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Abstract

In this work, we study the charged lepton flavor violating (cLFV) decays τ → μγ , τ → 3μ and Z → μτ

in the framework of the supersymmetric economical 3-3-1 model. Analytic formulas for branching ratios
(BR) of these decays are presented. We assume that there exist lepton flavor violation (LFV) sources in both
right- and left-handed slepton sectors. This leads to the strong enhancement of cLFV decay rates. We also
show that the effects of the LFV source to the cLFV decay rates in the left-handed slepton sector are greater
than those in the right-handed slepton sector. By numerical investigation, we show that the model under
consideration contains the relative light mass spectrum of sleptons which satisfies the current experimental
bounds on LFV processes in the limit of small tanγ . The interplay between monopole and dipole operators
also was studied.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

It is known that lepton flavor (LF) numbers are strictly conversed in Standard Model (SM).
However, the observation from of neutrino experiments [5] strongly suggests that there is lepton
flavor mixing in lepton sector. It means that (cLFV) processes may also occur at some level.
Many current experiments especially pay attention to search for LFV processes in the charged
lepton sector such as tau decays [1,2], Z → μτ decays [3,4], etc., because LFV observed in
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experiment is evidence of new physics beyond the SM. Along with experiments, many models
beyond SM that contain LFV processes have been constructed. One class of the simple extended
SM models with LFV is the class of models with non-zero neutrino masses. This kind of models
contains a new type of Yukawa couplings of right-handed neutrinos which are sources of cLFV.
But cLFV processes in these models have been proved to be very suppressed [22,23]. However,
in supersymmetric models (SUSY), the situation can be changed. Besides LFV origin affected by
the new Yukawa couplings involving right-handed neutrinos, SUSY models also contain other
sources of cLFV. Particularly, the large mixings of slepton mass parameters in the soft term
greatly enhance the rates for cLFV processes. Because of the appearance of new cLFV sources
in SUSY models, the cLFV decay rates can reach to experimental bounds even if the mixing
angles in the slepton sector are small. The cLFV processes caused by this kinds of LFV were
studied very early [7]. Other interesting properties supporting the study cLFV phenomenology
in SUSY models were discussed in many recent works, for example [28]. Many investigations
about the cLFV in SUSY models such as [10,24,9] indicated that the values of BR(τ → 3μ) and
BR(τ → μγ ) may exceed the bounds of present experimental results. So it is necessary to find
regions of parameter space satisfying the experimental results [2–4]:

BR
(
τ− → μ−γ

)
< 4.4 × 10−8, (1)

BR
(
τ− → μ−μ+μ−)

< 2.1 × 10−8, (2)

BR
(
Z → μ+τ−)

< 1.2 × 10−5. (3)

Supersymmetric unified theories predict large rates for cLFV processes except the decay rate of
Z → μτ . The branching ratio of this decay in models beyond SM is predicted to 10−9–10−8

level [8]. It is very suppressed compared to the experimental bound (3). In fact, the GigaZ option
will be approaching to the sensitivity of 10−8 level in the Z → μτ decay mode [6]. If observed
in a future experiment, it will be evidence of physics in SUSY models. One of the SUSY models
in which cLFV processes are thoroughly investigated is the Minimal Supersymmetric Standard
Model (MSSM) [10,11]. In the mentioned work, the authors have shown that if there exists
LFV in the left-handed sector, in order to get the experimental bound on the LFV decay rates
of muon and tauon decays, the mass parameters of sleptons should be shifted toward TeV scale,
especially in the case of large tanβ . Because the model contains many LFV effective operators,
the interplay of different effective operators (dipole, monopole coming from neutral boson ex-
changes and Higgs exchanges) creates many interesting consequences. The detail is discussed in
works [10,11].

The current experimental results [5] show that neutrinos are massive, which contradict what
assumed in the SM. Other words speaking, the SM must be extended. Among extensions, the
models based on the SU(3)C ⊗ SU(3)L ⊗ U(1)X (3-3-1) gauge group [13,14] have the following
interesting features:

• To be anomaly free, the number of triplets should be equal to number of anti-triplets. This
leads to that number of generations is multiple of the color number which is three. Combin-
ing with condition of the QCD asymptotic freedom the requiring number of quark genera-
tions should be less than five. Thus, in the 3-3-1 models, number of generations is three.

• The models give an explanation of electric charge quantization [15], dark matter and CP
violation.

• One of the three quark families has to transform under SU(3)L differently from the other
two. This leads to an explanation why the top quark is uncharacteristically heavy.
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The weakness of the 3-3-1 models is the complication in the Higgs sector: in the minimal
3-3-1 model [13], content of Higgs sector includes three triplets and one sextet, while in the
3-3-1 model with right-handed neutrino [14], there are three triplets. To solve the mentioned
weakness, the attempt is reduction in the scalar sector. The first result is the economical 3-3-1
model [16,17] — the version with right-handed neutrino and only two Higgs triplets. Scalar sec-
tor in the minimal 3-3-1 model has been reduced to minimum with two Higgs triplets, and such
version is called the reduced minimal 3-3-1 model [18]. It is emphasized that the problem on
neutrino masses is not totally solved in the last version. The situation seems better in a super-
symmetric version of the reduced minimal 3-3-1 model [19]. An supersymmetric version of the
economical 3-3-1 model has been established in [20] and called the Supersymmetric Economical
3-3-1 model (SUSYE331). The SUSYE331 has the same advantages as its non-supersymmetric
version. However, to generate masses for fermions, the non-supersymmetric models with min-
imal Higgs content need effective nonrenormalizable interactions, while the SUSY versions do
not (the interested readers can find in Refs. [20,26]).

In [21], the LFV decays of neutral Higgs bosons in the SUSYE331 were considered. In this
work, we are interested in the cLFV processes in the SUSYE331, namely: cLFV decays of the
tauon and Z bosons.

We remind that in the SUSYE331, there are more leptons, Higgses and gauge bosons as well
as their supersymmetric partners than those of the MSSM. This implies that the model contains
many sources of LFV in the slepton sector. This suggests that the branching ratios of LFV Higgs
and Z decays are greatly enhanced and may be detectable in near future. In contrast, bounds from
experiments (such as shown in (1) and (2)) will strictly constrain the values of parameters causing
the cLFV. So it is really important to investigate the parameter space where LVF decay rates
can be satisfied the present bound of experiments. In many previous works [10,11], the authors
showed that in the MSSM the interested region of parameter space is set at TeV scale with the
large value of tanβ . Because of appearance of new LFV sources in the SUSYE331, we can find
the interested region of parameter space even in the limit of small slepton mass parameters. In
this work, we are interested in the processes: τ− → μ−γ , τ− → μ−μ+μ− and Z → μτ . In
particular, we incorporate the mixing of slepton mass, of charginos, Higgsino, gauginos as well
as the interactions between gauge boson, slepton, lepton and the Yukawa interactions. This leads
to many types of enhanced diagrams. We will consider how large contribution from each type
of diagrams can be. We also will extend previous work in [10] to our considered model such
as: constructing the analytical formulas of effective operators from the diagrams, from which
we obtain the formulas of the branching ratios of decays BR(τ → μγ ), BR(τ → μμμ) and
BR(Z → μτ). After that, we investigate some numerical results of these branching ratios in the
limit of small tanγ and the slepton parameters are set below 1 TeV which may be detected by
current colliders. As in the previous works on SUSYE331, tanγ is defined as the ratio of two
vacuum expectations of two neutral Higgs components ρ and ρ′, namely tanγ = 〈ρ0〉/〈ρ′0〉.
Here, the quantity tanγ in the SUSYE331 plays a similar role as the tanβ in the MSSM [21]. In
the MSSM model, the mass of the lightest Higgs depends on tanβ and the mass of the standard
gauge bosons. If we combine the theoretical result for the upper bound on the lightest Higgs-
boson mass with the direct experimental search, it leads to exclude the limit of small tanβ for
the case where soft parameters are set to TeV scale. However, this kind of constraints on the
tanγ does not happen in the SUSYE331 model. On the other hand, the large values of tanγ

do not support the region of the soft parameter space below 1 TeV. Hence, in this work, we
concentrate on numerical studying in the limit of small tanγ . In this paper we concentrate on
only two aims. First, we establish analytic formulas to calculating some cLFV processes in the
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framework of SUSYE331. Second, we prove that there exist regions satisfying the current bounds
of cLFV experiments. Especially, on the basis of numerical studying, we find some interested
regions of parameter space that satisfy the experimental bound on the cLFV decay rates. We also
discuss on the interplay between mono and dipole operators which may lead to some interesting
consequences.

This paper is arranged as follows: In Section 2 we review the particles content. The effective
operators as well as branching ratios of the mentioned cLFV decay processes are presented in
Section 3. Section 4 is devoted for discussion on results of numerical investigation on parameter
space and the last section is the conclusion. All the analytic formulas of effective couplings
appearing in effective operators and interacting terms needed for our calculation are shown in
Appendices A–E.

2. Particles content

In this part, let us quickly review the particle content in the SUSYE331 model, which were
given in the previous papers [20,26,21]. The fermion superfields are given by

L̂aL = (
ν̂a, l̂a, ν̂

c
a

)T

L
∼ (1,3,−1/3), l̂caL ∼ (1,1,1), a = 1,2,3, (4)

Q̂1L = (
û1, d̂1, û

′)T

L
∼ (3,3,1/3), (5)

ûc
1L, û′ c

L ∼ (
3∗,1,−2/3

)
, d̂c

1L ∼ (
3∗,1,1/3

)
, (6)

Q̂αL = (
d̂α,−ûα, d̂ ′

α

)T

L
∼ (

3,3∗,0
)
, α = 2,3, (7)

ûc
αL ∼ (

3∗,1,−2/3
)
, d̂c

αL, d̂ ′ c
αL ∼ (

3∗,1,1/3
)
, (8)

and the Higgs superfields are written as

χ̂ = (
χ̂0

1 , χ̂−, χ̂0
2

)T ∼ (1,3,−1/3), ρ̂ = (
ρ̂+

1 , ρ̂0, ρ̂+
2

)T ∼ (1,3,2/3), (9)

χ̂ ′ = (
χ̂ ′o

1 , χ̂ ′+, χ̂ ′o
2

)T ∼ (
1,3∗,1/3

)
, ρ̂′ = (

ρ̂′−
1 , ρ̂′o, ρ̂′−

2

)T ∼ (
1,3∗,−2/3

)
. (10)

It is noted that ψ̂c
L = (ψ̂R)c ≡ ψ̂

†
R and u′, d ′ are exotic quarks. The values in each parenthesis

show the quantum numbers of the (SU(3)c,SU(3)L,U(1)X) group, respectively. The SU(3)L ⊗
U(1)X gauge group is broken as follows:

SU(3)L ⊗ U(1)X
w,w′−→ SU(2)L ⊗ U(1)Y

v,v′,u,u′−→ U(1)Q, (11)

with VEVs given by

√
2〈χ〉T = (u,0,w),

√
2
〈
χ ′〉T = (

u′,0,w′), (12)
√

2〈ρ〉T = (0, v,0),
√

2
〈
ρ′〉T = (

0, v′,0
)
. (13)

The SUSYE331 model contains seventeen vector superfields such as V̂ a
c , V̂ a and V̂ ′. The

vector superfields contain the usual gauge bosons given in [20,26]. The total supersymmetric
Lagrangian was given in [26]. In this work only terms relevant to our work are collected in
Appendix A.
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3. Effective operators and branching ratios

In this section, we extend the previous work [10] in the model under consideration. In the
SUSYE331, there are six physical vector bosons: the photon, two charged (W±, Y±), two Hermi-
tian neutral (Z,Z′) and a non-Hermitian neutral X. The effective couplings of Xμτ interaction
is very small so we ignore them in the calculation. Let us first write down the cLFV effective
operators for muon–tau and photon or Z bosons, Z′ bosons or other leptons.

3.1. τμγ effective operators

First we write down the LFV operators for τ,μ,γ . These operators are divided into two
terms1:

e
[
C

γ

Lμ̄σ̄μτ + C
γ

Rμcσμτ̄ c + h.c.
]
�Aμ, (14)

emτ

[
D

γ

Lμ̄σ̄μν τ̄ c + D
γ

Rμcσμντ + h.c.
]
Fμν. (15)

The processes associated with external photon line depend only on the D
γ

L,R while other pro-
cesses with virtual photon depend on both Cγ and Dγ . The Feynman diagrams contributing to
Cγ and Dγ are given in Appendix B. We would like to emphasize that the number of diagrams
in the considered model is more than that of the MSSM because the SUSYE331 model contains
new Higgs and gauge bosons. In order to obtain analytical formulas for Cγ and Dγ , we have
used Feynman rules and some approximate expansion. For more details, the interested reader
can see in Appendix B. As in the MSSM, the C

γ

L(R) does not depend on tanγ and the factor

D
γ

L(R) can be divided into three sub-terms including sub-term D
γ(a)

L(R) which is independent on

tanγ and sub-terms D
γ(c,b)

L(R) which are not, more specifically

D
γ

L(R) = D
γ(a)

L(R) + D
γ(b)

L(R) + D
γ(c)

L(R). (16)

We would like to mention that only D
γ(c)

L(R) contains left–right slepton mixing parameters which,

in this paper, are denoted by (Aτ ,A
L
μτ ,A

R
μτ ).

3.2. Zτμ and Z′τμ effective operator

First, let us consider the effective operator of the Zτμ. This kind of effective operators can be
written in the standard form given in [10] as follows:

gZm2
Z

[
AZ

Lμ̄σ̄μτ + AZ
Rμ̄cσμτ̄ c + h.c.

