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Abstract

We build a supersymmetric version of the minimal 3-3-1 model with just two Higgs triplets using the
superfield formalism. We study the mass spectrum of all particles in concordance with the experimental
bounds. At the tree level, the masses of charged gauge bosons are the same as those of charged Higgs
bosons. We also show that the electron, muon and their neutrinos as well as down and strange quarks gain
mass through the loop correction. The narrow constraint on the ratio #,, = % is given by studying the new
invisible decay mode of the Z boson.
© 2013 Elsevier B.V. All rights reserved.

Keywords: Supersymmetric models; Extensions of electroweak Higgs sector; Supersymmetric partners of known
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1. Introduction

Models with SUQ3)¢c ® SU3);, ® U(1)x gauge symmetry (called 3-3-1 models for short)
are interesting possibilities for the physics at the TeV scale [1-4]. The 3-3-1 models can have
several representation contents depending on the embedding of the charge operator in the SU(3)
generators,
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where the ¥ parameter defines the different representation contents, X denotes the U(1)x charge
and A3, Ag are the diagonal generators of SU(3).

In fact, this may be the last symmetry involving the lightest elementary particles: leptons.
The lepton sector is exactly the same as in the Standard Model (SM) [5] but now there is a
symmetry, at large energies among, say e~, v, and e™. Once this symmetry is imposed on the
lightest generation and extended to the other leptonic generations it follows that the quark sector
must be enlarged by considering exotic charged quarks. It means that some gauge bosons carry
lepton and baryon quantum numbers. Although these models coincide at low energies with the
SM it explains some fundamental questions that are accommodated, but not explained in the SM,
namely

(1) The family number must be three;

(2) Tt explains why sin’ Oy < 4—11 is observed;

(3) They are the simplest models that include bileptons of both types: scalar and vectors ones;

(4) It solves the strong CP problem, the Peccei—-Quinn symmetry occurs also naturally in these
models [6];

(5) The models have several sources of CP violation [7,8];

(6) Allow the quantization of electric charge [9];

(7) Since one generation of quarks is treated differently from the others this may lead to a natural
explanation for the large mass of the top quark [12];

(8) The models also produce a good candidate for Self-Interacting Dark Matter (SIDM) since
there are two Higgs bosons, one scalar and one pseudoscalar, which have the properties
of candidates for dark matter like stability, neutrality and that it must not overpopulate the
universe [13], etc.

Another interesting thing about this kind of models is that the gauge 3-3-1 symmetry is consid-
ered a subgroup of the popular E¢ Grand Unified Theory (GUT), which can be itself derived
from Eg ® Eg heterotic string theory [10,11].

In the minimal version, with ¥ = /3, the charge conjugation of the right-handed charged
lepton for each generation is combined with the usual SU(2); doublet of left-handed lepton
components to form an SU(3) triplet (v, [, )y [2]. No extra lepton is needed in the mentioned
model, and we shall call such model as minimal 3-3-1 model. There are also another possibility
where the triplets (v,l, L) contain the extra charged leptons (L). The new charged leptons
(L) do not mix with the known leptons [3]. We would like to remind that there is no right-
handed (RH) neutrino in both models. There exists another interesting possibility (3 =1/ V3),
where a left-handed anti-neutrino to each usual SU(2);, doublet is added to form an SU(3) triplet
(v,1,v°) [4], and this model is called the 3-3-1 model with RH neutrinos. The 3-3-1 models
have been studied extensively over the last decade, see for example [14-20].

Despite attractive properties mentioned above, the usual 3-3-1 models have the weakness that
reduces their predictive possibility is a plenty in the scalar sectors. The attempt to realize simpler
scalar sectors has recently been constructed 3-3-1 model with minimal Higgs sector called the
economical 3-3-1 model [21,22]. The 3-3-1 model with minimal content of fermions and Higgs
sector (called the reduced minimal (RM) 3-3-1 model) has also been constructed in [23].

The supersymmetric version of the minimal 3-3-1 model [2] has been constructed in Refs. [11,
24-26] (MSUSY331) while the version with RH neutrinos [4] has already been constructed in
Refs. [27-30] (SUSY331RN). The supersymmetric economical 3-3-1 model (SUSYE331) has
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been presented recently [30]. Some others interesting supersymmetric extensions of the 3-3-1
models were presented in Refs. [31-35].

In this article we will present a supersymmetric version of the reduced minimal 3-3-1 model
with the triplet (v, /, )}, using only two triplets in the scalar sector.

