2
( +1)
2µr2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu

when  = 0 this is:
−2

2µ
d 2u
dr2 +Vu = Eu

                                             This is exactly the same form as for the 1-D square well, 
                                             so the wavefunctions "in" will have the same form as
                                             the "Ψ 's" for the 1-D square well
(ii) Plug in V:
Make a table as we did in Chapter 4:

Region I
V = -V0

Region II
V = 0

General time-independent Radial equation: −2

2µ
d 2u
dr2 +V0

⎡

⎣
⎢

⎤

⎦
⎥u = Eu

−2

2µ
d 2u
dr2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu

Solve Radial equation to get:

where:

"allowed region solution:"
u I  = Asink1r + Bcosk1r

k1 ≡
2µ(V0 + E)


=  
2µ(V0− | E |)


"forbidden region solution:"
u II  = Ce+k2r + De−k2r

k2  ≡  
2µ(−E)


=  
2µ | E |
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(iii) Apply BC's:

BC1:   rR(r →∞)→ 0
           u(r → 0)→ 0        So B=0
BC2:   rR(r →∞)→ 0
           u(r →∞)→ 0        So C=0
BC3:   uI(r=a) = uII(r=a)
           Asink1a = De−k2a                 "equation 1"

BC4:   duI

dr
(r=a) = duII

dr
(r=a)

           k1Acosk1a = -k2De−k2a        "equation 2"

Divide equation 1
equation 2 :

           k1 cot k1a = -k2                    This has the same form (variation in some factors or 2)
                                                      as the Class 2 (or odd) solutions to the 1-D square well.
Multiply both side by a:
          k1a cot k1a = -k2a

          -cotk1a = k2a
k1a
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                                                      Define λ ≡
2µV0a

2


2

                                                      Define y ≡  k1a = 
a 2µ(V0− | E |)



                                                      Notice that

                                                      k2a = 
a 2µ | E |


=
(2µV0a

2 ) − [2µ(V0− | E |)a2 ]


2

                                                            = λ − y2

        -coty= 
λ − y2

y
                  Plot both sides versus y.

                                                    Intersection points are solution to the equation:

                                                    (use the identity that -cotx = +tan(π
2

+x))

y 
0 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π 

LHS(-cot) 
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y 
0 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π 

How the value of λ affects the plot: 
λ − y2

y
  for large λ

λ − y2

y
  for small λ

 

*Notice if λ  is very small there may be NO interactions

                proportional to V0a
2

                       well depth        (well width)2

To find E:
Locate graphically, or computationally, the y-coordinates of the points where:

-coty=
λ − y2

y

Call these yi                              Example:

Then plug in the definition of y:

yi  = a


2µ(V0− | Ei |)

Plug in these values of a, u, V0,  ,  to solve for Ei

y1 y2 y3 
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Alternatively if you measure the Ei  (for example the bound state energies of a deuteron),
you can work backwards to find V0a

2 .

Recall Case 1 was for  = 0 only. Now,
Case 2: Find the allowed energies for finite spherical square well for a particle in an arbitrary  state.

(i) Regions     I                    II
(ii) In this case Form 1 of the Radial equation is easier to solve:

1
r2

d
dr

r2 d
dr

⎛
⎝⎜

⎞
⎠⎟
+

2µ


2 E −V (r) − 
2
( +1)
2µr2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R = 0

     expand the derivative and write E = -|E|

d 2

dr2 +
2
r
d
dr

+
2µ


2 − | E | −V (r) − 
2
( +1)
2µr2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R = 0

Make Table:

V(r) 

a 

0 

-V0 

r 
I II 

0 
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Region I
V = -V0

Region II
V = 0

General time-independent Radial equation: d 2

dr2 +
2
r
d
dr

+
2µ


2 V0− | E | − ( +1)
r2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R = 0 d 2

dr2 +
2
r
d
dr

−
2µ | E |


2 −
( +1)
r2

⎡

⎣
⎢

⎤

⎦
⎥R = 0

kI ≡
2µ(V0− | E |)


ρI ≡ kIr  (just like p.6 in notes)

d 2

dρI
2 +

2
ρI

d
dρI

+ 1− ( +1)
ρI

2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R = 0

R


I (ρI ) = A j(ρI ) + B j(ρI )

kII ≡
2µ | E |


ρII ≡ ikIIr

To solve this define: 
and 

Then the radial equation becomes: 

The solution is: 
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I.  Energies of a particle in a finite spherical square well, continued 
II.  The Hydrogen Atom 
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If ρII ≡ ikIIr

Then 1
r
=
ikII

ρII

d
dr

=
dρII

dr
d
dρII

= ikII
d
dρII

d 2

dr2 =
d
dr

ikII
d
dρII

⎛
⎝⎜

⎞
⎠⎟
=
dρII

dr
d
dρII

ikII
d
dρII

⎛
⎝⎜

⎞
⎠⎟
= ikIIikII

d 2

dρII
2 = −kII

2 d 2

dρII
2

Plug these in: then the Radial Equation becomes

−kII
2 d 2

dρII
2 +

2ikII

ρII

ikII
d
dρII

− kII
2 +
( +1)kII

2

ρII
2

⎡

⎣
⎢

⎤

⎦
⎥R = 0

Multiply through by (-1):

d 2

dρII
2 +

2
ρII

d
dρII

+1− ( +1)
ρII

2

⎡

⎣
⎢

⎤

⎦
⎥R = 0

Again the solution is R


II (ρII ) = C j(ρII ) + Dn(ρII )

Since Region II does not include r=0, we do no thave to discard the Neumann for n

.

Since we have not yet fixed C and D, we can rewrite R


II  as a different form of linear combination of j

 and n


.
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In particular we could define
h


(1) ≡ j

+ in


     and

h


(2) ≡ j

− in


             "The spherical Hankel functions"

Then
R


II (ρII ) = ′C

h


(1) (ρII ) + ′D

h


(2) (ρII )

(iii) Now apply the boundary conditions:
BC1: rR(r → 0)→ 0  This is satisfied by R



I = Aj

(ρI ) =  Aj


(kIr)

BC2: rR(r →∞)→ 0
         Examine the h


(r →∞):

         j

(ρ→ ∞)→ 1

ρ
cos ρ −

( +1)π
2

⎡
⎣⎢

⎤
⎦⎥

        n

≡ (−1)+1 π

2ρ
⎛
⎝⎜

⎞
⎠⎟

1
2

J
−−

1
2

(ρ)

              ρ→∞⎯ →⎯⎯
1
ρ

sin ρ −
( +1)π

2
⎡
⎣⎢

⎤
⎦⎥

Plug these in:
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I.  Energies of a particle in a finite spherical square well (continued) 
II.  The Hydrogen Atom 
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h


(1) (ρII ) r→∞⎯ →⎯⎯
1
ikIIr

cos ikIIr −
( +1)π

2
⎡
⎣⎢

⎤
⎦⎥
+ i

1
ikIIr

sin ikIIr −
( +1)π

2
⎡
⎣⎢

⎤
⎦⎥

                          = 1
ikIIr

cos ikIIr −
( +1)π

2
⎡
⎣⎢

⎤
⎦⎥
+ i sin ikIIr −

( +1)π
2

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

                                                                         Ignore the phases for now
                                                                         Recall eiθ = cosθ + i sinθ
                                                                         Here "θ" is ikIIr

                         1
ikIIr

ei(ikIIr ){ }

                        1
ikIIr

e−kIIr{ }           This → 0 as r →∞ so it satisfies the BC

h


(2) (ρII ) r→∞⎯ →⎯⎯
1
ikIIr

cos ikIIr −
( +1)π

2
⎡
⎣⎢

⎤
⎦⎥
− i

1
ikIIr

sin ikIIr −
( +1)π

2
⎡
⎣⎢

⎤
⎦⎥

                        1
ikIIr

e+kIIr{ }           This blows up as r →∞ so we must set its coefficient ′D =0

BC3: RI(r = a) = RII(r = a)
         Aj


(kIa) = ′C h



(1) (kIIa)