]
Zμ, (17)

gZ

[
CZ

L μ̄σ̄μτ + CZ
Rμcσμτ̄ c + h.c.

]
�Zμ, (18)

gZmτ

[
DZ

Lμ̄σ̄μντ c + DZ
Rμcσμντ + h.c.

]
Zμν, (19)

where the mass of the Z boson in the SUSYE331 is determined as [20]:

1 The operator containing Dγ is different from [10] a factor i. This is because of definition of σμν and σ̄ μν . The
definitions in [12] are used.
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m2
Z � g2(v2 + v′2)

4c2
W

,

gZ � g

cW

and gZ′ � g

κ1cW

. (20)

(gZ and gZ′ are defined from covariant derivatives, as explained in Appendices A–E.) The oper-
ators related to the factors AZ

L,R are chirality conserving (monopole). The leading contribution
to the monopole operators comes from effective couplings of muon and tauon with two neutral
Higgs bosons. In the model under consideration, we have four neutral Higgs bosons ρ0, ρ′0, χ0

1
and χ ′0

1 which can couple to the Z boson. However, investigation in [17] has noted the relation
u,u′ � v, v′ � w,w′. In this limit, we can neglect the coupling of the Z with χ and χ ′. It means
that we obtain only the leading interactions of μ,τ with ρ,ρ ′. These leading terms lead to a
consequence that the monopole operators in (17) can be extracted out a factor m2

Z . We would
like to remind that the class of diagrams containing μ,τ , ρ0 and ρ′0 presented in Appendix C
(Fig. 14) give contribution to AZ

L,R and this factor can be written as sum of three parts:

AZ
L(R) = A

Z(a)
L(R)

+ A
Z(b)
L(R)

+ A
Z(c)
L(R)

, (21)

where analytical formulas of each term in (21) as well as CZ
L(R) and DZ

L(R) are given in

Appendix C. The operator related to CZ
L(R) also are chirality conserving (monopole) while the

operators related to DZ
L(R) are chirality flipping (dipole). More details about origin of these op-

erators, the interested reader can see in [10].
A big difference compared to the MSSM is that the model under consideration contains more

μτ effective operators such as μτZ′. Because of the couplings of Z′ with all of neutral Higgs
— χ0

2 , χ ′0
2 , ρ0 and ρ′0 — the monopole operators of Z′μτ relate not only to the factor m2

Z

in but also the factor m2
Z′ , as indicated in two formulas (22) and (23). It is noted that A

1Z′(a)
L(R)

comes from the leading interactions of μτ with two neutral Higgs ρ and ρ′ while the A
1Z′(a)
L(R)

comes from the leading interactions of μτ with two neutral Higgs χ0
2 and χ ′0

2 . For all of others

effective operators mentioned in this work — C
Z,(Z′)
L,(R) and D

Z,(Z′)
L,(R) — relate with only two neutral

Higgs ρ and ρ′. Above comments are enough for us to write the standard form of μτZ′ operators
as follows:

gZ′m2
Z

[
A

(1Z′)
L μ̄σ̄ μτ + A

(1Z′)
R μ̄cσμτ̄ c + h.c.

]
Z′

μ, (22)

gZ′m2
Z′

[
A

(2Z′)
L μ̄σ̄ μτ + A

(2Z′)
R μ̄cσμτ̄ c + h.c.

]
Z′

μ, (23)

gZ′
[
CZ′

L μ̄σ̄ μτ + CZ′
R μcσμτ̄ c + h.c.

]
�Z′

μ, (24)

gZ′mτ

[
DZ′

L μ̄σ̄μντ c + DZ′
R μcσμντ + h.c.

]
Z′

μν. (25)

Note that in the on-shell condition we have �(Z) → −m2
Z and �(Z′) → −m2

Z′ , where:

m2
Z′ = g2c2

WW 2

4c2
W − 1

, W 2 = w2 + w′2.

The A1Z′
L(R) and A2Z′

L(R) are also written in the form as those for AZ
L(R). Forms of the DZ

L(R) and

DZ′
L(R) are the same of D

γ

L(R) in (16). All analytical formulas of effective operators in this section
are given in Appendix D.
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In addition, the SUSYE331 model has two others neutral gauge bosons, Z′ and X compared
to the MSSM. This appearance may give significant contribution to the τ → 3μ decay. The
mentioned contribution may be similar to that of the Z boson in some region of parameter space.
This issue will be discussed in more details in the next section.

3.3. τμμμ effective operator

Let us write down four-fermions τμμμ effective operators. The τμμμ effective operators
can be constructed from the effective operators of μ,τ with photon or Z,Z′ bosons as well as
Higgs bosons. Besides the contributions coming from photon, Z boson and Higgs exchanges,
there are other contributions to the τμμμ effective operators which come from box-diagrams
shown in Fig. 20. In this part, we write down only the standard form of τμμμ effective operator
coming from box-diagrams as[(

μ̄σ̄ μτ
)(

B
μL

L μ̄σ̄μμ + B
μR

L μcσμμ̄c
)

+ (
μcσμτ̄ c

)(
B

μL

R μ̄σ̄μμ + B
μR

R μcσμμ̄c
) + h.c.

]
. (26)

Analytical forms of the coefficients B
μL(R)

L(R) are presented in Appendix E.

3.4. Branching ratios

General method to construct the branching ratios for the cLFV decay from effective operator
was written in [10]. Especially, based on the basis of the effective operators, we write effective
Lagrangian of the muon and tauon with photon, gauge bosons Z,Z′ as well as lepton. From this
effective Lagrangian, we obtain the branching ratio for each of processes by using the Feynman
rules. In this section, we study the branching ratios for the considered cLFV decays of the tau
and the Z bosons.

3.4.1. τ → μγ

Let us consider the cLFV decay mode τ → μγ . It is not hard to obtain the decay rate of
τ → μγ from effective operators given in Eqs. (14), (15). The detailed calculation can be seen in
[24]. Comparing the branching of LFV decay τ → μγ with that of the τ → μν̄μντ decay given
in [4,12], we can obtain the relation between the two branching ratios of the two above processes.
The result is entirely consistent with the results given in [10], namely

BR
(
τ → μ−γ

) = 48π2α

G2
F

[∣∣Dγ

L

∣∣2 + ∣∣Dγ

R

∣∣2]BR
(
τ → μ−ν̄μντ

)
, (27)

where α = e2

4π
, GF√

2
= g2

8m2
W

and BR(τ → μ−ν̄μντ ) � 17.41%.

3.4.2. Z → μτ

In this subsection, we consider the decay mode of Z → μτ . The decay rate of Z → +−
in case of the SUSY can also be determined from the general formula established in [12]. In
particular, the decay rate of Z → μτ in the SUSYE331 model can be written as follows:

Γ
(
Z → +−) = g2

ZmZ

24π

(
1 − 4m2


2

)1/2[(
a2
 + b2



)(
1 − 4m2


2

)
+ 6ab

m2

2

]
, (28)
mZ mZ mZ
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where

a ≡ T 3
 − Qs

2
W = −1 + 2s2

W

2
and b = −Qs

2
W = s2

W .

For the decay rate of Z → μτ , because the form of effective operators of Zμτ in the considered
model is the same as that of the MSSM, the form of decay rate of Z → μτ is the same as that
established in [10]. Especially the result is given as follows:

Γ
(
Z → μ+τ−) = g2

Zm5
Z

24π

[∣∣FZ
L

∣∣2 + ∣∣FZ
R

∣∣2 + 1

2

∣∣∣∣ mτ

mZ

DZ
L

∣∣∣∣
2

+ 1

2

∣∣∣∣ mτ

mZ

DZ
R

∣∣∣∣
2]

, (29)

where

FZ
L,R = AZ

L,R − CZ
L,R.

Comparing the two results taken from Eqs. (28) and (29), we obtain the relationship between
the two branching ratios corresponding to two processes Z → ll and Z → μτ . Our calculation
is consistent with results given in [10] such as:

BR(Z → μτ)

= cm4
Z

[∣∣FZ
L

∣∣2 + ∣∣FZ
R

∣∣2 + 1

2

∣∣∣∣ mτ

mZ

DZ
L

∣∣∣∣
2

+ 1

2

∣∣∣∣ mτ

mZ

DZ
R

∣∣∣∣
2]

BR
(
Z → +−)

, (30)

where c ≡ (a2
 + b2

)
−1 = (1/4 − s2

W + 2s4
W)−1 � 7.9 and BR(Z → +−) � 3.4%.

3.4.3. Z′ → μτ

Similar to the case of the Z boson, the decay rate of Z′ → +− can be determined in the
formula below:

Γ
(
Z′ → +−) = g2

Z′mZ′

24π

(
1 − 4m2



m2
Z′

)1/2[(
a′2
 + b′2



)(
1 − 4m2



m2
Z′

)
+ 6a′

b
′


m2


m2
Z′

]

� g2
Z′mZ′

24π

(
a2
 + b2



)
, (31)

where a′2
 + b′2

 = a2
 + b2

 = 1/c and

a′
 = (

4c2
W − 1

)(
T 3

 − Q

) + 3c2
WX = −a,

b′
 = −(

4c2
W − 1

)
QR

+ 3c2
WXR

= −b.

The decay rate Z′ → μτ is similar to that of Z → μτ . It leads to the relation between two
branchings as follows:

BR
(
Z′ → μτ

) = cm4
Z′

[∣∣FZ′
L

∣∣2 + ∣∣FZ′
R

∣∣2 + 1

2

∣∣∣∣ mτ

mZ′
DZ′

L

∣∣∣∣
2

+ 1

2

∣∣∣∣ mτ

mZ′
DZ′

R

∣∣∣∣
2]

× BR
(
Z′ → +−)

, (32)

where

FZ′
L,R = m2

Z

m2
Z′

A
Z′(1)
L,R + A

Z′(2)
L,R − CZ′

L,R. (33)
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3.4.4. τ → μμμ

In the SUSYE331, the effective Lagrangian described the τ → μμμ decay can be deduced
from the effective operators given in Eq. (26) combining with those induced by the effective op-
erators of μτ with Z or Z′ or photon as well as Higgs boson. The general study was presented
in [10]. The contributions from the box-diagrams and vector boson exchanges to the branching
of the considered decay rate are sub-leading ones even when tanγ is large or small. However
the contribution from the Higgs-bosons exchange to decay rate is large for large tanγ (the in-
terested reader can see in [21]). Hence, in this work we will split each type of contributions to
the considered branching ratio. First, let us consider the case of absence of Higgs exchange: the
effective Lagrangian can be deduced from the effective operators given in Eqs. (15), (18), (19),
(25) and (26). The explicit formula of effective Lagrangian is

Leff
τμμμ = [(

μ̄σ̄ μτ
)(

F
μL

L μ̄σ̄μμ + F
μR

L μcσμμ̄c
)

+ (
μcσμτ̄ c

)(
F

μL

R μ̄σ̄μμ + F
μR

R μcσμμ̄c
)]

+ 2e2(Dγ

Lμ̄σ̄μν τ̄ c + D
γ

Rμcσμντ
)mτ∂ν

�
(
μ̄σ̄μμ + μcσμμ̄c

) + h.c., (34)

where

AZ′
L(R) = m2

Z

m2
Z′

A
Z′(1)
L,R + A

Z′(2)
L,R , (35)

F
μL

L(R) = B
μL

L(R) + 1

2
g2

Zc2WAZ
L(R) − 1

2
g2

Z′c2WAZ′
L(R) − e2C

γ

L(R), (36)

F
μR

L(R) = B
μR

L(R) + g2
Zs2

WAZ
L(R) − g2

Z′s2
WAZ′

L(R) − e2C
γ

L(R). (37)

Here we also assume that, as in the case of MSSM, we ignore the contributions of CZ
L,R , CZ′

L,R ,

DZ
L,R and DZ′

L,R to the above effective Lagrangian. This leads to the branching ratios of decay
τ → μμμ is

BR
(
τ− → μ−μ+μ−)

= 1

8G2
F

[
2
∣∣FμL

L

∣∣2 + ∣∣FμR

L

∣∣2 + ∣∣FμL

R

∣∣2 + 2
∣∣FμR

R

∣∣2

+ 4e2 Re
(
D

γ

L

(
2F̄

μL

L + F̄
μR

L

) + D
γ

R

(
F̄

μL

R + 2F̄
μR

R

))
+ 8e2(∣∣Dγ

L

∣∣2 + ∣∣Dγ

R

∣∣2)(log
m2

τ

m2
μ

− 11

4

)]
BR

(
τ− → μ−ν̄μντ

)
. (38)

3.5. Hμτ contribution to τ → μμμ

Contribution of Higgs exchange in the SUSYE331 model was investigated in [21], where the
corresponding effective Lagrangian for this, is given by:

Leff
τμμμ = −2

√
2GF mμmτ tanγ C

(
μcμ + μ̄μ̄c

)(
�

ρ
Lμτc + �

ρ
Rμcτ

) + h.c., (39)

where

C ≡ tγ

(
s2
α

m2
+ c2

α

m2

)
. (40)
φSa36 ϕSa36
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Noting that factor (mμ tanγ ) cannot be ignored if value of tanγ is large enough. This factor
causes a shift to F

μR

L and F
μL

R , explicitly

δF
μR

L = √
2GF mμmτC�R, δF

μL

R = √
2GF mμmτC�L. (41)

The individual contribution from Higgs exchange to BR(τ → μ−μ+μ−) now is:

BR
(
τ → μ−μ+μ−)

Φ∗ = (mμmτC)2(|�ρ
L|2) + |�ρ

R|2
32

BR
(
τ → μ−ν̄μντ

)
. (42)

This contribution will be suppressed in the case of small tanγ . We will concentrate on this case
in the numerical calculation in the following section.