The outline of the paper is as follows. In Section 2 we present representations of fermions
and Higgs bosons contained in the supersymmetric RM 3-3-1 model. The super-Lagrangian in
terms of superfields is studied in Section 3. In Sections 4, 5, 6, we present the mass eigenstates
of gauge bosons, fermions and Higgs bosons as well as the phenomenological consequence of
the model under consideration. The Lagrangians in term of fields are given in Appendix A. In
the last Section 7, we summary our results and given conclusions.

2. The supersymmetric RM 3-3-1 model

In order to consider supersymmetric model, we first consider the particle content in the model.
In this model, three lepton superfield families are transformed as the triplet under the SU(3)¢ ®
SU®B). ® U(1)x gauge group. We use the same notation for fermionic field content given in
Refs. [25,26]

E)

~

Ll: N(15370)5 l:g, /J,, T. (2)

~
D~

L
In parentheses it appears the transformation properties under the respective factors (SU(3)c,
SUB)L, U)x).

In the quark sector, one quark superfield family is also put in the triplet representation of
SU(3) as follows

75 5
I/

and their respective singlet quark superfields are given by

e 2 A 1 o, 5
(7). d(ng) i (3) @

The remaining two quark generations are transformed as antitriplet superfield representation of
SU(3) such as

dAz &3 1
O =|-i2 | , Osr=|—-is | ~ (3, 3", —§>, )
/L /L

and their respective singlet superfields are transformed as follows
AC AC * 2 e je * 1
ipp, iz~ |3 ,1,—5 : dyrdyp ~ |3 ’1’5 :
2 2 4
JICL7 chLN (3*717 g) . (6)

Egs. (3), (5) explain exactly the meaning of item 7 given in the introduction of this article.
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On the other hand, the scalar superfields which are necessary to generate the fermion masses
are

pt e
p=\ A" |~@3,+D, X=1x"|~@3-D. N
15++ )A(O

To remove chiral anomalies generated by the superpartners of the scalars, we have to introduce
two other scalar superfields as follows

15/— )?/-',-
p= 0 | ~@3.-1), =zt ~(1,341). (8)
/L X%/

It is to be noted that the superfields formalism is useful in writing the Lagrangian which is
manifestly invariant under the supersymmetric transformations [36] with fermions and scalars
put in chiral superfields while the gauge bosons in vector superfields. As usual, the superfield of
a field ¢ will be denoted by q3 [37]. The chiral superfield of a multiplet ¢ is denoted by

d(x,0,0) = (x) +i00"00,p(x) + %eeéém&s(x)

+ 204 (x) + %eeééﬂam(x)

+ 00 Fy(x). 9
Concerning the gauge bosons and their superpartners, if we denote the gluons by g” the re-
spective superparticles, the gluinos, are denoted by A2, with b =1, ..., 8; and in the electroweak

sector we have V2, the gauge boson of SU(3)z, and their gaugino partners Ag; finally we have

the gauge boson of U(1)x, denoted by B, and its supersymmetric partner Ap.
The vector superfield is given by

~ _ _ __ __ |
V(x,0,0)=—00"0V,(x)+i000A(x) —i000A(x) + EQ@Q@D()C). (10)

As the other version of the SU(3), ® SU(3);. ® U(1)y, the vector superfields for the gauge

bosons of each factor SU(3)¢, SU(3)r and U(1)x are denoted by VC, \_/C; \7 V; and \}’, re-
spectively, where we have defined

~

VC:T”VC”, Vc:Ta\;“c, a=1,...,8;

V=T, V=TVe,

V' =T%B, (11
where T¢ = 1%/2, T% = —1**/2 are the generators of triplet and antitriplet representations,

respectively, and A4 are the Gell-Mann matrices, and the T = 1/ \/3) diag(1, 1, 1) is the gen-
erator of U(1)x which satisfies the relation: Tr(T4T?) = 1/284p withalla,b=1,2,...,9.

3. The Lagrangian

With the superfields introduced in the last section we can build an invariant supersymmetric
Lagrangian. As usual as in supersymmetric model, for the model under consideration, we have

L3-3-1 = Lsusy + Lsoft- (12)
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Here Lgusy is the supersymmetric piece, while Lo explicitly breaks supersymmetry. Below
we will write each of these Lagrangians in terms of the respective superfields.