BC4: ∂RI

∂r
(r = a) = ∂RII

∂r
(r = a)

         A d
dr

j

(kIa) = ′C

d
dr
h


(1) (kIIa)
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Divide BC4
BC3

 to eliminate the normal Bat. coefficients:

d
dr

j

(kIa)

j

(kIa)

=

d
dr
h(1)

(kIIa)

h(1)

(kIIa)

For a specific V0,  a, u, and , one can solve this for the bound states Ei

I. The Hydrogen Atom
What this means is "the eigen functions and eigen energies
possible for the electron in a one-electron atom"
This is just the central potential problem again, now for

V= −Ze2

r

So we know that Ψelectron  will have the form Ψ  R(r)Y


m

                                                                               because of this (, m), also subscript the ′Ψ :Ψ


m

So the most general Ψ must be a linear combination of all possible Ψ


m's, so

Ψ = Ψ


m = R(r)Y


m (θ,ϕ )
,m
∑

,m
∑

# protons in nucleus 

Charge of electron 

energy levels 
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The Y


m's are standard functions so we can ignore them for now. We will find R and then just multiply by Y


m  later.
To find R, recall the Radial Equation (Form 2):

−2

2µ
d 2u
dr2 + V +


2
( +1)
2µr2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu                   (where u ≡ rR)

Consider bound states, so se E=-|E|

Plug in V= −Ze2

r
−2

2µ
d 2u
dr2 +


2
( +1)
2µr2 −

Ze2

r
+ | E |

⎡

⎣
⎢

⎤

⎦
⎥u = Eu

To simplify the form of the equation, multiply through by −2µ


2  and define

ρ ≡
8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2

r

So

1
r
=

8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2 1
ρ

and

d
dr

=
dρ
dr

d
dρ

=
8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2 d
dρ

Defined as E<0 
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and

d 2

dr2 =
d
dr

8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2 d
dρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

       = dρ
dr

d
dρ

8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2 d
dρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

       = 8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2 d 2

dρ2

Plug these in:

8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟
d 2

dρ2 −
( +1)
ρ2

8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟
+

2µ


2

Ze2

ρ
8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2

−
2µ | E |


2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u = 0

divide through by 8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

:

d 2

dρ2 −
( +1)
ρ2 +

2µZe2


2

8µ | E |


2
⎛
⎝⎜

⎞
⎠⎟

1
2

1
ρ
−

1
4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
u = 0

                           Ze
2



µ
2 | E |

                
                                                          call this "λ"

d 2

dρ2 −
( +1)
ρ2 +

λ
ρ
−

1
4

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥u = 0
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Procedure to solve: this is similar to the one for the analytic (non-a+a) solution of the harmonic oscillator.
Recall the 2 radial BC's: BC1: u(r →∞)→ 0; BC2: u(r → 0)→ 0.

(i) consider the case where ρ→ ∞

This eliminates the 1
ρ

,  1
ρ2  terms:

Then the equation is approximately:
d 2u
dρ2 −

u
4
= 0           (for u(ρ→ ∞) only)

u  Ae
−ρ
2 + Be

+ρ
2

                            Apply BC1:
                            Recall a physically acceptable Ψ
                            (or u) must → 0 for r →∞, ρ→ ∞
                            so B must = 0.

(ii) Consider the case where ρ→ 0

Then the 1
ρ2  term dominates the 1

ρ
 and the 1

4
 terms, so the equation is approximately:

d 2

dρ2 −
( +1)
ρ2

⎡

⎣
⎢

⎤

⎦
⎥u = 0

u = Cρ− + Dρ+1

solution 

solution 
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I.  The Hydrogen Atom (continued) 
II.  Facts about the principal quantum number n 
III.  The wavefunction of an e- in hydrogen 
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Apply BC2: u(ρ→ 0)→ 0, so
C=0

(iii) Now insist that the exact solution of the equation have a form which will join up with these asymptotic cases smoothly.

Assume u(all ρ) = e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1H (ρ)

                                               H(ρ)= aiρ
i

i
∑

                                               H ≠ a hamiltonian here
Plug this into the full equation:

d 2

dρ2 −
( +1)
ρ2 +

λ
ρ
−

1
4

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥e

−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1H (ρ) = 0

d
dρ

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1 dH

dρ
+ ( +1)ρH

⎡

⎣
⎢

⎤

⎦
⎥ −

1
2

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1H (ρ)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

d
dρ

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1 dH

dρ
+ e

−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ( +1)ρH − e

−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1 H

2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1 d

2H
dρ2 + ( +1)ρ dH

dρ
⎡

⎣
⎢

⎤

⎦
⎥ −

1
2

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1 dH

dρ

      + ( +1)e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟
ρ−1H + ρ dH

dρ
⎡

⎣
⎢

⎤

⎦
⎥ −

1
2

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ( +1)ρH

      − 1
2

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟  ( +1)ρH + ρ+1 dH

dρ
⎡

⎣
⎢

⎤

⎦
⎥ +

1
4

e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ ρ+1H
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and divide out e
−ρ
2

⎛
⎝⎜

⎞
⎠⎟ :

[ρ+1 d
2H
dρ2 + ( +1)ρ dH

dρ
−

1
2
ρ+1 dH

dρ

      + ( +1)ρ−1H + ( +1)ρ dH
dρ

−
1
2

( +1)ρH

      −  1
2

( +1)ρH −
1
2
ρ+1 dH

dρ
+

1
4
ρ+1H − ( +1)ρ−1H + λρH −

1
4
ρ+1H ]  = 0

Collect terms:

ρ+1 d
2H
dρ2 + ( +1)ρ − 1

2
ρ+1 + ( +1)ρ − 1

2
ρ+1⎡

⎣⎢
⎤
⎦⎥
dH
dρ

       + ( +1)ρ−1 −
1
2

( +1)ρ − 1
2

( +1)ρ + 1
4
ρ+1 − ( +1)ρ−1 + λρ − 1

4
ρ+1⎡

⎣⎢
⎤
⎦⎥
H = 0

Collect terms:

ρ+1 d
2H
dρ2 + 2( +1)ρ − ρ+1⎡⎣ ⎤⎦

dH
dρ

       + −( +1)ρ + λρ⎡⎣ ⎤⎦H = 0

Divide through by ρ :

ρ d
2H
dρ2 + 2 + 2 − ρ[ ]dH

dρ
−  +1− λ[ ]H = 0

                                  *Notice that for a given value of , this is an eigenvalue equation for H with eigenvalue = λ.
                                                                                   Recall H here is part of a wavefunction and not a hamiltonian
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Plug in H= aiρ
i∑

dH
dρ

= iaiρ
i−1∑

d 2H
dρ2 = i(i −1)aiρ

i−2∑

ρ i(i −1)aiρ
i−2∑ + (2 + 2 − ρ) iaiρ

i−1∑ − ( +1− λ) aiρ
i∑ = 0

i(i −1)aiρ
i−1∑ + (2 + 2) iaiρ

i−1∑ − ( +1− λ + i)aiρ
i∑ = 0

i(i −1+ 2 + 2)aiρ
i−1∑ − ( +1− λ + i)aiρ

i∑ = 0

i(i + 2 +1)aiρ
i−1∑ − ( +1− λ + i)aiρ

i∑ = 0

Set coefficients of each power of ρ separately = 0:
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Set coefficients of each power of ρ separately = 0:

ρ0     1(2+2)a1 − ( +1− λ + 0)a0 = 0
ρ1     2(2+2)a2 − ( +1− λ +1)a1 = 0
ρ2     3(2+4)a3 − ( +1− λ + 2)a2 = 0
ρ3     4(2+5)a4 − ( +1− λ + 3)a3 = 0
ρ4     5(2+6)a5 − ( +1− λ + 4)a4 = 0

ρn     (n+1)(2 + n+2)an+1 − ( +1− λ + n)an = 0

an+1 =
 +1+ n( ) − λ⎡⎣ ⎤⎦

(n +1)(2 + n + 2)
an            Recursive realtion for the ai

                    This relationship between the ai  is like the one for an exponential function.
                    To see this compare:

                              The "H(ρ)" series                                               "The eρ  series", eρ =
ρi
i

, so∑  ai =
1
i!