4. Numerical results

In this section, let us numerically study the cLFV decays of the tau lepton τ → μγ , τ → μμμ

and Z → μτ . For this purpose, we first study some constraints on values of parameter space in
the SUSYE331 model.

4.1. Implication on the parameter space in SUSYE331 model

In this section, we pay attention to discussing on constraint of parameter space caused by
experimental cLFV bounds (1)–(3). As mentioned, this topic has been carefully studied in many
models beyond SM. Especially Ref. [10] not only indicated regions of parameter space satisfying
experimental bounds but also discussed in details the correlation between dipole and non-dipole
kinds of contributions to cLFV decays in each region. The most important assumption here is
that sources of cLFV come from only the mass terms of sleptons in the soft term, namely only
left- and right-handed slepton mass matrices have large μ−τ entries. Let us compare the sources
of cLFV appearing in the MSSM with those of the SUSYE331. Because of the absence of the
right-handed neutrinos, the MSSM contains only three sources of cLFV, particularly LFV in
left-handed charged sleptons, left-handed sneutrinos and right-handed charged leptons. But the
left-handed sleptons and their sneutrinos live in the same doublet of SU(2)L in the MSSM, the
origin of cLFV in the left-handed charged sleptons and left-handed sneutrinos sectors are the
same. As a consequence, in the MSSM there are only two independent sources of cLFV. Due
to the appearance of the right-handed neutrinos in the SUSYE331, there also appears one more
source of LFV. Furthermore, there exist two Higgs multiplets in the model, i.e., triplet ρ and
anti-triplet ρ′ which independently generate masses of charged and neutral sleptons at tree level.
These two Higgs multiplets also create at least two new corresponding mass terms of sleptons
in the soft term, as shown in details in [20,26,21]. In general, there are at least four independent
sources causing the cLFV in the SUSYE331 where each source is parameterized by a mixing
angle defined in the last subsection of Appendix A. This parameterization creates the similarity
between the SUSYE331 and the MSSM. We exploit this advantage to make some prediction for
the SUSYE331 basing previous investigation of the MSSM. For example, if all of these sources
are appeared, the branching ratio of decay τ → μγ will be much enhanced than that in the
MSSM, even it could greatly exceed the bound of experiment given in (1). As considered in
the MSSM, the existence of maximal LFV mixing in the left-handed slepton sector means the
LFV mixing in both charged and neutral sleptons, and their contributions to cLFV decays are
much larger than contributions caused by right-handed LFV mixing. In addition, if the superpar-
ticle spectrum is relative light, namely the parameter space are set below 1 TeV, there will exist
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very small regions of parameter space satisfying experimental results. The similar situation also
happens for the SUSYE331. However, in the SUSYE331 four cLFV sources are independent
then there exists a situation that the model contains only one left-handed maximal LFV source
while others vanish. It is easy to realize that in this case, the values of branching ratios of cLFV
processes in the SUSYE331 are smaller than those of the MSSM and the satisfied regions of pa-
rameter space will be wider in the scale of O(100) GeV. On the other hand, if four LFV sources
are presented, the predicted results of the considered model consistent with the experimental re-
sults at the TeV scale. In the next subsections, we will examine the influence of LFV sources
appearing in the soft term of the SUSYE331 on the cLFV decays of the tau and the Z boson. In
the numerical investigation, we just pay attention to the case of soft parameters at O(100) GeV
scale because this scale allows the existence of small values of slepton masses which can be
detected by present colliders. In fact, the detailed investigation to determine different properties
of cLFV branching ratios among different regions of parameter space is really needed, as done
in many known SUSY models. In the SUSYE331, this work is more complicated because of the
addition of many new particles so we will come back this interesting topic in another work.

We would like to emphasize that the sleptons gain mass through main sources which come
from soft terms and interacting terms of sleptons with Higgs through F - and D-terms. As men-
tioned in [27], the D-term gives contribution to mass of slepton that contribution is proportional
to the quantity (w2 −w′2) while F -term gives contribution to mass of slepton that is proportional
to (λaw) or (λaw

′). Because the VEVs ω and ω′ break down SU(3)L to SU(2)L so these values
can be set to the TeV scale. We would like to note that the SUSYE331 contains the Tachyon
fields, the removal Tachyon fields leads to a condition [26]:

∣∣w2 − w′2
∣∣ � ∣∣v2 − v′2

∣∣� 2462 (
GeV2). (43)

However, in the last work [26], we have ignored the B-type terms, namely Bρρρ′,Bχχχ ′. If
the B-type terms are included into the Higgs potential, not only the tachyon fields are removed
without any conditions but also the stable vacuums are guaranteed. From now, we will consider
the SUSYE331 which include the above B-terms. It is noted that the Higgs mass spectrum is
different from that presented in [20,26]. For example, there are three neutral massive pseudo-
scalar, five neutral massive scalar and four charged massive Higgs. It is interesting that masses of
light Higgs, in general, increase by the presence of B-type terms. Especially, the charged Higgs
mass of m2

W as shown in [26] now changes into the new value of (m2
W + 2Bρ/ sin 2γ ). So the

B-terms will make masses of Higgs satisfied with current limits of electroweak precision tests
such as LEP limit of charged Higgs boson [30], even without loop corrections. For more detail,
the interested reader can see in Refs. [29,31]. In the SUSYE331, where the B-type terms are
included, the D-term generates mass for slepton at the SU(3)L scale by sub-terms which are
always proportional to (w2(t2

β − 1)/t2
β) [27]. So this contribution should be at the O(100) GeV

if slepton masses are in range of O(100) GeV. This is similar to the condition (43). Furthermore,
if the R-parity is imposed, the coupling λa must vanish. It means that the contributions from both
F - and D-terms to masses of sleptons depend on the SU(3)L broken scale and the value of tβ . So
if both slepton masses are in the range of O(1) TeV scale and tβ is close to unity, the dominant
contribution to the slepton masses comes from the soft term.

Next, let us discuss on μρ and μχ which play the same role as μ parameter in the MSSM.
According to [20,26], including B-type terms, the requirement of canceling all linear terms at
tree level in the Higgs potential leads to conditions:
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μ2
χ + 4m2

χ − 4
Bχ

tβ
= g2

1 − 4c2W

[
2c2W

(
t2
β − 1

t2
β

)(
w2 + u2) +

(
t2
γ − 1

t2
γ

)
v2

]
,

μ2
ρ + 4m2

ρ − 4
Bρ

tβ
= g2

1 − 4c2W

[(
t2
β − 1

t2
β

)(
w2 + u2) − 2

(
t2
γ − 1

t2
γ

)
v2

]
,

m2
χ + m′2

χ + μ2
χ

2
= Bχ

t2
β + 1

tβ
,

m2
ρ + m′2

ρ + μ2
ρ

2
= Bρ

t2
γ + 1

tγ
. (44)

The parameters μ2
χ ,μ2

ρ,m2
χ and m2

ρ as well as m2
ρ′ ,m2

χ ′ are positive. The additional B-terms
depend on the phases of fields. We can redefine the phases of χ,χ ′, ρ and ρ′ by such way
that can absorb any phase in the B-terms, so we can take Bχ,Bρ to be real and positive. The
conditions given in Eqs. (44) lead to the consequences as follows: The scale of all parameters
given in the left-handed side of Eqs. (44) are the same order. If the value of tanβ is closed to the
unit, the parameters μ2

χ , μ2
ρ , m2

χ ,m2
ρ , m2

ρ′ , m2
χ ′ and Bχ,Bρ are set to the scale of electroweak

symmetry breaking else they are set to the scale of SU(3)L symmetry breaking. Furthermore the
Higgs mass spectrum studied in [31] also leads to the conclusions on the limit of tanγ . Specially
if the soft and μ/B parameters given in Higgs potential are considered at the scale of SU(3)L
symmetry breaking the tree level mass of the SM Higgs boson is mZ| cos 2γ | < 92.0 GeV. This
result is similar to that given in the MSSM. In this case, the boundary of the SM mass can be
pushed up to 130 GeV by one-loop correction with large tanγ . In another case if the soft μ/B-
terms are considered at the scale of electroweak symmetry breaking, there is no constraint on the
value of tanγ .

It is known that three branching ratios τ → μγ , τ → μμμ and Z → μτ depend on some

of following quantities: A
Z(Z′)
L(R) , B

μL(R)

L(R) , C
γ(Z,Z′)
L(R) and D

γ(Z,Z′)
L,R . In different regions of parameter

space, where some of these quantities give dominant contribution, there are precise correlations
among branching ratios. In particular, with three considering branching ratios, we have two cases
as listed below:

Dγ -dominance: It is easy to get the relation concerned in [10]

BR(τ → μμμ)

BR(τ → μγ )
� 2.2 × 10−3, (45)

and a consequence is

BR(τ → μμμ) < 10−10. (46)

AZ-dominance: In this case, we get

BR(τ → μμμ) =
(

0.53
0.67

)
BR(Z → μτ). (47)

Note that in the SUSYE331 model, although AZ′
L(R) receives contribution from diagrams

which are similar to those of AZ
L(R),A

Z′
R � 0. In the limit tβ = ω/ω′ � 1 (c2β = 0) and

AZ′
depends on only diagrams containing right-handed sneutrinos.
L
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In next subsection, we consider numerical computation for cLFV decays of the tauon and the
Z boson. Remember that the effective couplings used for numerical studying are established in
Appendices B, C, D and E. The standard loop integrals are given in [10,25]. In the following
investigation, we use most of the notations defined in [21]. For example, mass parameters of
gauginos and Higgsinos are listed in the formula (B.2): mλ denotes mass of SU(3)L gaugino,
μρ and μχ are μ-terms of Higgsinos. Only notation for mass of U(1) gaugino used in this work
is mB instead of m′.

4.2. In the case of small tanγ and light mass spectrum

4.2.1. τ → μγ

Let us consider the numerical studying of branching of τ → μγ decay. The analytical re-
sult given in Eq. (27) depends on the effective coupling D

γ

L(R)
which can be divided into three

parts, D
γ

L(R)
= D

γ(a)

L(R)
+ D

γ(b)

L(R)
+ D

γ(c)

L(R)
. The analytical formulas of D

γ(a)

L(R)
, D

γ(b)

L(R)
and D

γ(c)

L(R)

are given in Appendix B in which only D
γ(a)

L(R)
does not depend on tanγ . In addition, from

the experimental bound (1), we can obtain the constraint on the effective couplings, namely
|Dγ

L,R|� 2.5 × 10−9 [GeV−2].
We would like to remind that the diagrams which contribute to the D

γ

L are collected from three
LFV sources: left-handed charged slepton, left-handed sneutrinos and right-handed sneutrinos
sectors, while the diagrams contributing to D

γ

R are only collected from the charged right-handed
slepton sector. So the values of D

γ

L are predicted much larger than those of D
γ

R . Another thing
we want to emphasize that since the SUSYE331 has many additional particles, we expected
that the additional particles can modify the predicted results of cLFV decay in the model under
consideration. For more details, let us consider numerical studying in this decay mode.

First we study the effects of LFV sources on D
γ

L in the case of small tanγ as well as the
presence of all of the three left-handed LFV sources, especially we fix tanγ = 3 and θL = θν̃L

=
θν̃R

= π/4. As in the MSSM, Dγ(b)

L is dominant contribution to D
γ

L . Fig. 1 shows the dependence

of D
γ(b)

L on soft parameters m
L̃3

= mν̃L3
= mν̃R3

and mλ, while other parameters are fixed. The
predicted results given in left panel of Fig. 1 are fully consistent with the experimental results
if the domain of parameter mL3 is close to the value of m

L̃2 and all soft parameters are set at
O(100) GeV. We also remind that mixing mass term between left and right slepton, mψ̃μτ

, is
small if the model under consideration has maximal mixing sources. However if μρ is set at TeV,

the domain of parameter m
L̃2, where the values of D

γ(b)

L match experimental bound, is more
extensive. For more details, the reader can see in the right panel of Fig. 1.

Let us consider the case mL̃3 = 1 TeV. The results given in Fig. 2 predict that the values

of D
γ(b)

L exceed the experimental bound if the remaining parameters are assumed in region of
O(100) GeV. Even if the values of μρ are assumed as large as 1 TeV, the predicted value of

D
γ(b)

L is larger than the experimental bound. In this region of parameter space, the predicted
results in the SUSYE331 are much similar to those in the MSSM [10]. As mentioned in [10],
the large values of Aτ as well as small values of μρ and masses of sleptons must be required
to keep value of the total |Dγ | below the experimental bound. However, Fig. 2 displays that the
predicted values of D

γb

L are much greater than those in the MSSM. It means that in order to obtain

the values of D
γ(b)

L being consistent with experimental bound, the values of Aτ predicted in the
SUSYE331 should be much larger than those in the MSSM. In the limit of large values of Aτ , the
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Fig. 1. D
γ(b)
L

isocontours with tanγ = 3, m
L̃3

= mν̃L3
= mν̃R3

and m
L̃2

= mν̃L2
= mν̃R2

= 300 GeV, θL = θν̃L
=

θν̃R
= π/4 and μρ = 140 GeV (1 TeV) in the left (right) panel. The solid and dashed lines correspond to mB = 300 GeV

and mB = −300 GeV.