3.1. The supersymmetric terms

The supersymmetric terms can be divided as follows
13)

ESUSY = L‘Lepton + £Quarks + [fGauge + £Scalar,

where each term is given by

Liepton = / d*o [ie28 Vi], (14)

Louarks = / 440 [ 0,28Vt VHCE BV G | § e VereV =6/ g,

i PE V=g IV 4 5 eV 3V
ji] (15)

T8 Ve GV 4 o p2gsVetg VI

where the sum fori =1,2,3, ¢ =1,2 and
1

LGauge = 7% [/dze (WIWE+ WOWe + W'W)

(16)

where V,, \Q/C, V and \ﬁ/ are defined in Eq. (11) and gy, g and g’ are the gauge couplings of
SUB)c¢, SUB)L and U(1)y, respectively. W2, W* and W’ are the strength fields, and they are

given by
Wee = —S—;DDe_ng Ve pye—28sVe,
Wi = —igbbe—le‘? Dae—ng’
(17)

/ e %
W, =— 7 DDD,V'.
Finally, the Lagrangian for the Higgs superfield is given as follows
LScalar =/d49 [562g\7+g’\7/l6 + )i(eZgﬁfg’V’)fe + 18’62g\h77g’\7/'6/ + )}’62g§+g’\7’ A/]
+/d29W+/d2§W, (18)
where W is the superpotential that is written details in the next subsection. After integrating the
super-Lagrangian given in Egs. (14), (15), (16) and Eq. (18), we obtain the Lagrangian given in

Appendix A.
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3.2. Superpotential

Let us write the full superpotential in the model under consideration. The superpotential which
is invariant under SU(3)¢c ® SU(3);, ® U(1) x group can be written by
W W3
W=—+—7 19
5t (19)
with W, is a combination of two chiral superfields and the terms permitted by the considered
symmetry are
Wa = o + g A7, (20)

and W3 is invariant under the mentioned symmetry and a combination of three chiral superfields.
That term has the following form

Z)VlabceL LbL +Z)¥2aELaXP+ZK11QIP dL +K2Q1X JL

a,b,c i
Z’Qm Qa/m +Zk4aﬁQaX]/3 ZKSO[IJQC(L d
ai aij

+ Zélukd, djity +Z$2U,312 Jﬂ +Z$3zﬂd Je J,g, 21
i,j,k ijB ip

withi, j,k=1,2,3,« =2,3 and 8 = 1, 2. The terms 5 and & will induce the proton decay as
shown at [24].
Choosing, as we have done in [38], the following R-charges

ny =—1, ny=1, ny=n, =0,
np=ng, =ng =1/2, ny =-—1/2, n, =-3/2, (22)

it is easy to see that all the fields x, x’, o, o', L, Q;, u, d and J; have R-charge equal to one,
while their superpartners have opposite R-charge. This kind of symmetry is similar to that in the
MSSM. The superpotential which satisfies the R-symmetry given in (22) can be written by

Bo sarby oo
2 PP
[zma bofct Domelatio+ Denlrdldf + 20127

a,b,c

+ ) i3ai Qapitf + Zm,g QuR i+ rsaijQuLids } (23)

ai aij

W =

Based on the superpotential given in Eq. (23), we can generate mass to neutrinos and recover all
the nice consequences given in [38]. We will consider these details in the next section.

3.3. Broken structure from SUSY RM 3-3-1 to SU3)c ® U(1) g

The pattern of the symmetry breaking of the model is given by the following scheme (using
the notation given in [38])
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SUSY RM 3-3-1 &% SUB)e ® SUBR). @ U(l)x

YL SUBYe ®SUR), @ Uy

Y2 SuG)e @ Ul (24)

For the sake of simplicity, here we assume that vacuum expectation values (VEVs) are real. This
means that the CP violation through the scalar exchange is not considered in this work. Note that
non-supersymmetric 3-3-1 model with non-real VEV was studied in [7,8] and it is the point 5
given in the introduction.