                         an+1

an
=

 +1+ n − λ
(n +1)(2 + n + 2)

                                       an+1

an
=

1
(n +1)!

1
n!

=
n!

(n +1)!
=

1
n +1

 

                             when n → large                                                           when n → large

                                ≈ n
n ⋅n


1
n

                                                                    1
n
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So if H(ρ) is not truncated, what we have so far is

u(ρ) = e
− ρ
2 ρ+1H (ρ)

       = e
− ρ
2 ρ+1e+ρ

       = e
+ ρ
2 ρ+1  ρ→∞⎯ →⎯⎯ ∞

To force u to be a physically acceptable wavefunction, truncate the series H
Pick some i whose ai  is the highest non-zero ai

       call it imax

Recall ai+1 =
 +1+ i − λ[ ]

(i +1)(2 + i + 2)
ai

                                         when i=imax

                                                   ai = ai  max

                                                   ai+1 = 0

            0 = +1+imax − λ

            λ=+1+imax

                                                              Since i and  and 1 are all integers,
                                                              λ  must be an integer.
                                                              Rename it "n"
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I.  Facts about the principal quantum number n (continued) 
II.  The wavefunction of an e- in hydrogen 
III.  Probability current for an e- in hydrogen 
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Facts about λ=n
1. "n" is called the Principal Quantum Number
2. Recall the definition

         n=λ= Ze
2



µ
2 | En |

, so 

         En = − | En |  = −Z
2e4


2

µ
2n2         These are the allowed bound state energies of the Coulomb potential.

3. n = +imax +1, so 
    n ≥ +1    (imax = 0,1,...)
     ≤ n-1, or max = n −1
4. Notice no matter how large n is, its En  will always be slightly < 0, so at lease weakly bound.

    So this potential V= −Ze2

r
 has an infinite number of bound energy states (unlike the square well).

5. Energy degeneracies:
      (i) due to →  The energy depends only on n, but for each n, there are n possible values of 

                                                                                                                              = 0, 1,..., n-1
      (ii) due to m →  For each ,  m can be -, -+1, ..., 0, ..., -1, 
      (iii) total due to m and  is then

                   (2 +1)
=0

n−1

∑ = n2                              (this ignores spin for now)

                            number m values
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6. A (2+1)-fold degeneracy of m-values is characteristic of a spherically symmertric potential.

II. The wavefunction of an e−  in hydrogen

Recall we found that
Ψe in

hydrogen

time-independent = R ⋅Y


m

                                    to solve the R equation we used Form 2,

                                    so we defined ρ= 8µ | E |


2 r = 2 2µ | E |


2 r = 2kr

                                    and u=rR

R= 1
r
u =

1
r
e

− ρ
2 ρ+1H (ρ)⎡

⎣
⎤
⎦

                                                         aiρ
i

i

imax

∑

  = 2k
ρ

e
− ρ
2 ρ+1H (ρ)⎡

⎣
⎤
⎦

  =e
− ρ
2 ρ2k aiρ

i

i

imax

∑
                                   
                     These turn out to be famous functions
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                              the associated Lguerre Polynomials, Lq
P (ρ)

                              H(ρ)=-Ln+
2+1(ρ)

                                         Lq
P (x) = dP

dxP
Lq (x)

                                                              Lq (x) ≡ ex d
q

dxq
(xqe− x )

Example of Lq's and Lq
P 's:

L0 (x) = 1                     ′L1(x) = −1
L1(x) = 1− x                ′L2 (x) = −4 + 2x
L2 (x) = 2 − 4x + x2      ′L3(x) = 2

Summary:

R(ρ)=Ce
− ρ
2 ρ -Ln+

2+1(ρ)( )

Normalize:

1= | Ψ |2∫ dV0L = |Y


m |2 dΩ | R |2 r2 dr∫∫

                   automatically=1
                   because the Y's
                   are normalized

Normalization not determined yet 
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| R(ρ) |2 r2 dr∫
                                recall ρ=2kr, so r2dr =

1
(2k)3 ρ

2dρ

C 2

(2k)3 Ln+
2+1(ρ)⎡⎣ ⎤⎦∫

2
e−ρρ2ρ2dρ

            
2n (n + )![ ]3

(n −  −1)!

So C = (2k)3(n −  −1)!
2n (n + )![ ]3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

Plug in:

R=- (2k)3(n −  −1)!
2n (n + )![ ]3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

ρe
− ρ
2 Ln+

2+1(ρ)                    where ρ=2kr= 8µ | E |


2 r

*It is common to derive a0 ≡
−2

µe2 , the Bohr radius.

Then ρ= 8µ | E |


2 r  can be simplified:

                                             Recall E= −Z 2e4µ


2 2n2 , so |E|= Z
2e4µ


2 2n2

       ρ= 8µ


2

Z 2e4µ


2 2n2 r
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I.  Facts about Ψe in hydrogen 
II.  Probability current for an e- in hydrogen 

Read 2 handouts 
Read Chapter 14 
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ρ =
2µZe2r


2n
=  2Zr

a0n

Specific Rn(r)'s are listed in Goswami Eq. 13.23

In general,   Rn(r) =
2Z
na0

⎛
⎝⎜

⎞
⎠⎟

3
(n −  −1)!

2n (n + )![ ]3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

2Zr
a0n

⎛
⎝⎜

⎞
⎠⎟



e
−Zr
a0n Ln+

2+1 2Zr
a0n

⎛
⎝⎜

⎞
⎠⎟

 

Facts about the Ψe  in hydrogen :
(i) They are totally orthogonal:

        Ψ ′n ′ ′m Ψnm dVolume =  δ ′n n  δ ′   δ ′m m∫

                                                               due to the eimϕ  in the Y


m

                                                         due to the orthogonality of Legendre Polynomials P


                                                         recall Y


m=(Normalization constant) ⋅ eimϕ ⋅P


m

                                                The Laguerre Polynomials are orthogonal in n
(ii) Recall what a complete set of ′  functions is: it can act as a basis for its space

                                                                               i.e., any possible wavefunction in that space can be written
                                                                               as a linear combination of the elements of the basis.
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The comlete set of eigen functions of the hydrogen atom look like:

So the bound states do not form a complete set by themselves

(iii) Notice all the Rn  r


So for >0, Rn(r = 0) = 0
                             No probability of finding the e−  at the origin in these states
     for  = 0, Rn(r = 0) = constant
                                            So the ground state e−  has a spherical probability distribution which includes the
                                            origin. So the ground state e−  has finite probability to be found inside the nucleus.
(iv) To calculate the probability of finding the e−  at a specific r, calculate
Probability(r)=r2 | Rn |2

This is similar to P(x)=|Ψ(x)|2 . The r2  adjusts to spherical coordinates.

E>0 (scattering) states 
(we will study these in Chapter 23) 

E<0 (bound) states 

V =
−Ze
r2
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When you calculate r2 | R |2  you find

 

(v) to calculate the probability of finding the e−  at a particular θ, 
calculate Probability(θ)=|Y



m (θ,ϕ ) |2 sinθdθdϕ

                                            since the ϕ  appears in eimϕ  it 
                                            will disappear from the probability
                                                                                                                

etc. 

2p 

2s 
3p 

3s 

 
1s(n = 1, = 0)

Th
e 

n=
1 

sh
el

l 

Th
e 

n=
2 

sh
el

l 

Th
e 

n=
3 

sh
el

l 
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You find:

Prob(=0,m=0) = s-orbital

Prob(=1) = p-orbital

Prob(=2) = d-orbital

etc.