Fig. 2. D
γ(b)
L

isocontours with tanγ = 3, m
L̃2

= mν̃L2
= mν̃R2

and m
L̃2

= mν̃L2
= mν̃R2

= 1 TeV, θL = θν̃L
= θν̃R

=
π/4 and μρ = 140 GeV (1 TeV) in the left (right) panel. The solid and dashed lines correspond to mB = 300 GeV and
mB = −300 GeV.

model leads to the appearance of Tachyon sleptons. It means that the model under consideration
does not contain the region of parameter space such that there exists a large difference between
the values of slepton masses. Fig. 2 also shows that the values of D

γ(b)

L exceed to the experimental
results when parameter m

L̃
expands into range of TeV.

So in the SUSYE331 model with the case of the maximal mixing happening in all three
sources (left-handed slepton, left-handed sneutrino and right-handed sneutrino sectors), the scale
of all slepton masses should be the same order, in range of TeV or in range of (100) GeV.

Now we consider another situation that happens only in the SUSYE331, not in the MSSM.
It is the case of only one left-handed LFV source appearing in the model. Looking at analytical
formulas of effective couplings, three sources contributing to left-handed effective coupling are
parameterized by three mixing angels θL, θν̃L

and θν̃R
. Two of them, θν̃L

and θν̃R
, relate with

diagrams containing sneutrino propagators while the remain relates to diagrams with charged
slepton propagators. Numerical computation indicates that if the mass spectrum of superpart-
ner particles is in the range of O(100) GeV, contribution from sneutrino exchanges are larger
than those of charged slepton ones. So if two sneutrino mixing angles vanish, there is only
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Fig. 3. D
γ
L

isocontours with tanγ = 3, m
L̃2

= 1 TeV, θL = π/4, θR = θν̃L
= θν̃R

= 0, AL
τμ = 0 (only LFV in {m̃L, τ̃L}

sector). For illustrations, we choose three choices of parameter space (mB,mλ,m
L̃3

,m
R̃

) in GeV: (200,300,300,200)

(solid), (100,400,100,200) (dashed), (100,500,300,100) (dotted). For each example, the center line corresponds to the
value of D

γ
L

= 0, two other ones limit the region where |Dγ
L
| � 2.5 × 10−9 [GeV−2].

one source of left-handed mixing θL which generates relatively small effective couplings. The
experimental bounds then are easily satisfied even in regions of light mass spectrum. Our nu-
merical investigation will focus on this case. In particular, mixing angle parameters are fixed as
θR = θν̃L

= θν̃R
= 0 and θL = π/4. Fig. 3 displays D

γb

L as function of the Aτ and μρ while others
are fixed: m

L̃2 = 1 TeV, m
R̃2

= m
R̃3

= mν̃L2
= mν̃L3

= mν̃R2
= mν̃R3

≡ m
R̃

. The results given in
Fig. 3 illustrate that in the considered limit, we can find the region of the small absolute values
of Aτ in which we can obtain the values of |Dγ

L| satisfying the experimental bound, particularly:

– The value of mB should be smaller than that of mλ.
– If the value of mB is closer to that of mλ, the parameter space of Aτ and, μρ satisfying the

experimental bound of |Dγ

L| has been expanded.

The predicted results given in Fig. 3 show that if in the SUSYE331, only one source of lepton
number violation in the charged slepton sector, the model can contain the region of parameter
space in which the all soft parameters are set to O(100) GeV except m

L̃2
is set to TeV. In this

region of parameter space, the predicted results on the τ → μγ are matched the experimental
bound on the decay. The existence of the soft parameter space below TeV scale leads to hope
that the sleptons can be detected by LHC.

Finally, we consider the LFV effect in the right-handed charged slepton sector to the LFV in
the tauon decay. We assume that there is only the maximal mixing of right-handed slepton, i.e.,
sR = cR = 1/

√
2 and all other mixing sources are set to be equal to zero. Under this assumption

the Feynman diagrams in the model under consideration contributing to Dγ are exactly the same
as those in the MSSM [10]. In Fig. 4, absolute values of D

γ(a)

R and D
γ(b)

R are rather small, even
a bit smaller than those in the MSSM. From this investigation, we see that Aτ should have the
same order with the mass parameters of sleptons.
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Fig. 4. Isocontours of D
γ(a)
R

(left panel) and isocontours of D
γ(b)
R

(right panel). The parameters are tanγ = 3, m
R̃2

=
1 TeV, θL = θν̃L

= θν̃R
= 0, θR = π/4 and μρ = 150 GeV.

4.2.2. Correlations
Next, we consider the process τ → μμμ. The amplitude consists of the contributions from

the effective couplings AL(R),BL(R),CL(R) and DL(R) which are denoted the coupling of Z,Z′
gauge bosons, photon and Higgs to charged leptons μL(R), τL(R). Each type of diagrams picking
up the each particle exchange contributing to the LFV in the considered process depends on the
region of parameter space. In next work, we will study the contribution of each effective coupling
to the LFV of the τ → μμμ process in two typical cases.

Only maximal mixing in the charged slepton (μ̃, τ̃ ).

Let us consider the process τ → μμμ in the limit of small tanγ and in the case of exist-
ing only maximal mixing in the charged slepton, sL = cL = 1√

2
and sR = sν̃L

= sν̃R
= 0. This

constraint leads to A2Z′
L = A2Z′

R = 0. As mentioned in the last part, it is interesting to consider

the region of parameter at O(100) [GeV]. One can check that AZ
L(R) is dominated by A

Z(a)
L(R)

and total effective couplings contributing to the branching ratio of the considered process are
D

γ

L(R), C
γ

L(R), A
Z(a)
L and B

μL(R)

L . Indeed, looking at the analytical expression of these couplings

we found that only the analytical expression of D
γ

L is affected by left-handed slepton parameters
such as: Aτ ,A

L
μτ . Hence, in order to look for the effective coupling giving dominant contribution

to the considered branching ratio, we will study numerically two cases:

– The Aτ , Aμτ parameters are fixed and the other soft parameters are changed.
– The soft parameters are fixed and the Aτ , Aμτ parameters are changed.

First, we assume that Aτ = Aμτ = 0. To assess the contribution of the each effective coupling
AZ

L and D
γ

L into the BR(τ− → μ−μ+μ−), we define two factors fAZ and fDγ such as:

fAZ ≡ g4
Z[|AZ

L|2( 1
2c2

2W + s4
W) + |AZ

R|2( 1
4c2

2W + 2s4
W)]

2|FμL

L |2 + |FμR

L |2 + |FμL

R |2 + 2|FμR

R |2 (48)

and

fDγ ≡
8e4(|Dγ

L|2 + |Dγ

R|2)[ln(
m2

τ

m2
μ
) − 11

4 ]
(49)
MS
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Fig. 5. Correlations among AZ
L

, F
μL(R)

L
and D

γ
L

with Aτ = 0. The contours f
AZ

L
,f

D
γ
L

and BR(τ → μγ ) are denoted

by dashed, dotted and solid black lines. For illustrations, numerical values for parameter space (mB,mλ,m
L̃2

,m
R̃

) are

chosen as (100,300,1000,100) [GeV] (left panel) and (100,500,1000,100) [GeV] (right panel).

where

MS = 8e4(∣∣Dγ

L

∣∣2 + ∣∣Dγ

R

∣∣2)[ln

(
m2

τ

m2
μ

)
− 11

4

]

+ 2
∣∣FμL

L

∣∣2 + ∣∣FμR

L

∣∣2 + ∣∣FμL

R

∣∣2 + 2
∣∣FμR

R

∣∣2
. (50)

The factors fAZ and fDγ given in Eqs. (48), (49) quantitatively measure contributions of AZ
L(R)

and D
γ

L(R) to the factor |FμL(R) | and the total branching of (τ− → μ−μ+μ−) decay, respectively.

Looking at Eqs. (36) and (37), the coefficient F
μL(R)

L(R) depends on the other factors. If AZ gives

dominant contribution to F
μL(R)

L(R)
, it is convenient to define regions where the factor fAZ satisfies

1.05 � fAZ � 0.95 as the AZ-domination regions (over F
μL(R)

L(R) ). On the other hand, we also make
convention that if fDγ � 0.05 then the dominant contribution to the branching ratio of τ → 3μ

is given by F -type of couplings and if 1.05 � fDγ � 0.95 then the dominant contribution to the
branching ratio of τ → 3μ is given by D-type of couplings.

The current experimental upper bound on the branching ratio of the process BR(τ → μγ ) is
smaller than 4.4 × 10−8. The results of our calculation to this process is given in Fig. 5. The
experimental bound of the branching is denoted by the solid black lines. One can see that this
process satisfies the experimental bound in regions of large parameter space of μ and m

L̃3
.

The regions of parameter space where AZ
L gives dominant contribution to branching ratio

τ → 3μ must satisfy both conditions: 1.05 � |fAZ |� 0.95 and |fDγ | � 0.05. The results given in
Fig. 5 show that there is no region of μρ and m

L̃2
parameter space that make AZ

L given dominant
contribution to branching ratio τ → 3μ. If Dγ gives dominant contribution to the considered
decay mode, the region of the μρ parameter satisfied the condition 1.05 � |fDγ |� 0.95, strongly
depends on the value of charged gaugino mass, i.e., if the charged gaugino mass is larger, then
the value of μρ parameter is larger too.

Let us consider the effects of Aτ on the branching of the considered decay mode. We would
like to emphasize that AZ does not depend on the Aτ while the value of |Dγ

L| depends on the

sign as well as amplitude of Aτ . In particularly D
γ(c)

L is proportional to (Aτ + 1
2μρ tanγ ), the

values of Aτ will affect on soft parameter space region where D
γ

L gives dominant contribution to
the BR(τ → 3μ). These regions of soft parameter can be larger than that in the case of Aτ = 0.
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Fig. 6. Branching ratios Z → μτ (left panel) and τ → 3μ (right panel) as functions of mB . Three numerical
values for parameter space (mλ,μρ,m

L̃2
,m

L̃3
,m

R̃
) [GeV] are chosen: (300,150,1000,100,100) — black line,

(400,200,1000,100,100) — green line, (500,150,1000,100,100) — blue line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Now let us consider Z → μτ and τ → μμμ decays. The branching ratios of decays Z → μτ

and τ− → μμμ are presented in (29) and (47). The predicted branching is shown in Fig. 6. The
numerical branching ratio for Z → μτ has the maximum of 5 × 10−10 if the soft parameters of
sleptons are set to O(100) GeV and the charged gaugino mass is set to few hundreds GeV. This
predicted result is very suppressed with the present experimental bound. However, in the same
region of soft parameter space, the predicted result for τ → μμμ can reach to the experimental
result and even one can find some regions of parameter space that predicted our result exceed the
experimental bound. One can check in the left panel of Fig. 6, the branching values for Z → μτ

hardly change when we change the value of the parameter mB . However, the situation is quite
different if the charged gaugino mass is varied, namely the smaller value of charged gaugino
mass is, the larger value of that branching is predicted. Moreover, as we increase the values of
the soft slepton mass parameters these branching values decreased. Therefore, to increase the
value of the branching of Z → μτ , we have to change the parameter μρ .

Fig. 7 shows the values of branching ratios of the decays in the plane mB–μρ . In this case,
we choose Aτ = 0 and other parameters are chosen so that the experimental branching decay of
BR(τ → μμμ) is satisfied. We can see that the bounded regions of BR(τ → μγ ) supports the
small values of both remain decays. In the case Aτ = 0, because only BR(τ → μγ ) depends on
the values of Aτ and as we have shown in the above section, there will exist a possibility where
D

γ

L vanishes. This case allows BR(τ− → μ−μ+μ−) can reach the limits of experiment of order
O(10−8) whilst BR(Z → μτ) is still in maximal order of O(10−9).

Only maximal mixing in the right-handed charged slepton sector μ̃, τ̃ .

Now we come to consider another case, only maximal LFV in right-handed sector of charged
sleptons (sR = 1/

√
2, sL = sν̃L

= sν̃R
= 0) where regions of parameter space can be available in

range of O(100) [GeV]. Both the SUSYE331 and the MSSM models are similar to each other in
this case. So we just discuss more on correlation among effective couplings. As shown in the left
panel of Fig. 8, the bound of experiment of BR(τ → μγ ) rules out the large values of BR(τ →
3μ). This leads to the result BR(τ → 3μ) � 10−9 if Aτ = 0. The right panel shows that in the
case of only large LFV in right-handed charged slepton sector, the BR(τ → 3μ) is in maximal
order of 10−9, even in the case of non-vanishing Aτ and Aτ makes D

γ

R suppressed. For the
BR(Z → μτ), this case is much smaller than the previous case. Also we can see a difference from
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Fig. 7. Contour plots for branching ratios τ− → μ−μ+μ− (dotted), Z → μτ (dashed) and τ → μγ (solid) with Aτ = 0
and (mλ,m

L̃2
,m

L̃3
,m

R̃
) = (400,150,1000,100,200).

Fig. 8. Contours in μρ–m
R̃3

plane (left panel) and plots of branching ratio of τ → 3μ (right panel) in the case of

tanγ = 3 and Aτ = 0. The respective contours are BR(τ → μγ ) (solid lines), fDγ (dotted lines) and BR(τ → 3μ)

(dashed lines) with numerical values of parameters (mB,m
L̃
,m

R̃2
) = (100,100,1000) (m

L̃2
= m

L̃3
≡ m

L̃
). For

the plot of BR(τ → 3μ) four choices of parameter space (mB,μρ,m
R̃2

,m
R̃3

) are: (100,100,1000,100) (black),

(200,100,1000,100) (green), (100,200,1000,100) (blue) and (100,300,1000,100) (red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the case of pure large LFV in left-handed charged slepton sector: the Dγ -domination regions
now lie on the small values of μρ while the large values of μρ are ruled out by the condition
BR(τ → μγ )� 4.4 × 10−8.