When one breaks the 3-3-1 symmetry to the SU3)¢c ® U(1) g, the scalar fields get the fol-
lowing VEVs:

<p>=(§>, (x)z(é),
o) ()

where u = v,/v/2, w = vy /2, u' = v, /+/2 and w’ = v,/ /+/2. Because of the pattern of the
symmetry breaking given in (24), the VEVs of the model under consideration have to be satisfied
the conditions:

w,w >u,u. (26)

On the other hand, the constraint on the W bosons mass [26], see Eq. (37), we get the following
constraint on Vp2

V7 = (246 GeV)® (27)
where Vg = vlz) + v;)z.
3.4. Soft terms

The most general soft supersymmetry breaking terms, which do not induce quadratic diver-
gence, are described by Girardello and Grisaru [39]. They found that the allowed terms can be
categorized as follows:

e The scalar mass term
Lsvmr =-m>ATA. (28)
e The gaugino mass term
1
Lomr = —E(M)L)»a)»u + HC) 29)
e The scalar interaction terms
Ling =m;jAiAj + fijxe* A; Aj Ay + Hee. (30)

The soft SUSY breaking parameters are in general complex and they also can generate SUSY
flavor problem. Therefore we can expect that in this model, there are several sources of CP
violation as well as flavor problem. This subject can be explored in the future.
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In the model, the soft terms must be consistent with the 3-3-1 gauge symmetry. Hence, the
soft terms have the following form

Lsoft = LomT + LsmT + Ling, (31)
where
| 8 8
Lomr = ) [mxc Z()“é’\ac) + my, Z(AZ}“Z) +m'Aghp + HC:| (32)
a=1 a=1

where A¢ are the gluinos, 4 are the gauginos of SU(3) and Ap is the gauginos of U(1) [see
Eq. (A.16)]. The gauginos get their masses at SUSY broken scale while their superpartners (the
gauge bosons) are massless at this scale, because their masses appear only after we break the
symmetry SU3); ® U(1)x [see Eq. (37)] in the next section. The second term which gains
masses to all the scalars is written as

Lsmr=—mp'p—myx x =m0 p" —m3 x" X’

—m}Ll Lap —mb, Of; Our —m}, 03, 031
- mi,ﬁfzﬁ& - mczli dAiCZdAiCL - mZszTij - m?,, JA,;{LJAEL (33)
and the last term is given by
Lin = [e0abc€Lar LorLer + €1ap€ Lar xp + Qur (@10 pitS) + ®30aj Lard$;
+ waapx L) + Qar(uip'df + carxJf) + cijdf dS g,
+ coipdfy Jf j51 + saijpi S, g, +Hel. (34)

4. Gauge boson masses

Just as it did in the usual 3-3-1 model [2,26,38], we can divide the gauge boson masses into
two parts namely the charged and neutral gauge boson masses. The mass Lagrangian for the
gauge bosons can be obtained by

v g g/ 2 T
gauge U
reee (0 0% ) (5/\‘%" - %B“> (0 0 )

(00 %) (v s Lp) (00 %Y
+ (0 2 o) <§va+ %B“)z(o 2 O)T

+(0%0)(—%\*“%"—5—%3“)2(0%0)T~ (35)

The Lagrangian in Eq. (35) produces the charged gauge boson mass terms given as follows

Sk
N><

o

harged — — __
Loass - =My W, WH + MGV VT + MU, ~UtH, (36)

with
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gz
Mlzj g(v +v +v +v )
2
=57 43),
2 g’ 2 2
My, = g(vx +vy) (37)

and the mass eigenvectors are given respectively

1 .
W) = %[V,l @) FiVi].
1 .
ViE(x) = %[V:(x) +iV) ()],
1
Ut Vo) £iV)](x) (38)
@ =—=[ViC I
Before continuing we note
g2
M%V—i-M‘z,:?(v%—i—vi/—l-vi—i—vi/). (39

The neutral gauge bosons (V.*, VSM , B*) are mixing. The mass Lagrangian for neutral gauge
bosons is given as

T
Enmeélstsral = ( V3u Vsu B ) M12VG ( Vau Veu By ) (40)
with
v2 vz, 2402,
. p+2 s o p;ﬁp —l\/g(v% 4 Uf;’)
2 g v2 v2,
Mg = Z - ﬁj/%” %(v% + vf)/ +4v)2( +4v)2(,) %(v% + vi, + 21))2( + 21))2(,)
1302 402) ZR AR A2 4 2d) B4l 0l k)
41
After diagonalization the matrix MI%IG, we obtain the mass eigenvalues as follows
M; =0,
2 2
2 _8QA) 5 5 5 o
MZ_T v, T Uy vy U
—4(3 +21%) 2 2 2 2 .22
—\/ o (2 +v2) (vF +v5) + (V3 + vz, + ok 7)),
2 2
) 8+ 5 2, .2
MZ/—T v, + v, vy F vy
4(3 4+ 2t2) ) ) ) 21\2
+\/42+t2 (v2 402 2) (V7 +v3) + (3 + 2+ v + 7)) (42)

and the mass eigenvectors, respectively:
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1 t
Al = ( Lypg B“)