(vi) Recall Parity Ρs the operation that inverts the Ψ through the origin
So ΡΨ(r,θ,ϕ )=R(r)(-1)Y



m (π −θ,π +ϕ )

                        unchanged by Ρ

So      Ρ(Ψe in hydrogen ) = (−1)Ψ
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Review Syllabus 
Read Goswami section 13.3 and chapter 14 plus the preceding chapter as necessary for reference 
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Read Chapter 14 

I.  Probability current for an e- in hydrogen 
II.  The effect of an EM field on the eigen functions and eigen values of a charged particle 
III.  The Hamiltonian for the combined system of a charged particle in a general EM field 
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I. Probability current for an e−  in Hydrogen

Recall the definition of probability current:

J= 

2µi
Ψ*

∇Ψ − Ψ


∇Ψ*( )                           

Recall this describes the spatial flow of probability
→ NOT necessarily the motion of the point of maximum probability
→ definitely not the motion of a particle whose probability of location is related to Ψ

Calculate J for the e−  in Hydrogen:

Plug in Ψnm = Rn(r) ⋅Y
m (θ,ϕ ) ⋅ e

− iEnt


                                  call this Θ(θ) ⋅ eimϕ ,     where Θ(θ) is pure real

and 

∇spherical

coordinates
= r̂

∂
∂r

+ θ̂ 1
r
∂
∂θ

+ ϕ̂ 1
r sinθ

∂
∂ϕ

you get:

J= 
2µi

R*θ*e− imϕe
iEt
( )∇ Rθeimϕe

− iEt
( ) − Rθeimϕe

− iEt
( )∇ R*θ*e− imϕe

iEt
( )⎡

⎣⎢
⎤
⎦⎥

Notice since R* = R
             and  θ*  = θ,
that R*θ*∇Rθ − Rθ∇R*θ* = 0
so consider only the ϕ  part of the equation
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So 

J=ϕ̂ 

2µi
R*θ*e− imϕe

iEt
( ) 1
r sinθ

∂
∂ϕ

Rθeimϕe
− iEt
( ) − Rθeimϕe

− iEt
( ) 1
r sinθ

∂
∂ϕ

R*θ*e− imϕe
iEt
( )⎡

⎣
⎢

⎤

⎦
⎥

       =ϕ̂ 
2µi

R2θ 2 e− imϕ 1
r sinθ

∂
∂ϕ

eimϕ − eimϕ 1
r sinθ

∂
∂ϕ

e− imϕ⎛
⎝⎜

⎞
⎠⎟

       =ϕ̂ R
2θ 2

2µi
e− imϕ 1

r sinθ
imeimϕ − eimϕ 1

r sinθ
(−im)e− imϕ⎛

⎝⎜
⎞
⎠⎟

       =ϕ̂ R
2θ 2m

µr sinθ

       =ϕ̂ | Ψ |2 m
µr sinθ

Note this current is
(i) time-independent
(ii) circulating around the z-axis (not ϕ̂ ) but remaining symmetric about it
(iii) NOT the same as an orbiting e−

This circulating 

J is related to the magnetic dipole moment of the e−

To show this recall from EM:
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If you have a physical charged current density 

Je =


I
A

Consider a differentially small piece of it which is located at a distance r from the origin.
This piece forms an element of a current loop which is at least momentarily circulating relative to the origin.
This is physically identical to a magnetic dipole whose magnetic dipole moment m is given by:
m ≡

1
2

r ×
volume
where Je
circulates

∫

Je(
r )dVolume

we can convert our probability current 

J into a physical charged current 


Je  by multiplying by the charge:


Je =

−e
c

⎛
⎝⎜

⎞
⎠⎟

J

Then the magnetic dipole moment of the e−  is given by 
m ≡

1
2

r ×
volume
∫

−e
c

⎛
⎝⎜

⎞
⎠⎟

JdVolume

Notice since 

J=|J|ϕ̂, m must be | m|ẑ

So we only need r ×

J( )z = rJ sinθ

A I →

 
r

O 

 
m

 
rR × J

J

θ
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So we want

m=m z =
−e
2c

rJ sinθ dVolume∫

           = −e
2c

r | Ψ |2 m
µr sinθ

sinθ dVolume∫

           = −em
2µc

| Ψ |2 dVolume∫
                                       by normalization

so m z =
−e
2µc

⋅m

Since m is the eigen value of L z ,  m must be the eigen value of some operator " −e
2µc

Lz"

                                                                                                       call this the z component m z  magnetic moment operator M

Then   M= −e
2µc

L

angular momentum operator 

magnetic momentum operator 

quantum number “m” 

This factor is called the Bohr magneton 

Magnitude of the z-
component of magnetic 
dipole moment of the e- 
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I.  The effect of an EM field on the eigen functions and eigen values of a charged particle 
II.  The Hamiltonian for the combined system of a charged particle in a general EM field 
III.  The Hamiltonian for a charged particle in a uniform, static B field 

Read Chapter 15 
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The effect of and EM field on the eigen functions and eigen values of a charged particle

General plan:
(i) We know the Hamiltonian of a free particle of momentum, p:

     H= p2

2µ
(ii) Find the H for that same particle with charge q in an EM field (


E, 

B)

      we will find that H  p2

2µ
+ [stuff] ⋅B+[stuf ′f ]B2

                                                                  we will study each kind separately

II. The Hamiltonian for the combined system of a charged particle in a general EM field
Procede to find H:

(i) Recall that classically, H ≡ pi xi −
i=1

3

∑ L

    where the 
xi  = canonical coordinates
pi  = canonical momenta

⎧
⎨
⎪

⎩⎪
(ii) Find L. Recall that equations of motion must be obtainable from it via

∂L
∂xi

−
d
dt

∂L
∂xi

⎛
⎝⎜

⎞
⎠⎟
= 0
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I.  The Hamiltonian for a charged particle in an EM field 
II.  The Hamiltonian for a charged particle in a uniform, static B field 
III.  The normal Zeeman effect 
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(iii) Plug in L  to get H, then convert everything possible to operators
Carry this out:
To find L, recall that usually
L=T-V

Here T= 1
2
µv2         (use µ  for mass everywhere)

What is v? Recall the EM field has 2 kinds of potential:
scalar potential ϕ  and vector potential 


A 

How to combine them? (we can't just say "V=ϕ+

A")

It turns out the L= 1
2
µv2 − qϕ +

q
c

A ⋅

V  

To demonstrate this, we will show that

∂L
∂xi

−
d
dt

∂L
∂xi

⎛
⎝⎜

⎞
⎠⎟
= 0     (Lagrange's equation)

successfully produces the known Lorentz Force Law 

F=q

E+ q
v
c

×

B

To plug into this, we need:
∂L
∂xi

= −q
∂ϕ
∂xi

+
q
c
vi
∂A
∂xi

To find ∂L
∂xi

,  notice we can expand:
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L= 1
2
µ xi

2∑ − qϕ +
q
c

Ai xi∑  

So ∂L
∂xi

= µ xi +
q
c
Ai                  [Note this is the definition of the canonical momentum pi ]

Then d
dt

∂L
∂xi

⎛
⎝⎜

⎞
⎠⎟
= µxi +

q
c
d
dt
Ai

                                         ∂A
∂t

+
∂x j
∂t

∂A
∂x jj

∑

                                         ∂A
∂t

+ v ⋅∇

Ai

Plug all this into Lagrange's Equation:

-q ∂ϕ
∂xi

+ q
v
c
∂

A

∂xi
= µxi +

q
c

∂Ai
∂t

+ v ⋅∇

Ai

⎛
⎝⎜

⎞
⎠⎟

Reorder:

µxi = -q ∂ϕ
∂xi

−
q
c
∂Ai
∂t

+
qv
c

∂

A

∂xi
−
q
c
v ⋅∇

Ai

                                          This equation concerns component i (i=1, 2, or 3)
                                          of a vector equation. Generalize to the full vector equation.