5. Conclusions

In present paper, we have studied the LFV decays of the tauon and the Z boson in framework
of the SUSYE331 model, and have mainly focused on two-generations slepton mixing, namely
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both left- and right-handed μ̃–τ̃ slepton mixings. In order to obtain the relevant diagrams, we
have combined the mixing of sleptons, that of charginos, Higgsinos, gauginos as well as the
interactions of gauge bosons with leptons and the Yukawa interactions. From these diagrams,
we obtained the effective operators relating to the considered cLFV decays. This leads to the
analytical expression of the branching ratio of the considered decay processes and the contacted
relation between decay rate of non-LFV decay mode with that of cLFV decay mode. Our analysis
is carried out in the limit of small tanγ . The detailed predictions in our model depend strongly on
the SUSY parameters and left- and right-handed slepton mixing. Consequently, we have firstly
considered the effects of SUSY parameters and the mixing of left- and right-handed sleptons on
the τ → μγ decay such as

• In the case of the maximal LFV mixing, the mixing mass terms between left- and right-
handed sleptons (m

L̃μτ
,m

R̃μτ
) are small, our results are only consistent with the experimen-

tal bounds if the domains of parameter m
L̃3

are close to those of m
L̃2

whenever they are set
to the TeV or O(100) GeV scales. It means that in the case of maximal LFV mixing, the
slepton mass parameters are in the same order.

• If there is only the LFV in the charged left-handed slepton sector, we can find some regions
of parameter space that allow above cLFV branching ratios matching with the experimental
bounds. Especially the slepton mass mL̃3

is set at 1 TeV while the other, m
L̃2

, is set at
O(100) GeV. Noting that the value of parameter mB should be close to that of mλ and if
the value of mB is closer to that of mλ, the parameter space of Aτ has been more expanded.
In the case of left-handed LFV sector, one important result deduced from our numerical
investigation is that although the SUSYE331 model contains much more supersymmetric
particles as well as LFV sources than the MSSM, there still exist of some wide regions of
parameter space which allow not only masses of sleptons but also μρ keep the small values
enough to be detected by colliders.

• If there is only the LFV in the charged right-handed slepton sector, in order to match the ex-
perimental bound, the value of Aτ should be the same order as that of other soft parameters.
Our result is similar to the predicted result in the MSSM.

Based on the parameter space satisfying the experimental bound on τ → μγ decay rate, we
consider the branching ratios of τ → μμμ and Z → μτ . We have concentrated on the LFV
in the charged left-handed slepton sector with only θL = π/4. In this case, there is no region
of parameter space that AZ gives dominant contribution to the considered decay mode, while
there is region of parameter space that Dγ gives dominant contribution to the considered decay
mode. The constraint on the μ parameter is expanded toward large values if the large value
of the charged gaugino mass is chosen. If we set the value of Aτ = 0, the constraint on the
μ parameter can be expanded. Similarly, by numerical study on the branching ratio of τ → μμμ

decay mode in the case there exists LFV only in the charged right-handed slepton sector. The
small value of μρ giving the dominant contribution to considered decay mode coming from Dγ

was obtained. In both cases, our predicted results of BR(Z → μγ ) are very suppressed.
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Appendix A. Interacting Lagrangian and notations

Some of the interacting vertices used in this work were given in [21]. In this appendix we list
the rest part of interacting Lagrangian which is necessary for completion our calculation. Here
we use the relation ̃R ≡ (̃c

L)∗ where ̃c
L is the superpartner of a lepton c

L in the model.

A.1. Interaction between left–right slepton sector with neutral Higgs boson

These terms come from two sources:

(1) from F -terms:

−1

2

[
μρρ0(Yμμ̃∗

Lμ̃c∗
L + Yτ τ̃

∗
Lτ̃ c∗

L

) + h.c.
]
,

(2) from soft-breaking term:

Lsoft
l̃ l̃H 0 = −h′

abL̃aLρ′ l̃cbL + h.c.

= −h′
ab

(
ν̃aLρ′−

1 + l̃aLρ′0 + ν̃c
aLρ′−

2

)
l̃cbL + h.c.

→ −YμAμρ′0μ̃Lμ̃c
L − YτAτρ

′0τ̃Lτ̃ c
L

− YτA
L
μτρ

′0μ̃Lτ̃ c
L − YτA

R
μτρ

′0τ̃Lμ̃c
L + h.c., (A.1)

where we use new notations that are identified with those in [10]:

h′
22 = h′

μμ ≡ YμAμ, h′
33 = h′

ττ ≡ YτAτ ,

h′
23 = h′

μτ ≡ YτA
L
μτ , h′

32 = h′
τμ ≡ YτA

R
μτ .

The total interaction part of (H 0 l̃cLl̃L) interactions is:

LLR
l̃ l̃H 0 = −Yμ

(
1

2
μρρ0∗ + Aμρ′0

)
μ̃Lμ̃c

L − Yτ

(
1

2
μρρ0∗ + Aτρ

′0
)

τ̃Lτ̃ c
L

− YτA
L
μτρ

′0μ̃Lτ̃ c
L − YτA

R
μτρ

′0τ̃Lμ̃c
L + h.c. (A.2)

A.2. Gauge boson interactions

This kind of vertex is only contained in gauge invariant kinetics of all fields in the theory. In
this work, we just study on cLFV in lepton sector so the related part of the Lagrangian is [20]:

Lkinetic = (
Dμρ

)†
Dμρ + (

D̄μρ′)†
D̄μρ′ + i ¯̃ρσ̄μDμρ̃ + i ¯̃ρ′σ̄ μD̄μρ̃′

+ (
DμL̃iL

)†
DμL̃iL + iL̄iLσ̄ μDμLiL

+ (
D1μlciL

)†
D1μlciL + il̄ciLσ̄ μD1μlciL

− 1

4
Fμν

a Fa,μν − 1

4
FμνFμν + iλ̄a

V σ̄ μDL
μλa

V + iλ̄B σ̄ μ∂μλB (A.3)

where i = 1,2,3 is family index, a = 1,2, . . . ,8 corresponds to eight gauge bosons of SU(3)L
group. Covariant derivatives Dμ, D̄μ,D1μ and DL

μ correspond to triplets, anti-triplets SU(3)L,
singlet SU(3)L and adjoint presentation of SU(3)L. They are defined as follows:
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Faμν = ∂μVaν − ∂νVaμ − gf abcVbμVcν, Fμν = ∂μBν − ∂νBμ,

Dμ = ∂μ + igT aVaμ + ig′XT 9Bμ,

D̄μ = ∂μ − igT a∗Vaμ + ig′XT 9Bμ,

D1μ = ∂μ + ig′XT 9Bμ,

DL
μλa

V = ∂μλa
V − gf abcV bλc

V . (A.4)

Here X denotes U(1) hypercharge, f abc is structure constant of SU(3), T 9 is the generator of
U(1)X which is defined by T 9 = 1/

√
6 diagonal(1,1,1). We just pay attention to neutral bosons

in covariant derivatives so they can be written as [20,17].

DN
μ ≡ ∂μ + iPNC

μ

= ∂μ + ig
(
T 3V3μ + T 8V8μ + tT 9XBμ + T 4V4μ + T 5V5μ

)
,

D̄N
μ ≡ ∂μ − iPNC

μ

= ∂μ − ig
(
T 3V3μ + T 8V8μ − tT 9XBμ

) − ig
(
T 4V4μ − T 5V5μ

)
,

D1μ = ∂μ + ig′XT 9Bμ,

DL
μλa

V = ∂μλa
V − g

(
f a3cV 3

μ + f a8cV 8
μ + f a4cV 4

μ + f a5cV 5
μ

)
λc

V , (A.5)

where gauge bosons W3,W8,W4, and B relate with physical states according to the transforma-
tion:

⎛
⎜⎝

W3
W8
B

W4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

sW cϕcθ ′cW sϕcθ ′cW sθ ′cW

− sW√
3

cϕκ3−sϕκ1κ2√
3cW cθ ′

sϕκ3+cϕκ1κ2√
3cW cθ ′

√
3sθ ′cW

κ1√
3

− tW (cϕκ1+sϕκ2)√
3cθ ′

− tW (sϕκ1−cϕκ2)√
3cθ ′

0

0 −tθ ′(cϕκ2 − sϕκ1) −tθ ′(sϕκ2 + cϕκ1) κ2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

A

Z

Z′
W ′

4

⎞
⎟⎠ ,

(A.6)

where some new notations are used:

tθ ≡ tan θ = u

w
, t2θ ≡ tan(2θ), sθ ′ = t2θ

cW

√
1 + 4t2

2θ

,

t ≡ g′

g
= 3

√
2sW√

3 − 4s2
W

, κ1 ≡
√

4c2
W − 1 = 3

√
2sW

t
,

κ2 ≡
√

1 − 4s2
θ ′c2

W, κ3 = s2
W − 3c2

Ws2
θ ′ . (A.7)

In the SUSYE331 model, we have all θ,ϕ and θ ′ � 1. Thus, we can use the approximation
sin θ = sinϕ = sin θ ′ = tan θ = tanϕ = tan θ ′ = 0 to simplify the calculation. We also take the
approximation:

κ2 � 1, κ3 � s2
W .

In addition, W5 and W ′
4 make of a physical neutral non-Hermitian gauge boson X0 which is

defined by the combination:

X0
μ ≡ W ′

4μ − iW5μ√ . (A.8)

2
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So we can rewrite the above covariance derivatives in the form below:

DN
μ � ∂μ + ieQAμ + igZ

(
T 3 − s2

WQ
)
Zμ + igZ′

[(
4c2

W − 1
)(

T 3 − Q
) + 3c2

WX
]
Z′

μ,

D̄N
μ � ∂μ + ieQAμ + igZ

(−T 3 − s2
WQ

)
Zμ + igZ′

[(
4c2

W − 1
)(−T 3 − Q

) + 3c2
WX

]
Z′

μ,

DN
1μ � ∂μ + ieQAμ − igZs2

WQZμ + igZ′
[−(

4c2
W − 1

)
Q + 3c2

WX
]
Z′

μ (A.9)

where we have defined

gZ ≡ gcϕ

cWcθ ′
� g

cW

and gZ′ ≡ gcϕκ2

cWcθ ′κ1
� g

cWκ1
.

For the charged gauginos, we have:

W̃± ≡ λ1
V ∓ iλ2

V√
2

, Ỹ± ≡ λ6
V ± iλ7

V√
2

. (A.10)

This leads to the covariant derivative of charged gauginos:

DL
μW̃± � ∂μW̃± ± i(eAμ + gcWZμ)W̃± = ∂μW̃± ± i

(
eAμ + gZc2

WZμ

)
W̃±

= ∂μW̃± + iQ
W̃

(
eAμ + gZc2

WZμ

)
W̃±,

DL
μỸ± = ∂μỸ± ± i

(
eAμ + g

cϕ(c2W + 2c2
Ws2

θ ′) + sϕκ1κ2

2cWcθ ′
Zμ

+ g
sϕ(c2W + 2c2

Ws2
θ ′) − cϕκ1κ2

2cWcθ ′
Z′

μ

)
Ỹ±

� ∂μỸ± + iQ
Ỹ±

(
eAμ + 1

2
gZc2WZμ − 1

2
gZ′κ2

1 Z′
μ

)
Ỹ±. (A.11)

From these two formulas, we can deduce the vertices of neutral gauge boson–charged gaugino–
charged gaugino.

A.3. Gauge boson–slepton–slepton interactions

This kind of vertex comes from the part [20]:

Ll̃ l̃V
= ig

2

[
∂μ ¯̃

Liλ
aL̃i − ¯̃

Liλ
a∂μL̃i

]
V a

μ

+ ig′
√

6

[
−1

3

(
∂μ ¯̃

LiL̃i − ¯̃
Li∂

μL̃i

) + (
∂μ ¯̃

lcl̃c − ¯̃
lc∂μl̃c

)]
Bμ

where i = 1,2,3 is the flavor index and a = 1,2, . . . ,8 is generator index of SU(3). For the
{μ̃, τ̃ } sector with neutral boson we have:

L
l̃ l̃V

� ig

2

[
1

cW

Zμ + c2W

κ1cW

Z′
μ

]
× (

∂μ ¯̃ντ ν̃τ − ¯̃ντ ∂
μν̃τ

)
+ ig

2

[
−2sWAμ − c2W

cW

Zμ + c2W

κ1cW

Z′
μ

](
∂μ ¯̃τ τ̃ − ¯̃τ∂μτ̃

)
+ ig

[
−2cW

Z′
μ

](
∂μ ¯̃νc

τ ν̃
c
τ − ¯̃νc

τ ∂
μν̃c

τ

) + (τ → μ)

2 κ1
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Table 1
Photon vertices.