/1+212 \/_ \/_

3 S¢ _ 3s¢
. \/—(Cg + —,—3+212) . cc+ LYY . \/_tsg .
8 =- vy - ¥ Vit + B
2 2 V3+2r2
\/_( —S ) S+ L
g — _ ¢t 3+2,2 V3“ 3 S N/ 34212 Vé‘ _ ﬁtcg B
2 2 A3+ 212
with ¢ and ¢ are defined as follows
65sin” 6
=8 = 20TV 43)
g 1—4sin’0y

V322 (v vy, — v, =02

tan(2¢) = . ( 2 . ) (44)
I+12 vy +vy, +vj + v,

The relation in (43) predicts that there exists an energy scale at which the model loses its pertur-
bative character as we have noted at the main aspect of the 3-3-1 models. Therefore, in order to
keep its perturbative character, we have sin? 8y (1) < 1/4 at any energy scale.

Let us summary the gauge mass spectrum. The gauge boson mixing is separated into two
parts. One is charged gauge bosons and one is neutral gauge bosons. The exact eigenvectors and
eigenvalues are obtained. According to the limit given in (26), we get the constraint on the gauge
mass as follows

Mz/>Mu>Mv>Mz>Mw. (45)

This constraint is similar to those in [38]. As all new gauge masses are proportional to v, and
v,, both are in the TeV scale [see Eq. (24)]. It explains why the new gauge bosons have not been
yet detected, but their masses can be discovered by the experiments at the Large Hadron Collider
(LHC) and at the International Linear Collider (ILC).

5. Fermion mass matrices

In this section we will show that all the fermions of this model get masses in concordance
with the experimental data.

5.1. Doubly charged charginos

As in previous works [26,38], we get the same result without any modification. These new
states can be discovered in the LHC throughout the following

P4 p— TR (46)
The similar one [38]
e +e — 77 1°, 47)

is a prospective reaction in the ILC.
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5.2. Charged leptons and charginos

Let us consider the mass spectrum of the charged leptons and charginos. In the model under
consideration, mass mixing matrix of the charged leptons and charginos is similar to that given
in [29,30,25]. In our case, the e, i and t leptons gain mass without a sextet Higgs or the charged
lepton singlet. Note that the Higgsinos p, x and their respective primed fields have the same
charge assignment of the triplets p and y . Hence, they can mix with the usual leptons.

Let us first consider the charged lepton and chargino masses. Denoting

. . ~ ~ ~ ~ T
ot = (e, us 6 —iny, —ind, T X A )
_ ol T
¢ = (e . T, —iAy, —iry, 0T X0 LX) (48)

where all the fermionic fields are still Weyl spinors, we can also, as before, define gt =
(¢t$ )T . Then, the mass term is written in the form —(1/2)[¥*7 Y*@* 4 H.c.] where Y+ is
given by:

0 x7
vE= ( ¥ 0 ) , (49)
with X matrix defined as
0 0 0 0 0 Zw 0 0 0
o 0 0 0 0 Xy o 0 0
0 0 0 0 0 Zw 0 0 0
0 0 0 my, 0 gu 0 —gu’ 0
X = 0 0 0 0 m;, 0 —gw’ 0 gw |. (50)
Moy By My ogu 0 0 0o L o0
0 0 0 0 —gw 0 0 0o -4
0 0 0 —gu’ 0 = 0 0 0
0 0 0 0 gw 0 Koo 0

This mass matrix gives two zero eigenvalues [25]. One of two zero eigenvalues is identified to
the electron mass and the remaining one is identified to the muon mass. It means that the electron
and muon are massless at the tree level. If there is not a discrete symmetry, which is added to the
Lagrangian, the charged lepton can get a mass by loop corrections as done in [40].