µa(=

F)=q −∇ϕ −

1
c
∂A
∂t

⎛
⎝⎜

⎞
⎠⎟
+
q
c

∇(v ⋅


A) − (v ⋅∇)


A⎡⎣ ⎤⎦

                                               To understand this recall:
  

E
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                                                        So 
q
c

∇(v ⋅A) - (v ⋅∇)A⎡⎣ ⎤⎦

               u × ( y × z) = y(u ⋅ z) − z(u ⋅ y)
Plug in    v     ∇   


A

                                 =∇(v ⋅A) - (v ⋅∇)A

                                                             
q
c

v × (∇ × A)⎡⎣ ⎤⎦

So we have 

F=q

E+

q
c
v ×

B

So we know we have the right Lagrangian
Now find H= pi xi − L∑
= µ xi +

q
c

Ai

⎛
⎝⎜

⎞
⎠⎟∑ xi −

1
2
µ x2

i − qϕ +
q
c

Ai xi∑∑⎛
⎝⎜

⎞
⎠⎟

=
µ
2∑ x2

i + qϕ

=
µ xi( )2

2µ∑
i

+ qϕ

                                                           Now use again the definition of canonical momenta

                                                           pi = µ xi +
q
c

Ai

                                                           µ xi( )2
= pi −

q
c

Ai

⎛
⎝⎜

⎞
⎠⎟∑

2

∑

                                                           p-
q
c

A

⎛
⎝⎜

⎞
⎠⎟

2

 canonical momentum
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H=

p − q

A
c

⎛
⎝⎜

⎞
⎠⎟

2

2µ
+ qϕ

By convention,      if the particle is:                    then we use:
                               an e−  (negative)                    q=-e
                                   e+  (positive)                      q=+e

II. The Hamiltonian for a charged particle in a uniform static 

B field

Recall general H=
1

2µ
p −

q

A
c

⎛
⎝⎜

⎞
⎠⎟

2

+ qϕ

                        =
1

2µ
p2 −

q
c

A ⋅ p + p ⋅


A( ) + q2

c2


A2⎛

⎝⎜
⎞

⎠⎟
+ qϕ

                                              we want to simplify this
Recall:

 [f(x),p]=i
∂f
∂x

     (see next page)

Generalize to 3D: [

f(r),p]=i


∇ ⋅

f

Plug in A, then:
[A,p]= i


∇ ⋅

A

now recall that for a static 

B field, 


∇ ⋅

A = 0 

Show this:

Recall in general B can be produced by (i) a uniform current and (ii) a 
∂E
∂t

.

Consider the static case, so A=f(I) only
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Recall if a current 

I flows along a segment d ′  of path C, then the vector potential 


A at distance R from C is


A(x)=

µ0

4π
Id ′
R

                      this is permiability, not mass


Adue to 

total C
(x)=

µ0

4π
Id ′



RC
∫


∇ ⋅

A =

∇

µ0

4π
Id ′



RC
∫

⎡

⎣
⎢

⎤

⎦
⎥ =

µ0 I
4π


∇

d ′



RC
∫

                                                                Recall ∇ ⋅ u


V( ) = V ⋅∇u + u

∇ ⋅


V( )
                                                                                

1
R

 d ′



d ′

 ⋅

∇

1
R

⎛
⎝⎜

⎞
⎠⎟
+

1
R

∇d ′



                                                     0 since ∇ operating on unprimed coordinates only, and d ′

  is constructed of primed coordinates


∇

1
R

⎛
⎝⎜

⎞
⎠⎟
=

∇

1

(xi
′∑ − xi )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= −

∇

1
R

⎛
⎝⎜

⎞
⎠⎟

Rewrite:

∇ ⋅

A =

−µ0 I
4π


′∇

1
R

⎛
⎝⎜

⎞
⎠⎟

d ′



C
∫

                                                   Recall Stoke's Theorem:
                                                   for any vector v,
                                                   vd




C
∫ =


∇ × v( )dArea

surface enclosed
by C

∫

 
x

O!

  ′
x

  R = ′x − x   d ′
  

A

 C
  
∇ =

∂
∂x

 etc. not 
∂
∂ ′x
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I. The Hamiltonian for an e−  in a uniform, static B field (continued)
II. The normal Zeeman effect
III. Response to the e−  to the B2  term
IV. Summary of e−  response to static uniform Bẑ
V. The discovery of spin
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∇ ⋅

A =

−µ0 I
4π

′∇ × ′∇
1
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ dArea

S
∫

                                      
                           but the curl of a divergence always = 0
So, 

∇ ⋅

A = 0 for static B

Return to A, p⎡⎣ ⎤⎦ = i

∇ ⋅

A

                                   0

So 

A and p commute.

So (

A ⋅ p+p ⋅


A)=2


A ⋅ p

Then He in static B =
1

2µ
p2 −

q
c

2

A ⋅ p+

q2

c2 A2⎡

⎣
⎢

⎤

⎦
⎥ + qϕ

Now further restrict this static (no time dependence) B field to be also uniform:
call it 


B=|B|ẑ                          

                                                                                                      constant, 1 directional, no position dependence
In general for any B,

B =

∇ ×

A

Bx x̂ + By ŷ + Bz ẑ =
∂Az

∂y
−
∂Ay

∂z

⎛

⎝
⎜

⎞

⎠
⎟ x̂ + +

∂Ax

∂z
−
∂Az

∂x
⎛

⎝⎜
⎞

⎠⎟
ŷ +

∂Ay

∂x
−
∂Ax

∂y

⎛

⎝
⎜

⎞

⎠
⎟ ẑ

When 

B=|B|ẑ, this reduces to:

0 + 0 + Bẑ =0+0+
∂Ay

∂x
−
∂Ax

∂y

⎛

⎝
⎜

⎞

⎠
⎟ ẑ
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There is more than 1 solution to this. One is:

Ax = −
1
2

B ⋅ y

Ay =
1
2

B ⋅ x

Ax = 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

This can be written precisely as:

A=

1
2

B × r

Plug this into 

A ⋅ p:

1
2

B × r( ) ⋅ p

                             Recall the vector identity:
                             u ⋅ (y ⋅ z ) = ( u ⋅ y) ⋅ z
1
2

B ⋅ r × p( )

                       

L= angular momentum

Now we have:

He in static B =
1

2µ
p2 −

q
c

2
1
2

B ⋅

L+

q2

c2 A2⎡

⎣
⎢

⎤

⎦
⎥ + qϕ

Plug in A2 =
1
2

B × r( )⎡

⎣
⎢

⎤

⎦
⎥

2
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Recall 

B × r=Brsinθ  and 


B ⋅ r=Brcosθ

So

B × r( )2

= B2r2sin2θ = B2r 2 (1− cos2θ) = B2r 2 −

B ⋅ r( )2

So

A2 =
1
4

B2r 2 −

B ⋅ r( )2⎡

⎣⎢
⎤
⎦⎥

Plug this into H

He in uniform static B =
p2

2µ
−

q
2µc

B ⋅

L +

q2

8µc2 B2r 2 −

B ⋅ r( )2( ) + qϕ

                                                       note 
q

L

2µc
 is the magnetic moment 


M of the particle

Since we choose the coordinate system so that 

B=Bẑ,


B ⋅

L = BLz

and r2 B2 − r ⋅

B( )2

= (x2 + y2 + z2 )B2 − (x2 Bx
2 + y2 By

2 + z2 Bz
2 ) = (x2 + y2 )B2

Then

He in uniform static B =
p2

2µ
−

q
2µc

BLz +
q2

8µc2 B2 (x2 + y2 )( ) + qϕ

For an electron, q=-e, so 

He in uniform static B =
p2

2µ
−

eBLz

2µc
+

e2 B2

8µc2 (x2 + y2 ) − eϕ

                                    "µ" is the reduced mass of the system
                                     *If you want the answer in mks units, set c=1
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I. The normal Zeeman effect
II. Response to the e−  to the B2  term
III. Summary of e−  response to static uniform Bẑ
IV. The discovery of spin



63    

We will study the effect of each term separately upon the e's wavefunction and energy.   