Vertex Factor Vertex Factor

Photon–scalar–scalar
(scalar ϕ: H , f̃ ) −ieQϕ(p + p′)μ

Photon–spinor–spinor
(spinor ψ : fermion, Higgsino) −ieQψ σ̄μ (ieQψσμ) γψcψc ieQψ σ̄μ (−ieQψσμ)

Photon–boson–boson
W+ρW−μAν ie[p+ρ,p−μ,pAν ] Y+ρY−μAν −ie[p+ρ,p−μ,pAν ]
Photon–Higgs–gauge boson
AμWνρ1

1
2 (ieg)gμν AμYνρ2

1
2 (ieg)gμν

Photon–gaugino–gaugino

W̃+AμW̃+ −ieσ̄μ (or ieσμ) W̃−AμW̃− ieσ̄μ (or −ieσμ)

Ỹ+AμỸ+ −ieσ̄μ (or ieσμ) Ỹ−AμỸ− ieσ̄μ (or −ieσμ)

+
[
i

(
eAμ − etWZμ + etW

κ1
Z′

μ

)(
∂μ ¯̃τ cτ̃ c − ¯̃τ c∂μτ̃ c

) + (
τ c → μc

)]

= i

[
1

2
gZZμ + 1

2
gZ′c2WZ′

μ

]
× (

∂μ ¯̃ντ ν̃τ − ¯̃ντ ∂
μν̃τ

)

− i

[
eAμ + 1

2
gZc2WZμ − 1

2
gZ′c2WZ′

μ

](
∂μ ¯̃τ τ̃ − ¯̃τ∂μτ̃

)
− i

[
gZ′c2

WZ′
μ

](
∂μ ¯̃νc

τ ν̃
c
τ − ¯̃νc

τ ∂
μν̃c

τ

) + (τ → μ)

+ [
i
(
eAμ − gZs2

WZμ + gZ′s2
WZ′

μ

)(
∂μ ¯̃τ cτ̃ c − ¯̃τ c∂μτ̃ c

)
+ (

τ c → μc
)]

(A.12)

Interaction vertices of photon, Z and Z′ bosons relating with our calculation are summarized in
Tables 1, 2 and 3, respectively. We denote directions of momentums in Fig. 9. For simplicity, we
omit spinor index in the formulas of boson–fermion–fermion vertices. The precise formulas of
this kind of vertices is easily deduced using rules concerned in [12].

A.4. Mixing in the slepton sector

As we know, in supersymmetric models, in order to keep the conversation of LFV in the lep-
ton sector at tree level, the sources of LFV are assumed to be from the slepton mass terms in the
soft-breaking part of the Lagrangian [10,24]. For the SUSYE331, there are three mass terms of
left-handed slepton, right-handed slepton and sneutrinos which may independently be sources of
LFV. In addition, there exists another LFV source original from the Yukawa couplings between
Higgs and neutrinos. Thus in the SUSYE331 model, there are at least four independent sources
of LFV and we will parameterize them as follows. In each case of supersymmetric particle (slep-
tons) ψ̃ (ψ = lL, lR, νL, νR), we define a corresponding mixing angle θϕ̃ which was defined in
[21]. In what follows we just remind some general formulas for the review. The mass mixing
matrices of smuon and stau as well as their sneutrinos can be written in the general form of:
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Table 2
Z boson vertices.

Vertex Factor Vertex Factor

Zμν̃∗
L
ν̃L − i

2 gZ(p + p′)μ
Zμ̃∗

L
̃L

i
2 c2W gZ(p + p′)μ Zμ̃∗

R
̃R igZs2

W
(p + p′)μ

ρ0∗ρ0Zμ
i
2 gZ(p + p′)μ ρ′0∗ρ′0Zμ − i

2 gZ(p + p′)μ
χ0∗

1 χ0
1 Zμ − i

2 gZ(p + p′)μ χ ′0∗
1 χ ′0

1 Zμ
i
2 gZ(p + p′)μ

ρ̃0ρ̃0Zμ
i
2 gZσ̄μ (or − i

2 gZσμ) ρ̃′0ρ̃′0Zμ − i
2 gZσμ (or i

2 gZσμ)

ρ̃+
1 ρ̃+

1 Zμ − i
2 gZc2W σ̄μ (or i

2 gZc2W σμ) ρ̃′−
1 ρ̃′−

1 Zμ
i
2 gZc2W σμ (or − i

2 gZc2W σμ)

ρ̃+
2 ρ̃+

2 Zμ
i
2 gZs2

W
σ̄μ (or − i

2 gZs2
W

σμ) ρ̃′−
2 ρ̃′−

2 Zμ − i
2 gZs2

W
σμ (or i

2 gZs2
W

σμ)

W̃+ZμW̃+ −igZc2
W

σ̄μ (or igZc2
W

σμ) W̃−ZμW̃− igZc2
W

σ̄μ (or −igZc2
W

σμ)

Ỹ+ZμỸ+ − i
2 gZc2W σ̄μ (or i

2 gZc2W σμ) Ỹ−ZμỸ− i
2 gZc2W σ̄μ (or − i

2 gZc2W σμ)

Table 3
Z′ boson vertices.

Vertex Factor Vertex Factor

Z′
μν̃∗

L
ν̃L − i

2 gZ′c2W (p + p′)μ Z′
μν̃∗

R
ν̃R −gZ′c2

W
(p + p′)μ

Z′
μ̃∗

L
̃L − i

2 c2W gZ′ (p + p′)μ Z′
μ̃∗

R
̃R −igZ′ s2

W
(p + p′)μ

ρ0∗ρ0Z′
μ − i

2 gZ(p + p′)μ ρ′0∗ρ′0Z′
μ

i
2 gZ(p + p′)μ

χ0∗
1 χ0

1 Z′
μ − i

2 gZ′c2W (p + p′)μ χ ′0∗
1 χ ′0

1 Z′
μ

i
2 gZ′c2W (p + p′)μ

χ0∗
2 χ0

2 Z′
μ − i

2 gZ′c2
W

(p + p′)μ χ ′0∗
2 χ ′0

2 Z′
μ

i
2 gZ′c2

W
(p + p′)μ

ρ̃0ρ̃0Z′
μ − i

2 gZ′ σ̄ μ (or i
2 gZ′σμ) ρ̃′0ρ̃′0Zμ

i
2 gZ′σμ (or − i

2 gZ′σμ)

ρ̃+
1 ρ̃+

1 Z′
μ − i

2 gZ′ σ̄ μ (or i
2 gZ′σμ) ρ̃′−

1 ρ̃′−
1 Z′

μ
i
2 gZ′σμ (or − i

2 gZ′σμ)

ρ̃+
2 ρ̃+

2 Z′
μ

i
2 gZ′ σ̄ μ (or − i

2 gZσμ) ρ̃′−
2 ρ̃′−

2 Z′
μ − i

2 gZ′c2W σμ (or i
2 gZc2W σμ)

Ỹ+Z′
μỸ+ i

2 gZ′κ2
1 σ̄ μ (or − i

2 gZ′κ2
1 σμ) Ỹ−Z′

μỸ− − i
2 gZ′κ2

1 σ̄ μ (or i
2 gZ′κ2

1 σμ)

Fig. 9. Notations of directions of scalars and fermions. Here V μ denotes a photon A, Z or Z′ boson.

M2
ψ̃

=
(

m2
ψ̃μμ

m2
ψ̃μτ

m2
ψ̃μτ

m2
ψ̃ττ

)
. (A.13)

Mixing angles then can be determined as

sψ̃ ≡ sin θψ̃ , cψ̃ ≡ cos θψ̃ where sψ̃ cψ̃ =
m2

ψ̃μτ

m2 − m2
, (A.14)
ψ2 ψ3
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Fig. 10. Diagrams contributing to C
γ
L,R

.

where sψ̃ = {sL, sR, sν̃L
, sν̃R

} and {m2
ψ2

,m2
ψ3

} are eigenvalues of M2
ψ̃

, according to notations in

[21]. In addition, for convenience we denote m2
ψ̃

instead of m̃2
ψ . We always choose m2

ψ3
< m2

ψ2
to

take the positive values of sψ̃ and cψ̃ . The mass-eigenstates of sleptons are denoted as {ψ̃2, ψ̃3}
while the flavor-eigenstates are {ψ̃μ, ψ̃τ }. The relation between two bases are:

ψ̃μ = cψ̃ ψ̃2 − sψ̃ ψ̃3 and ψ̃τ = sψ̃ ψ̃2 + cψ̃ ψ̃3. (A.15)

Appendix B. Contribution to τ → μγ

Diagrams relating to C
γ

L,R are drawn in Fig. 10 with no line of Higgs insertion.
Formulas of C

γ

L,R are:

C
γ

L = (g2cLsL)

16π2
× 1

9

[−K5
(
m2

λ,m
2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
+ (g2cνL

sνL
)

16π2
× 1

6

[−2K5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νL2

)
+ 3m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νL2

)]
+ (g2cνR

sνR
)

16π2
× 1

6

[−2K5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νR2

)
+ 3m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νR2

)]
+ g′2cLsL

16π2
× 1

162

[−K5
(
m2

B,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
− (L2 → L3,R2 → R3),

C
γ

R = g′2cRsR

16π2
× 1

18

[−K5
(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃R2

,m2
l̃R2

)] − [R2 → R3]. (B.1)

On the other hand, Dγ gets contributions from diagrams with one line Higgs insertion,
Figs. 11,12 and 13. There is another class of LFV sources relating with neutrino-mediation in
which their contributions are very small [22] so we will ignore them in our investigation. The
D

γ can be separated into three parts:
L,R
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Fig. 11. Contribution to D
γ(a)
L

[1–3] and D
γ(a)
R

[4].

D
γ

L,R = D
γ(a)

L,R + D
γ(b)

L,R + D
γ(c)

L,R ,

where diagrams involving each part are expressed in Figs. 11, 12 and 13.
For Dγ(a):

D
γ(a)

L = g2cLsL

16π2
× 1

3

[
m2

l̃L2
J5

(
m2

λ,m
2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
− g2cνL

sνL

16π2
× 1

2

[
m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ,m

2
ν̃L2

)]
− g2cνR

sνR

16π2
× 1

2

[
m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ,m

2
ν̃R2

)]
+ g′2cLsL

16π2
m2

l̃L2

[
1

54
J5

(
m2

B,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
− [L2 → L3,R2 → R3],

D
γ (a)

R = g′2cRsR

16π2
m2

l̃R2

[
1

6
J5

(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃R2

,m2
l̃R2

)] − [R2 → R3]. (B.2)

For Dγ(b):

D
γ(b)

L = −g2sνL
cνL

16π2
m4

ν̃L2
I5

(
m2

λ,μ
2
ρ,m2

ν̃L2
,m2

ν̃L2
,m2

ν̃L2

)
− g2sνR

cνR

16π2
m4

ν̃R2
I5

(
m2

λ,μ
2
ρ,m2

ν̃R2
,m2

ν̃R2
,m2

ν̃R2

)
+ g2sνL2cνL2

16π2
× mλμ tanγ

[
J5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃L2

)
+ J5

(
m2

λ,m
2
λ,m

2
λ,μ

2
ρ,m2

ν̃L2

) + J5
(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

ν̃L2

)]
+ g2sνR2cνR2

16π2
× mλμ tanγ

[
J5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

)
+ J5

(
m2

λ,m
2
λ,m

2
λ,μ

2
ρ,m2

ν̃L2

) + J5
(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

ν̃R2

)]
− g2sLcL

16π2
m2

l̃L2
× 2

3

[
J5

(
m2

λ,μ
2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃L2

)
− mλμρ tanγ I5

(
m2

λ,μ
2
ρ,m2 ,m2 ,m2 )]
l̃L2 l̃L2 l̃L2



234 L.T. Hue et al. / Nuclear Physics B 873 (2013) 207–247
Fig. 12. Contribution to D
γ(b)
L

[1–10] and D
γ(b)
R

[11, 12].

+ g′2sLcL

16π2
m2

l̃L2
× 2

27

[
J5

(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃L2

)
− mBμ tanγ I5

(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃L2

)] − [L2 → L3],

D
γ (b)

R = g′2sRcR

16π2
m2

l̃R2
× 2

9

[−J5
(
m2

B,μ2
ρ,m2

l̃R2
,m2

l̃R2
,m2

l̃R2

)
+ mBμρ tanγ I5

(
m2

B,μ2
ρ,m2

l̃R2
,m2

l̃R2
,m2

l̃R2

)] − [R2 → R3]. (B.3)

For Dγ(c):

D
γ(c)

L = − g′

16π2

m3
B

9
×

{[
sLcL

(
s2
R

[
Aτ + 1

2
μρ tanγ

]
+ sRcRAR

μτ

)
+ c2

Ls2
RAL

μτ

]

× I5
(
m2

B,m2
B,m2

B,m2
l̃L2

,m2
l̃R2

)
−

[
sLcL

(
s2
R

[
Aτ + 1

2
μρ tanγ

]
+ sRcRAR

μτ

)
− s2

Ls2
RAL

μτ

]

× I5
(
m2

B,m2
B,m2

B,m2 ,m2 )

l̃L3 l̃R2
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Fig. 13. Contribution to D
γ(c)
L

[1–6] and D
γ
R

[7, 8].

+
[
sLcL

(
c2
R

[
Aτ + 1

2
μρ tanγ

]
− sRcRAR

μτ

)
+ c2

Lc2
RAL

μτ

]
× I5

(
m2

B,m2
B,m2

B,m2
l̃L2

,m2
l̃R3

)
−

[
sLcL

(
c2
R

[
Aτ + 1

2
μρ tanγ

]
− sRcRAR

μτ

)
− s2

Lc2
RAL

μτ

]

× I5
(
m2

B,m2
B,m2

B,m2
l̃L3

,m2
l̃R3

)}
,

D
γ (c)

R = − g′

16π2

m3
B

9
×

{[
sRcR

(
s2
L

[
Aτ + 1

2
μρ tanγ

]
+ sLcLAL

μτ

)
+ c2

Rs2
LAR

μτ

]
× I5

(
m2

B,m2
B,m2

B,m2
l̃L2

,m2
l̃R2

)
−

[
sRcR

(
s2
L

[
Aτ + 1

2
μρ tanγ

]
+ sLcLAL

μτ

)
− s2

Rs2
LAR

μτ

]
× I5

(
m2

B,m2
B,m2

B,m2
l̃L2

,m2
l̃R3

)
+

[
sRcR

(
c2
L

[
Aτ + 1

2
μρ tanγ

]
− sLcLAL

μτ

)
+ c2

Rc2
LAR

μτ

]
× I5

(
m2

B,m2
B,m2

B,m2
l̃L3

,m2
l̃R2

)
−

[
sRcR

(
c2
L

[
Aτ + 1

2
μρ tanγ

]
− sLcLAL

μτ

)
− s2

Rc2
LAR

μτ

]

× I5
(
m2

B,m2
B,m2

B,m2
l̃L3

,m2
l̃R3

)}
. (B.4)
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Fig. 14. Diagrams contributing to A
Z(a)
L

(or A
1Z′(a)
L

) (first, second and third rows) and A
Z(a)
R

(or A
1Z′(a)
R

) (fourth row).

Here we denote H 0
k

∈ {ρ0, ρ′0} while λi,j implies i, j = {B,3,8} and i = j .

Appendix C. Contributions to Z → μτ

In this appendix, we draw all the possible diagrams which contribute to the effective operator
Z → μτ in the limit of assumption given out in [10]. All of these diagrams can be applied to the
case of Z′ boson.

C.1. Contributions to AZ
L,R

Diagrams contributing to A
Z(a)
L,R are shown in Fig. 14. The formulas are:

A
Z(a)
L = (sνL

cνL
) × g2c2

W

16π2
× 1

4
(1 + c2γ )

× [−μ2
ρJ5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃L2

) − 2J4
(
m2

λ,m
2
λ,μ

2
ρ,m2

ν̃L2

)]
+ (sνR

cνR
) × g2c2

W

16π2
× 1

4
(1 + c2γ )

× [−μ2
ρJ5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

) − 2J4
(
m2

λ,m
2
λ,μ

2
ρ,m2

ν̃R2

)]
+ (sLcL) × g2c2

W

16π2
× 11

36
c2γ

× [−μ2
ρJ5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
l̃L2

) − 2J4
(
m2

λ,m
2
λ,μ

2
ρ,m2

l̃L2

)
+ m2

λ

(
I4

(
m2

λ,m
2
λ,μ

2
ρ,m2 ) − μ2

ρI5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2 ))]

l̃L2 l̃L2
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Fig. 15. Diagrams contributing to A
Z(b)
L,R

(left side) and A
Z(c)
L,R

(right side) in SUSYE331.

− (sνL
cνL

) × g2c2
Wm2

λ

16π2
× 1

4
(1 − c2γ )

× [
μ2

ρI5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃L2

) − I4
(
m2

λ,m
2
λ,μ

2
ρ,m2

ν̃L2

)]
− (sνR

cνR
) × g2c2

Wm2
λ

16π2
× 1

4
(1 − c2γ )

× [
μ2

ρI5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

) − I4
(
m2

λ,m
2
λ,μ

2
ρ,m2

ν̃R2

)]
+ (sLcL) × g′2c2

W

16π2
× 8

81
c2γ

× {
μ2

ρJ5
(
m2

B,m2
λ,μ

2
ρ,μ2

ρ,m2
l̃L2

) + 2J4
(
m2

B,m2
λ,μ

2
ρ,m2

l̃L2

)
− mBmλ

[
μ2

ρI5
(
m2

B,m2
λ,μ

2
ρ,μ2

ρ,m2
l̃L2

) − I4
(
m2

B,m2
λ,μ

2
ρ,m

l̃L2

)]}
+ (sνL

cνL
) × g2c2

W

16π2
× 1

2
s2γ

[
μρmλJ5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃L2

)]
+ (sνR

cνR
) × g2c2

W

16π2
× 1

2
s2γ

[
μρmλJ5

(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

)]
+ (sLcL) × g′2t2c2

W

16π2
× 2

729
c2γ

× [−μ2
ρJ5

(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃L2

) − 2J4
(
m2

B,m2
B,μ2

ρ,m2
l̃L2

)
+ m2

B

(
μ2

ρI5
(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃L2

) − I4
(
m2

B,m2
B,μ2

ρ,m2
l̃L2

))]
− (L2 → L3,R2 → R3), (C.1)

A
Z(a)
R = (sRcR)

g′2t2c2
W

16π2
× 2

81
c2γ

× {
μ2

ρJ5
(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃R2

) + 2J4
(
m2

B,m2
B,μ2

ρ,m2
l̃R2

)
− m2

B

[
μ2

ρI5
(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃R2

)
− I4

(
m2

B,m2
B,μ2

ρ,m2
l̃R2

)]} − [R2 → R3]. (C.2)

For A
Z(b,c)
L,R , see Fig. 15.

Formula for A
Z(b)
L :

A
Z(b)
L = (sLcL) × m2

τ c
2
W

16π2V 2
× 1

3

(
t2
γ μ2

ρ

)[
s2
R

(
J5

(
m2

λ,μ
2
ρ,μ2

ρ,m2
l̃L2

,m2
l̃R2

)
+ J5

(
m2

λ,μ
2
ρ,m2

˜ ,m2
˜ ,m2

˜
)) + c2

R

(
J5

(
m2

λ,μ
2
ρ,μ2

ρ,m2
˜ ,m2

˜
)

lL2 lR2 lR2 lL2 lR3
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+ J5
(
m2

λ,μ
2
ρ,m2

l̃L2
,m2

l̃R3
,m2

l̃R3

))]
+ (sLcL) × m2

τ t
2c2

W

16π2 V 2
× 1

27

(
t2
γ μ2

ρ

)[−s2
R

(
J5

(
m2

B,μ2
ρ,μ2

ρ,m2
l̃L2

,m2
l̃R2

)
+ J5

(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃R2
,m2

l̃R2

)) − c2
R

(
J5

(
m2

B,μ2
ρ,μ2

ρ,m2
l̃L2

,m2
l̃R3

)
+ J5

(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃R3
,m2

l̃R3

))] − (L2 → L3), (C.3)

where mτ = Yτ ×v′/
√

2 is mass of the tau and V ≡ vweak = √
v2 + v′2 in the SUSYE331 model.

We also have formula of A
Z(b)
R :

A
Z(b)
R = (sRcR) × m2

τ t
2c2

W

16π2 V 2
× 1

9
t2
γ μ2

ρ

[−s2
L

(
J5

(
m2

B,μ2
ρ,μ2

ρ,m2
l̃L2

,m2
l̃R2

)
+ J5

(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃R2

)) − c2
L

(
J5

(
m2

B,μ2
ρ,μ2

ρ,m2
l̃L3

,m2
l̃R2

)
+ J5

(
m2

B,μ2
ρ,m2

l̃L3
,m2

l̃L3
,m2

l̃R2

))] − (R2 → R3). (C.4)

Formulas for AZ(c):

A
Z(c)
L = (sLcL) × m2

τ t
2c2

W

16π2 V 2
× 1

6

(
t2
γ μ2

ρ

){
s2
L

[
s2
RJ5

(
m2

λ,m
2
l̃R2

,m2
l̃R2

,m2
l̃L2

,m2
l̃L2

)
+ c2

RJ5
(
m2

λ,m
2
l̃R3

,m2
l̃R3

,m2
l̃L2

,m2
l̃L2

)]
− c2

L

[
s2
RJ5

(
m2

λ,m
2
l̃R2

,m2
l̃R2

,m2
l̃L3

,m2
l̃L3

) + c2
RJ5

(
m2

λ,m
2
l̃R3

,m2
l̃R3

,m2
l̃L3

,m2
l̃L3

)]
− (

s2
L − c2

L

)[
s2
RJ5

(
m2

λ,m
2
l̃R2

,m2
l̃R2

,m2
l̃L2

,m2
l̃L3

)
+ c2

RJ5
(
m2

λ,m
2
l̃R3

,m2
l̃R3

,m2
l̃L2

,m2
l̃L3

)]}
+ (sLcL) × m2

τ t
2c2

W

16π2 V 2
× 1

108

(
t2
γ μ2

ρ

){
s2
L

[
s2
RJ5

(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃L2

,m2
l̃L2

)
+ c2

RJ5
(
m2

B,m2
l̃R3

,m2
l̃R3

,m2
l̃L2

,m2
l̃L2

)]
− c2

L

[
s2
RJ5

(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃L3

,m2
l̃L3

) + c2
RJ5

(
m2

B,m2
l̃R3

,m2
l̃R3

,m2
l̃L3

,m2
l̃L3

)]
− (

s2
L − c2

L

)[
s2
RJ5

(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃L2

,m2
l̃L3

)
+ c2

RJ5
(
m2

B,m2
l̃R3

,m2
l̃R3

,m2
l̃L2

,m2
l̃L3

)]}
, (C.5)

A
Z(c)
R = (sRcR) × m2

τ t
2c2

W

16π2 V 2
× 1

12

(
t2
γ μ2

ρ

){−s2
R

[
s2
LJ5

(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃L2

,m2
l̃L2

)
+ c2

LJ5
(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃L3

,m2
l̃L3

)]
+ c2

R

[
s2
LJ5

(
m2

B,m2
l̃R3

,m2
l̃R3

,m2
l̃L2

,m2
l̃L2

) + c2
LJ5

(
m2

B,m2
l̃R3

,m2
l̃R3

,m2
l̃L3

,m2
l̃L3

)]
+ (

s2
R − c2

R

)[
s2
LJ5

(
m2

B,m2
l̃R2

,m2
l̃R3

,m2
l̃L2

,m2
l̃L2

)
+ c2

LJ5
(
m2

B,m2
l̃R2

,m2
l̃R3

,m2
l̃L3

,m2
l̃L3

)]}
. (C.6)
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Fig. 16. Diagrams contributing to CZ
L,R

(CZ′
L,R

). Only the last gives contribution to CZ
R

(CZ′
R

). The first diagram only

contributes to CZ
L

while the fifth only contributes to CZ′
L

.

C.2. Contributions to CZ
L,R

For CZ
L,R , in Fig. 16. The formulas for these two quantities are written as below:

CZ
L = (cνL

sνL
) × g2

16π2
× 1

12

[−K5
(
m2

λ,m
2
ν̃L2

,m2
ν̃L2

,m2
ν̃L2

,m2
ν̃L2

)]
+ (cLsL) × g2

16π2
× 1

18
c2W

[−K5
(
m2

λ,m
2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
+ (cνL

sνL
) × g2

16π2
× 1

12
c2
W

[−2K5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νL2

)
+ 3m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νL2

)]
+ (cνR

sνR
) × g2

16π2
× c2W

12

[−2K5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νR2

)
+ 3m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νR2

)]
+ (cLsL) × g′2

16π2
× 1

324

(
1 − 2s2

W

)[
K5

(
m2

B,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
− [L2 → L3, R2 → R3], (C.7)

CZ
R = (cRsR) × g′2

16π2
× 1

36
s2
W

[
K5

(
m2

B,m2
l̃R2

,m2
l̃R2

,m2
l̃R2

,m2
l̃R2

)]
− [R2 → R3]. (C.8)

We note that because Z boson couples much weakly to right-handed neutrinos so the diagram 5
in Fig. 16 give suppressed contribution to CZ

L . In contrast, the case of Z′ boson is different, it
weakly couples with W̃± but non-negligible to right-handed neutrinos. So for the CZ′

L , we neglect
the first diagram and keep the fifth. This conclusion is held in the case of DZ and DZ′

.
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Fig. 17. Diagrams contributing to D
Z(b)
L

(DZ′(b)
L

) (two first lines) and D
Z(b)
R

(DZ′(b)
R

) (the last line). Noting that the

first diagram only contributes to D
Z(b)
L

while the sixth only contributes to D
Z′(b)
L

.

C.3. Contributions to DZ
L,R

For DZ
L,R , we have DZ

L,R = D
Z(b)
L,R +D

Z(c)
L,R . They are presented by diagrams in Figs. 17 and 18.

Formulas for DZ(b):

D
Z(b)
L = (sLcL)

g2

16π2
× 1

6
× μρmλ tanγ

× [
2J5

(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

l̃L2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
l̃L2

)]
+ (sLcL)

g2

16π2
× 1

3
μρmλ tanγ c2W

[
m2

l̃L2
I5

(
m2

λ,μ
2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃L2

)]
+ (sνL

cνL
)

g2

16π2
× 1

2
μρmλ tanγm2

ν̃L2
I5

(
m2

λ,μ
2
ρ,m2

ν̃L2
,m2

ν̃L2
,m2

ν̃L2

)
− (sνL

cνL
)

g2

16π2
× 1

2
(μρmλ tanγ )

× c2
W

[
2J5

(
m2

λ,m
2
λ,m

2
λ,μ

2
ρ,m2

ν̃L2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃L2

)]
− (sνR

cνR
)

g2

16π2
× 1

4
(μρmλ tanγ )

× c2W

[
2J5

(
m2

λ,m
2
λ,m

2
λ,μ

2
ρ,m2

ν̃R2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

)]
+ (sνL

cνL
)

g2

16π2
× (μρmλ tanγ ) × 1

4
× (−1 + 2s2 )[

2J5
(
m2,μ2 ,μ2 ,μ2 ,m2 ) + J5

(
m2,m2,μ2 ,μ2 ,m2 )]
W λ ρ ρ ρ ν̃L2 λ λ ρ ρ ν̃L2
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Fig. 18. Diagrams that contribute to D
Z(c)
L,R

(DZ′(c)
L,R

).