II. The Normal Zeeman Effect

Recall He in uniform static B in ẑ =
p2

2µ
+

eLz B
2µc

+
e2 B2 (x2 + y2 )

8µc2 − eϕ

                                    = "H0 "+"H1 " + "H2 "             -eϕ
compare relative sizes of H1 and H2

H2

H1

=

e2 B2 (x2 + y2 )
8µc2

eLz B
2µc

=
eB(x2 + y2 )

4cLz

Plug in e = 1.6x10−19  C
            B = 1 tesla = 104  gauss
            (x2 + y2 ) ~ (5x10−11)2  m2  (Bohr radius)2

            c = 1 (unitless) to convert Gaussian → MKS units
            Lz ~ m ~  = 1x10−34  Joule-seconds
Then,
H2

H1

~
(1.6x10−19 )(1 tesla)(5x10−11)2 m2

4(1)(1x10−34 J − sec)
= 10−6

So H2   H1  for B<105 −106T

                                                      magnetic field at earth's surface is ~0.5x10−4  T 
                                                      superconducting magnets ~ 10 T
So, in a normal situation:
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He in uniform static B in ẑ ≈
p2

2µ
+

eLz B
2µc

− eϕ

Suppose ϕ=
ze
r

, so 

-eϕ=
−ze2

r
Then the e is in the Coulomb Field of its own nucleus

                                      This gives it En =
−µz2e4

22n2

plus the extra 

B field

                                       
                                                 Recall each energy level "n" is degenerate,
                                                 all of its  and m levels have the same energy
How does this H1 affect the e's energy levels?

H1Ψnm =
eLz B
2µc

Ψnm =
eB

2µc
⎛
⎝⎜

⎞
⎠⎟

LzΨnm

                                                  mΨnm                  quantum number "m" NOT mass
             call this collection                       
             of constants "ω L ",
             the Larmor frequency



65 
   

So the presence of H1 means that the different "m" levels are no longer degenerate;
each has its own energy given by:

Em =
−µz2e4

22n2 +ω Lm

So                                       without B                with B

                                                                                                    
−µz2e4

22n2 +ω L                  m=+1

                                                                                                    
−µz2e4

22n2                             m=0

E of all levels                                                                               
−µz2e4

22n2 −ω L                  m=-1

with same n                                                                                                                           m=-2
                                                                                                                                                etc.

The fact that a magnetic field can cause the levels designated by "m" change energy causes "m" to be
called "The magnetic quantum number"

II. Response of the e- to the ~B2  term 

Recall H = 
p2

2µ
+

eBLz

2µc
+

e2 B2 (x2 + y2 )
8µc2 − eϕ

=
pz

2

2µ
+

eBLz

2µc
+

px
2 + py

2

2µ
+

e2 B2 (x2 + y2 )
8µc2 − eϕ

                                                                         ignore for now (let → 0)
this is identical to the Harmonic Oscillator: 

H2 D
Ho

=
px

2

2µ
+

py
2

2µ
+

1
2

k1x
2 +

1
2

k2 y2           where k1 = k2 =
e2 B2

4µc2

E 
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From Chapter 9 (2-D systems)
H2 D

HO
Ψ = (nx + ny +1)ωΨ

                                            ω=
k
µ

=
eB

2c µ
1
µ

=
eB

2cµ
=ωLarmor

III. Summary of e response to static uniform Bẑ
So far we found that

H = 
pz

2

2µ
+

eBLz

2µc
+

px
2 + py

2

2µ
+

e2 B2 (x2 + y2 )
8µc2 − eϕ

Recall: a particular Ψ is simultaneously an e function of 2 operators 

Y and 


Z only if [


Y,Ẑ]=0.

Notice   [pz , Lz ] = 0        since Lz = xpy − ypx

              [pz , H2D
HO

] = 0 

              [Lz , H2D
HO

] = 0

So all the terms of H have the same e function

                                                call it "Ψnmk "
Plug it in:

Set = 0 for now H2D, HO 
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I. The Discovery of Spin
II. Filtering particles with a Stern-Gerlach apparatus
III. Experiments with filtered atoms
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HΨnmk =
pz

2

2µ
Ψnmk +

eBLz

2µc
Ψnmk + H2 D

HO
Ψnmk

                                                          Recall: pzΨ = kΨ
                                                                      LzΨ = mΨ
                                                                      H2 D

HO
Ψ = (nx + ny +1)ω LΨ

HΨnmk =


2k 2

2µ
+ mω L + (nx + ny +1)ω L

⎡

⎣
⎢

⎤

⎦
⎥Ψnmk

                                                                             But in general HΨ = EΨ,  so this must be "E"

Enmk =


2k 2

2µ
+ (m + nx + ny +1)ω L

III. The discovery of spin

Suppose you wanted to measure the total angular momentum of a particle

                                                         call it 

J as in Ch. 11 (Note: this J is not a current)

We showed in Chapter 13 that angular momentum ∝  magnetic moment

                                                                 
−e

L

2µc
          =    


M 

                                                                                 Now call this "

J" to be general, i.e. to allow for more than just orbital angular momentum
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So 

J=

−2µc


M
e

So we want to design an apparatus to measure 

M

Recall from E&M that if a magnetic dipole 

M is in a magnetic field 


B it feels a force on it

which depends on the relative orientation of 

M and 


B:


F=

∇(

M ⋅

B)            (stored energy ε=


M ⋅

B then 


F=

∇ε)

Expand 

M=M x x̂ + M y ŷ + Mz ẑ

Then 

F=

∇ M x Bx + M y By + M z Bz
⎡⎣ ⎤⎦

Design and apparatus in which B=Bz  is in the ẑ direction only

Then 

F=

∇ M z Bz⎡⎣ ⎤⎦

Since M is a fundamental property of a particle, it has no dependence on z
To get 


∇ M z Bz⎡⎣ ⎤⎦ ≠ 0,  must have Bz = f (z)

Then F=M z

∂B
∂z

Now if a particle with moment M z  is in the apparatus, it will feel a force ∝  M z . 
If the particle is moving through the apparatus, the force will deflect its path from a straight line
and its deflection will measure M z

  deflection ∝  M z   ẑ

  F ∝  M z

 particle

 apparatus
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An apparatus like this is called a Stern-Gerlach Experiment
Notice that if you pass 1 particle through the SG, you find out its specific M z .
If you accumulate a large number of identical particles, you can find out what
are all the possible M z  values that they can have.
Recall m can take only quantized values. But are there any restrictions on M z ?
                                                                           ∝  the apparent orientation of the object
                                                                           M z = mcosθ

                                                                          particle's magnetic dipole

Stern and Gerlach mad a beam of silver atoms.
For each atom  i the nucleus has 


M ≈ 0

                         i all e−  but the outermost one are paired, so their cumulative 

M ≈ 0

                         i the outermost e was in the s-suborbital of its shell

                                                                        =0,
                                                                        m=0
                         i the atoms were cooled so that it was unlikely the outermost e−  could acquire 

                            enough thermal energy to move a 
higher -
higher m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 sub-orbital

When the atoms passed through the SG, they all deflected, but each ended up in one of only 2 possible spots:

  ẑ θ
 Mz

 M
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I. The Discovery of Spin
II. Filtering particles with a Stern-Gerlach apparatus
III. Experiments with filtered atoms

Read handout from Feynman lectures and Chapter 15
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 spot 1

 spot 2  

         smear that
         didn't appear

⎛
⎝⎜

⎞
⎠⎟

   

What this meant:

1. the 

M cannot have arbitrary orientation: otherwise instead of 2 spots there would have been a continuous 

    smear reflecting that all possible M z  states were present

2. each outer e−  had a non-zero M z  which was not related to its orbital angular momentum
                                                       
                                                                                                      that had been arranged to have =m=0
     call this "non-orbital angular momentum" = spin. Its quantum number is s 
     and its "orbital angular momentum" m = ms

3. Recall for orbital angular momentum, the possible values m can take are -,   +1,  ..., 0, ...,  −1,  
    so the number of possible values of m is (2 +1)
4. here, experimentally it was found that the number of possible ms  values is 2
    so (2s+1) = 2

   s = 1
2

*Conclusion: Every particle has, in addition to orbital angular momentum, another property which is mathematically 
  like angular momentum but which is not due to any kind of rotation. 
  This new kind of angular momentum is called spin.
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Recall that regular angular momentum is quantized in the direction its allowed to have, so that

Lz =  (integer m)*
the possible number of orientations is 2+1

msz  is also quantized, but since s for an e−  is always 1
2 ,

the number of possible ms  orientations is always only 2:
+ 1

2  and - 1
2

I. Filtering particles with a Stern-Gerlach apparatus

Recall if you have a collection of atoms with different m z  values,
if you pass them through a Stern-Gerlach device, they will separate into 
different beams, one beam for each value.