+ (sνR
cνR

)
g2

16π2
× (μρmλ tanγ ) × 1

4
× s2

W

[
2J5

(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

ν̃R2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

)]
+ (sLcL)

g′2

16π2
× 1

27
× μρmB tanγ

× c2Wm2
l̃L2

I5
(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃L2

)
+ (sLcL)

g′2

16π2
× 1

54
× μρmB tanγ

× [
2J5

(
m2

B,μ2
ρ,μ2

ρ,μ2
ρ,m2

l̃L2

) + J5
(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃L2

)]
− (L2 → L3, R2 → R3), (C.9)

D
Z(b)
R = −(sRcR)

g′2

16π2
× 1

18
mBμρ tanγ

× [(−4s2
W

)
m2

l̃R2
I5

(
m2

B,μ2
ρ,m2

l̃R2
,m2

l̃R2
,m2

l̃R2

)
+ 2J5

(
m2

B,μ2
ρ,μ2

ρ,μ2
ρ,m2

l̃R2

) + J5
(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃R2

)]
− (R2 → R3). (C.10)

Formulas for D
Z(c)
L,R :

D
Z(c)
L = −(sLcL)

g′2

16π2
mBμρ tanγ × 1

72
× [(

1 − 2s2
W

)(
s2
RJ5

(
m2

B,m2
B,m2

l̃L2
,m2

l̃L2
,m2

l̃R2

)
+ c2

RJ5
(
m2

B,m2
B,m2

l̃L2
,m2

l̃L2
,m2

l̃R3

))
+ 2s2

W

(
s2
RJ5

(
m2

B,m2
B,m2

l̃L2
,m2

l̃R2
,m2

l̃R2

)
+ c2

RJ5
(
m2

B,m2
B,m2

l̃L2
,m2

l̃R3
,m2

l̃R3

))] − (L2 → L3), (C.11)

D
Z(c)
R = −(sRcR) × g′2

16π2
mBμρ tanγ × 1

72
× [(

1 − 2s2
W

)(
s2
LJ5

(
m2

B,m2
B,m2

l̃L2
,m2

l̃L2
,m2

l̃R2

)
+ c2

LJ5
(
m2

B,m2
B,m2

l̃L3
,m2

l̃L3
,m2

l̃R2

))
+ 2s2

W

(
s2
LJ5

(
m2

B,m2
B,m2

l̃L2
,m2

l̃R2
,m2

l̃R2

)
+ c2

LJ5
(
m2

B,m2
B,m2

l̃L3
,m2

l̃R2
,m2

l̃R2

))] − (R2 → R3). (C.12)



242 L.T. Hue et al. / Nuclear Physics B 873 (2013) 207–247
Fig. 19. Diagrams contributing to A
(2Z′)
L

(first and second rows) and A
(2Z′)
R

(third row). Here we denote H 0
k

∈ {χ0
2 , χ ′0

2 }
while λi,j implies i, j = {B,8} and i = j .

Appendix D. Contributions to Z′ → μτ

D.1. Contributions to A1Z′
L,R

To determine the values of AZ
L,R , A1Z′

L,R and A2Z′
L,R , we use techniques mentioned in [10].

From formulas of covariant derivatives of neutral Higgs in Appendix A.2, it is easy to see that
two terms relating with Z and Z′ bosons appearing in these covariant derivatives are different
from each others one factor (−1). For A1Z′

L,R which relates with ρ0 and ρ′0 we have A1Z′
L,R =

A
1Z′(a)
L,R + A

Z′(b)
L,R + A

Z′(c)
L,R and AZ′

L(R) = (m2
Z/m2

Z′)A1Z′
L(R) + A2Z′

L(R). This leads to the results:

A
1Z′(a)
L,R = −A

Z(a)
L,R ,

A
Z′(b)
L,R = −A

Z(b)
L,R ,

A
Z′(c)
L,R = −A

Z(c)
L,R . (D.1)

D.2. Contributions to A2Z′
L,R

Diagrams contributing to A2Z′
L,R are quite similar to those shown in Fig. 14. There is a inter-

esting point in the SUSYE331 model that both Higgs χ and χ ′ do not couple to leptons and

sleptons. As a consequence, A
(2Z′)
L,R give contributions from only the class of diagrams depicted

in Fig. 19 where ρ0, ρ′0 and Z boson in Fig. 14 are correspondingly replaced with χ0
2 , χ0

2 and
Z′ boson. We use the equivalence role between ρ0 ↔ χ0

2 and ρ′0 ↔ χ ′0
2 for the calculation (see

Appendix A.2). The results are:

A
(2Z′)
L = (sνR

cνR
)
g2κ2

1 × 1
mλμχs2βJ5

(
m2

λ,m
2
λ,μ

2
χ ,μ2

χ , m̃2
ν̃

)

16π2 4 R2



L.T. Hue et al. / Nuclear Physics B 873 (2013) 207–247 243
− (sνR
cνR

)
g2κ2

1

16π2
× 1

4
s2
β

[
2J4

(
m2

λ,m
2
λ,μ

2
χ , m̃2

ν̃R2

)
+ μ2

χJ5
(
m2

λ,m
2
λ,μ

2
χ ,μ2

χ , m̃2
ν̃R2

)]
− (sνR

cνR
)
g2κ2

1

16π2
× 1

4
m2

λc
2
β

[
μ2

χI5
(
m2

λ,m
2
λ,μ

2
χ ,μ2

χ , m̃2
ν̃R2

)
− I4

(
m2

λ,m
2
λ,μ

2
χ , m̃2

ν̃R2

)]
+ (sLcL)

g′2t2κ2
1

16π2
× 1

2916
c2β

[
2J4

(
m2

B,m2
B,μ2

χ , m̃2
̃L2

)
+ μ2

χJ5
(
m2

B,m2
B,μ2

χ ,μ2
χ , m̃2

̃L2

)]
+ (sLcL)

g2κ2
1

16π2
× 1

9
c2β

[
2J4

(
m2

λ,m
2
λ,μ

2
χ , m̃2

̃L2

)
+ μ2

χJ5
(
m2

λ,m
2
λ,μ

2
χ ,μ2

χ , m̃2
̃L2

)]
− (sLcL)

g′2t2κ2
1

16π2
× 1

2916
m2

Bc2β

[
μ2

χI5
(
m2

B,m2
B,μ2

χ ,μ2
χ , m̃2

̃L2

)
− I4

(
m2

B,m2
B,μ2

χ , m̃2
̃L2

)]
− (sLcL)

g2κ2
1

16π2
× 1

9
m2

λc2β

[
μ2

χI5
(
m2

λ,m
2
λ,μ

2
χ ,μ2

χ , m̃2
̃L2

)
− I4

(
m2

λ,m
2
λ,μ

2
χ , m̃2

̃L2

)]
− (sLcL)

g′2κ2
1

16π2
× 1

162
c2β

[
2J4

(
m2

B,m2
λ,μ

2
χ , m̃2

̃L2

)
+ μ2

χJ5
(
m2

B,m2
λ,μ

2
χ ,μ2

χ , m̃2
̃L2

)]
+ (sLcL)

g′2κ2
1

16π2
× 1

162
mBmλc2β

[
μ2

χI5
(
m2

B,m2
λ,μ

2
χ ,μ2

χ , m̃2
̃L2

)
− I4

(
m2

B,m2
λ,μ

2
χ , m̃2

̃L2

)]
− (L2 → L3,R2 → R3), (D.2)

A
(2Z′)
R = −(sRcR)

g′2t2κ2
1

16π2
× 1

324
c2β

[
2J4

(
m2

B,m2
B,μ2

χ , m̃2
̃R2

)
+ μ2

χJ5
(
m2

B,m2
B,μ2

χ ,μ2
χ , m̃2

̃R2

)]
+ (sRcR)

g′2κ2
1

16π2
× 1

324
m2

Bc2β

[
μ2

χI5
(
m2

B,m2
B,μ2

χ ,μ2
χ , m̃2

̃R2

)
− I4

(
m2

B,m2
B,μ2

χ , m̃2
̃R2

)]
− (R2 → R3). (D.3)

D.3. Contributions to CZ′
L,R

Diagrams contributing to CZ′
L,R are those from 2–6 in Fig. 16. Comparing with the case of the

Z boson we easily deduce the formulas as:
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CZ′
L = −(cνL

sνL
) × g2

16π2
× 1

12
c2W

[
K5

(
m2

λ,m
2
ν̃L2

,m2
ν̃L2

,m2
ν̃L2

,m2
ν̃L2

)]
− (cLsL) × g2

16π2
× 1

18
c2W

[−K5
(
m2

λ,m
2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
− (cνR

sνR
) × g2

16π2
× 4c2

W − 1

12

[−2K5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νR2

)
+ 3m2

λJ5
(
m2

λ,m
2
λ,m

2
λ,m

2
λ, m̃

2
νR2

)]
+ (cLsL) × g′2

16π2
× 1

324

(
1 − 2s2

W

)[
K5

(
m2

B,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

,m2
l̃L2

)]
+ (cνR

sνR
) × g2

16π2
× 1

12
c2
W

[
K5

(
m2

λ,m
2
ν̃R2

,m2
ν̃R2

,m2
ν̃R2

,m2
ν̃R2

)]
− (L2 → L3), (D.4)

CZ′
R = −CZ

R . (D.5)

D.4. Contributions to DZ′
L,R

Contribution to DZ′
L,R can be deduced from diagrams shown for DZ

L,R in Figs. 17 and 18. We

also write DZ′
L,R = D

Z′(b)
L,R + D

Z′(c)
L,R . From Fig. 17 we can deduce formulas to determine DZ′(b):

D
Z′(b)
L = −(sνL

cνL
)

g2

16π2
× (μρmλ tanγ ) × 1

4
× [

2J5
(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

ν̃L2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃L2

)]
+ (sνL

cνL
)

g2

16π2
× 1

2
μρmλ tanγ

× c2W

[
m2

ν̃L2
I5

(
m2

λ,μ
2
ρ,m2

ν̃L2
,m2

ν̃L2
,m2

ν̃L2

)]
+ (sνR

cνR
)

g2

16π2
× 1

4
(μρmλ tanγ )

× κ2
1

[
2J5

(
m2

λ,m
2
λ,m

2
λ,μ

2
ρ,m2

ν̃R2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

)]
+ (sνR

cνR
)

g2

16π2
× (μρmλ tanγ ) × 1

4
× c2W

[
2J5

(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

ν̃R2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
ν̃R2

)]
+ (sνR

cνR
)

g2

16π2
× μρmλ tanγ

× c2
W

[
m2

ν̃R2
I5

(
m2

λ,μ
2
ρ,m2

ν̃R2
,m2

ν̃R2
,m2

ν̃R2

)]
− (sLcL)

g′2

16π2
× 1

27
× μρmB tanγ

× c2W

[
m2

l̃L2
I5

(
m2

B,μ2
ρ,m2

l̃L2
,m2

l̃L2
,m2

l̃L2

)]
− (sLcL)

g2

16π2
× 1

3
μρmλ tanγ

× c2W

[
m2 I5

(
m2

λ,μ
2
ρ,m2 ,m2 ,m2 )]
l̃L2 l̃L2 l̃L2 l̃L2
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Fig. 20. Diagrams contributing to B
μL,R

L
(first and second rows) and B

μL,R

R
(third row). λi and λj (i = j in each above

diagram) are gauginos in which λi and λj ∈ {λB,λ3, λ8}.

− (sLcL)
g′2

16π2
× 1

54
× μρmB tanγ

× [
2J5

(
m2

B,μ2
ρ,μ2

ρ,μ2
ρ,m2

l̃L2

) + J5
(
m2

B,m2
B,μ2

ρ,μ2
ρ,m2

l̃L2

)]
− (sLcL)

g2

16π2
× 1

6
× μρmλ tanγ

× [
2J5

(
m2

λ,μ
2
ρ,μ2

ρ,μ2
ρ,m2

l̃L2

) + J5
(
m2

λ,m
2
λ,μ

2
ρ,μ2

ρ,m2
l̃L2

)]
− (L2 → L3, R2 → R3), (D.6)

D
Z′(b)
R = −D

Z(b)
R , (D.7)

D
Z′(c)
L = −D

Z(c)
L , (D.8)

D
Z′(c)
R = −D

Z(c)
R . (D.9)

Appendix E. Contribution from B
μL,R

L,R to τ → 3μ

Contributions to B
μL,R

L,R arise from the diagrams in Fig. 20. The formulas are:

B
μL

L = (sνL
cνL

) × g4

16π2
× 1

8

[−c2
νL

J4
(
m2

λ,m
2
λ,m

2
ν̃L2

,m2
ν̃L2

)
+ s2

νL
J4

(
m2

λ,m
2
λ,m

2
ν̃L3

,m2
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) + (
c2
νL

− s2
νL

)
J4

(
m2

λ,m
2
λ,m

2
ν̃L2

,m2
ν̃L3

)]
+ (sνR

cνR
)

g4

16π2
× 1

8
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J4
(
m2

λ,m
2
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2
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,m2
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+ s2
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J4

(
m2

λ,m
2
λ,m

2
ν̃R3

,m2
ν̃R3

)
+ (

c2 − s2 )
J4

(
m2,m2,m2 ,m2 )]
νR νR λ λ ν̃R2 ν̃R3



246 L.T. Hue et al. / Nuclear Physics B 873 (2013) 207–247
+ (sLcL) × g4
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, (E.1)
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