Notice if you obstruct all but 1 output path, you can produce a beam that is
purely composed of particles with 1 definite m z  value.

  ẑ
  2

  1

  0

  −1
  etc.

 quantum # m

  

if their =0 this is
due to their spin z

  mz = +1

  mz = 0

  mz = −1

  etc.

  

particles with all
possible m z
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  pure mz = +1

 Example:

  pure mz = +1

 

When a beam is put into a definite state like this, 
it (the output of the SG) is called a "prepared beam"
or a "filtered beam" or a "polarized beam"

Now make a slightly modified SG that can return the polarized beam 
to the original axis of travel

 modified SG device
  

this barrier is moveable so we
could select any m z  value
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Make up a symbol for the modified SG device:

+1    
0   
−1    

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
        this shows what is blocked

     S            this gives a particular device a name in case more than 1 is in series

Make up symbols for the prepared states:

                                                 what come out of S
|+ >
|0 >
|- >
Now imagine placing several SG's in series.
Example:

beam →  
+1    
0   
−1    

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

+1    
0   
−1    

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

                    S                   ′S

If this S is the initial state we are forcing the particles to have (labelled |+ >, etc.) then this ′S
is the final state we are checking to see IF they have label final states with bras.
This one is < -1| 
Other possibilities for this system are < 0 | or < +1|

 

*Note S can represent both the device that
prepares a particle's state, or the state itself
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I. Filtering particles with a SG (continued)
II. Experiments with filtered atoms
III. SG in series
IV. Basis states and interference
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Examples of some diferent possible results of putting 2 SG's in series:

       Configuration:                            Result exiting ′S                               A symbolic way to represent this:

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
               all the pure m z = +1 exit                     final

state
initial
state

= fraction S that pass S

     S                  ′S                                                                                          +1 +1 = 1

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
             nothing exits                                              −1 +1 = 1

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
             all the pure m z = −1 exit                            −1 −1 = 1

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
             nothing exits                                              0 −1 = 1

*Notice we draw the S, ′S  in the order in which the beam reaches them, but we order final  initial  from right to left.

We could summarize all possibilities in a matrix as we have done before:

                          initial state:

final state         +1           0             −1

+1                     1               0                0

0                      0               1                0

−1                     0               0                1

 beam →

 beam →

 beam →

 beam →
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All these examples have

                                                     
    
    
    

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      

    
    
    

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                                                           S                 ′S
                                                   prepares 1          "analyzes"
                                                    state                      state

Suppose S could prepare several states with definite fractions, so
initial = a + + b 0 + c −

Then the amplitude for having a particular final  state exit would be
final initial = a final + + b final 0 + c final −

                     = a if final = +1

                     = b if final = 0

                     = c if final = −1

Then the probability of observing a particular final state is

final initial
2
= a

2
, b

2
, or c

2

We always assume that final initial
2

final
∑ = 1

                                           a
2
+ b

2
+ c

2
= 1

(This is normalization.)

 

particles with 
unknown states
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II. Experiments with filtered atoms
*The purpose of these examples is to show you how different basis sets could actually be realized in nature.*
Suppose we put 2 SG filters in series, but one is tilted with respect to the other:

+S ≠ +T ,  so +T +S ≠ 1

However, since +S  is not orthogonal to +T , it is also not true that +T +S = 0

It turns out that +T +S =  some amplitude "a" where 0 ≤ a ≤ 1 and a=f(α )

There are also specific amplitudes for all of the following possibilities:
+T +S    +T 0S    +T −S

0T +S    0T 0S    0T −S

−T +S    −T 0S    −T −S

Note: for normalization, the square of the 1  in each column must sum to 1.

*Keep in mind that the matrix of possibilities does not have to be 3x3. It is in general nxn, 
where n is the number of states the beam particles can have.*

 beam →

 S  call this "T"

α

  x̂

  ŷ

  ẑ
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III. SG filters in series

The message of this section is,
once a particle goes through a filter it loses all information about the orientation of previous filters it passes through.
That is not the same as saying, "each filter analyzes, or measures the state of the particle, and the measurement
process places the particle in and eigenstate of that measurement"

                 aligned along one of its basis states                of that SG filter

To see this, consider 3 consecutive SG filters:

Suppose the not only have relative angles, but also have their blocking pads in different places:

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
         

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
           

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Notice S and ′S  represent the same basis (which has 3 states), and T is a different one (which also has 3 states).

 beam →

 S  T

α

 ′S
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I. SG filters in series (continued)
II. Basis states and interference
III. Describing a measurement matrix
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You might guess that a particle got to here,
         S               T                  S

it would get to here

with 100% probability, because it would "remember" that is had been +S  earlier. It does NOT.

The T filter places it into a 0T  state, which does not  have 100% overlap with a +S .

Demonstrate that the fraction of particles that pass through T and ′S  depends only on T and ′S  (not S)

Compare:

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                                        

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    S                    T                    ′S                                                          S                    T                   ′S

Amplitude to exit ′S  is:
+ ′S 0T 0T 0S                                                                                0 ′S 0T 0T 0S

Ratio of amplitudes is:

                                                       
LHS
RHS

=
+ ′S 0T 0T 0S
0 ′S 0T 0T 0S

                                                                independent of state of S.
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I. Basis states and interference
II. Describing a measurement with a matrix
III. Sequential measurements

Read Goswami 11.2
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So the presence of S affects the absolute number of particles that get to T (and then have the chance to reach ′S ),
but once they are at T, having passed through S does not affect their chance to pass through ′S .

IV. Basis states and interference

Consider several experiments:

  Experiment 1:           
+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

N particles 
survive⎯ →⎯⎯⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  αN⎯ →⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  β∝N⎯ →⎯⎯

                                         S                                       T                                  ′S

  Experiment 2:           
+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 N              ⎯ →⎯⎯⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  αN⎯ →⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  γ ∝N⎯ →⎯⎯

                                         S                                       T                                 ′S

Experiment 3:
repeat Exp. 1 but  

remove blocks from T

        
+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 N                 ⎯ →⎯⎯⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   N⎯ →⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  N⎯ →⎯

                                          S                                       T                                  ′S

Experiment 4:
repeat Exp. 2 but  

remove blocks from T

        
+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 N              ⎯ →⎯⎯⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   N⎯ →⎯  

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  0⎯→⎯

                                          S                                      T                                 ′S              

  
β = + ′S 0T

2

  
γ = 0 ′S 0T

2

  
α = 0T +S

2
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Conclusions:
i Experiment 2 produces more final state particles than Experiment 4:
Inserting blocks in T must eliminate destructive interference (or produce 
constructive interference) in this case.
i Experiment 1 produces less than Experiment 3:
Inserting blocks in Tmust produce destructive interference in this case.

This interference of amplitudes is similar to what happens in a double slit experiment with light:

light⎯ →⎯⎯                                                          light⎯ →⎯⎯

2 slits                                                              1 slit
(like "no blocks" in T)                                    (loss of one slit like adding a block in T)
gives minimum                                              gives maximum 
output at 20                                                    output at 20

  20   20
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                             Write the amplitudes:                   Condense the rotation:
Experiment 4:   0 ′S +T +T +S                            0 ′S +T +T +S

all T
∑ = 0

                     +   0 ′S 0T 0T +S

                     +   0 ′S −T −T +S

                              
                                   0

Experiment 3:   + ′S +T +T +S                            + ′S +T +T +S
all T
∑ = 1

                     +   + ′S 0T 0T +S

                     +   + ′S −T −T +S

                              
                                   1

Facts about all of this:
1. Experiment 3 would have the same result if
T is present but all open or T is not present at all

0 ′S T T +S
T
∑ = 0 ′S +S

⇒ So T T
T
∑ = 1               If T includes all possible imtermediate states

                                                                   it is a basis, a complete set 
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2. Experiment 3 would have the same result if T were replaced by some other filter "R" tipped at
an angle other than α , as long as R were also unblocked.
Now

⇒  So a choice of basis is not unique.

3. All of this only works if the states within a basis are orthogonal, for example Ti Tj = δ ij

To see this, go back to
0 ′S T T +S

T
∑ = 0S +S

                                               Note that ′S  and S are really the same basis,
                                               so delete the prime

0S T T +S
T
∑ = 0S +S

                                              Rename +S = φ      generic

                                                            0S = χ      generic

                                                            T T = i i      any basis

 beam →

 S  T

α

 ′S

 beam →

 S  R

δ

 ′S
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χ i i φ
i
∑ = χ φ

                                    Now since φ is generic, it could be a member of the basis set, j

χ i i j
i
∑ = χ j

                                   This can only be true if i j = δ ij

4. Revising the order of a process (i.e. exchanging the initial and final states) is the same as taking
the complex conjugate of its amplitude.
Show this:
2 columns:
Column 1: 
If a particle starts in some state, it must end up in one of the possible final states (i.e. it cannot get lost). 
So, for example:

+T +S
2
+ 0T +S

2
+ −T +S

2
= 1

Expand:

+T +S
*
+T +S + 0T +S

*
0T +S + −T +S

*
−T +S = 1         "Equation A"

Column 2:
Now also recall that if a state (say +S ) is normalized, for example:

+S +S = 1

                                        we can insert T T
T
∑ = 1



89 

 

I. Describing a measurement with a matrix
II. Sequential measurements
III. Relating matrix notation and Dirac notation
IV. Spinors
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Example:

Suppose:
+S =  an electron

A = and interaction or measurement
+R = and up quark

Finding +R A +S  tells us the probability that this interaction

converts e → w, which is fundamental information about the interaction.
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+S T T +S
T
∑ = 1

+S +T +T +S + +S 0T 0T +S + +S −T −T +S = 1             "Equation B"

Compare Equation A and Equation B
Both have RHS=1, so their LHS's must be equal.
This can only be true if

Si Tj = Tj Si

*

V. Describing a measurement by a matrix

Common question in physics:
i A system begins in some initial state, say +S  (The full set of possible states is "S")

i Something happens to it (a measurement--call it "A" or and interaction force)
i What is the probability that it will end up in any particular final state, say +R  (the full set of possible final states is "R")

So we want +R A +S . (see previous page)

How to calculate this?
Here +S  and +R  are bras and kets in Hilbert space, it is hard to calculate with them without choosing a basis. 

But what basis is best for them? What if calculating with each are easier if they are in different basis?
(This could happen, for example, if +S  is a state with rectangular symmetry and +R  is a state with spherical symmetry.)
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How to handle this:

We have:

+R A +S  =    
+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   

      
A 
     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                                S                                       R

Inserting an unblocked 
      
T 
     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 anywhere has no effect:

So

+R A +S  =    
+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
     

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      

      
A 
     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
    

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
    

+1      
0     
-1     

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                                S                       T                                            T                     R

Make a table:
The amplitude for going from 
                               +S→ T            T → A → T                 T → +R
is given by

                               Ti +S             Tj A Ti
i
∑                 +R Tj

j
∑
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I. Describing a measurement matrix (continued)
II. Sequential measurements
III. Relating matrix notation to Dirac notation
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Reordering:

+R A +S = +R Tj Tj A Ti Ti +S
ij
∑

                                                                      Rename +S = φ    generic state

                                                                                    +R = χ   generic state

                                                                                      Ti , Tj → i , j  members of any basis

Then
χ A φ = χ j j A i i φ

i, j
∑

What this means:
Suppose that φ  and χ  can be written in terms of bases with 3 basis states.

Then i=(1,2,3) and j=(1,2,3)
So there are only 9 possible amplitudes j A i

For example:
               i→       +                    0                   -
j↓
+                    + A +        + A 0        + A −

0                    0 A +        0 A 0        0 A −

-                     − A +        − A 0        − A −

(Notice order the columns and rows in descending order of the eigenvalues of the quantum number involved.)
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And there are only 3 amplitudes i φ

And there are only 3 amplitudes χ j

So a total of  9+3+3=15 pieces of information are required.

Once they are plugged into the sum of the RHS, you get the LHS, which is a very general peice of 
information: "How does the measurement A relate the states φ  and χ ?"

                                               operator

VI. Sequential measurements
Suppose "measurement A" really involves "first measure B, then C"

Example: to find out the mass of a fundamental particles you could measure first its p, then its v, then 
calculate m= p

v

Get p from tracking the curvature of its path in a 

B field:

curvature k ∝
B
p

Then get v by putting it through a "speed trap": measure its times t1  and t2  crossing 2 points 

separated by length l, then compute v=
l

t2 − t1

So procedurally the measurement would be:
 { }→ A{ }→  { } =  { }→ B{ }→ C{ }→  { }

 φ                     χ        φ                                χ
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 { } A{ }  { } =  { } B{ }  { } C{ }  { }
 φ           χ       φ           T          χ

Symbolically:

χ A φ = χ C Tj Tj B φ
Tj

∑                      notice generator order is right-to-left

 
since Tj  unblocked

                                              each of these is a matrix in which the ket=initial state labels columns
                                               bra= final state, labels rows

                                               The sum over the Tj Tj  represents the normal procedure for matrix multiplication.

Show this:
In normal matrix multiplication the (χ,φ)th element of matrix A is the sum of the element-by-element
product of the matrix elements in the χ-th row of B and the φ-th row of C:

Example: for χ=2, φ=3

 A = B ⋅C
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(1,1) (1,2) (1,3) ... (1,5)
(2,1) (2,2) (2,3) ... (2,5)




(5,1) (5,2) (5,3) ... (5,5)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=
(2,1) (2,2) (2,3) (2,4) (2,5)

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

i

(1,3)
(2,3)
(3,3)
(3,4)
(3,5)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

           matrix A                                                  matrix B                                            matrix C
A23 = B21C13 + B22C23 + B23C33 + B24C43 + B25C53  = B2Tj

CTj 3
Tj

∑

I. Relating matrix notation and Dirac notation
Recall we have 
initial state = i

finale state = f

operator = A
Then

f A i  means:

i something ("A") is close to state i

i that event changes the state to something else (call is state Ai )

i we want to know how Ai  compares to the state f

i the overlap of them is given by f Ai

                                                         
                                                    f A i

  

Another way to say this is "what is 
the probablility that Ai  is identical 

to f ?"
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Now recall that since the elements α  of a basis are complete,

α α
α
∑ = 1

This is true for any basis so also true for the basis β

β β
β
∑ = 1

This allows is to write
f A i = f β β A α α i

β
∑

α
∑

Example: Suppose that i  and f  can each take on 3 values. (Ex: +1, 0, -1)

Then
i f A i  is a 3x3 matrix

i if the α 's span the space in which i  exists there need be only 3 values of α

i if the β 's span the space in which f  exists there need be only 3 values of β

 Recall that these are matrices

  

Recall that this symbol means "Hilbert space state i  

projected into the α  basis"

  

Recall f β = β f
*

so this is the complex conjugate
of Hilbert space state f  

projected into the β  basis.
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I. Spinors
II. The matrices and eigenspinors of Sx  and Sy
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So the equation looks like
f A i = f β

α ,β
∑ β A α α i

Normal rules of matrix multiplication state that the vector to the right of the matrix
must be a column vector
and the vector to the left of the matrix must be a row vector

So translating from Dirac notation to matrix notation gives:

   
   
   

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =    ( )

   
   
   

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 
 
 

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 3x3

 3-component vector

 3x3
 3-component vector

 
f A i

 
f β

 
β A α

 
α i

 
α i

 
f β