In this model, the electron still couples with the gaugino Ap of U(1) group [see Eq. (A.4)], in
a similar way as shown in [40]. As the selectrons and the gauginos get their masses due the soft
terms given in Egs. (32), (33), it allows us to draw the diagram of Fig. 1 that gives contribution
to the electron mass. Therefore, at the one loop correction the electron mass is given by:

. 2 2 2 2
. o au(1) Sln(zeé) m/ me] In me] _ mL:z In mL:z
¢ T m —m'2 m'2 mZ —m'2 m?) |
el €2
. 2 2 2 2
o U sin@o) o My (M M (M 51)
1% T mi‘l —m'2 m'2 m/2Z2 —m'2 m'? ’

where m’, mz, mj; are soft parameters given in Eq. (32), ay(1) = &’ 2 /(47) and the 65, 0 are
defined in Eq. (64). It is the simplest way to generate fermion masses through one-loop correction
[40—42]. As we expect the smuon is heavier than the selectron, it explains why the muon is



304 D.T. Huong et al. / Nuclear Physics B 870 (2013) 293-322

~
~
-

’y
9 Ag Mg ¥

Fig. 1. Diagram giving mass to electron which does not appear in the superpotential. The diagram to the muon is similar
(just change the selecton by the smuon).

€L - -
ks JaR  JaL s

Fig. 2. Diagram generating the electron mass taking into account the coupling 5.

Fig. 3. Diagram generating the electron mass taking into account the coupling A, with E, E€ are the singlet charged
Higgsinos.

heavier than electron, see at SPS scenarios [43—45]. However, ones can worry about the following
fact: the supersymmetric masses are strongly constrained by recent LHC data [46]. Thus, it is not
clear at all that the obtained fermion masses are correct. Fortunately in this model there appear
two sources that the lepton particles obtained mass through radiative mechanism. We will below
comment in brief these mechanisms.

One of these sources is the coupling «sq;j, from Eq. (23), that generate the diagram of Fig. 2
(for more details, see [25]). The second mechanism is the coupling X,, from Eq. (23). This con-
tribution will generate four diagrams, we draw only one of these possibilities in Fig. 3. We would
like to stress that the diagrams given in Figs. 2 and 3 are the sources of the non-renormalizable
interaction (L x )(Lp) that appears in the non-supersymmetric model. Of course, from these con-
tributions we can get the new expression to the electron (and also to the muon) masses. They are
very similar to ones given in Eq. (51), but more larger. We will not write them here. We can now
show, including all the contributions the electron and the muon will get masses.

The tau gets its mass at tree level, it explains why the tau is heavier than the muon and
electron. The other four mass values are at GeV scale as shown in [25]. The way we perform
the diagonalization, as well, the particle definitions are given in [29,30,25].

5.3. Neutrinos and neutralinos

Because of the existence of the interaction between neutrinos and neutralinos, their mass
matrix has a mixture. The mass term in the basis

WO = (v, vy, v —ind —iad —irp 30 50 50 5°)" (52)

is given by —(1/2)[(#")TYO¢Y + H.c.], where
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2
m) 2
( d/ap (ma)ua
B st Sy
da[/," \\dj/jR €al //,4 ésr
:ll mq 1 \\ .'l Me "
Vit Ksike dpp  dyg N5ik8 ViR Vil Mika kL €kR Mjkg ViR

Fig. 4. Diagrams giving masses to electron’s and muon’s neutrinos which do not appear in the superpotential, e is the
selectron and d is the down-squark and the label o = 1, 2.
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(53)

This matrix has two zero eigenvalues. The parameter m; is defined in Eq. (32). On the other
hand, the electron’s neutrino still couples with the selectron and down-squark, while the muon’s
neutrinos couple with smuons and strange-squark. These couplings lead to the diagrams shown
in Fig. 4. These diagrams give the contribution to the neutrino mass given in Eq. (54).

2 2 2

2 2
o, = — S et S () e — (%
Ve — 87‘[2 1 lell lellmg _m/z m lel2 lel2mg~ _m/z m,z
1= 1 2

2 2 2 2
m=- m= m= m=
3 d di R d
+mg | Ksel1kseil —— > In| — ) — Kse12kse12———In| —= || 1,
m= —m ms= m= —m m=
d 8 dy 8
2 m2

1 : ’ M Hi
m, >~ —: E m | A2l ————— In
Y T g2 1 K H m;ZI] —m'2 m'2
1=

mn mn
— Mp2Ap22———>1n
n n m2 _m/2 m/2

2

- o m,
+3mg Ksu21K5u21 ————= | —= | = K5,22K5,22 ————= 1N s
m< —m ms m< —m ms

51 52

(54)

where m; is the mass of a gluino, m; is the down-squark mass and m; is the strange-squark
mass.
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Fig. 5. Diagram generating the electron’s neutrino mass taking into account the coupling «5.

Fig. 6. Diagram generating the electron’s neutrino mass taking into account the coupling A,.

The neutrino masses are proportional to A1, k5, the parameters which break the lepton number
conservation. The electron mass is proportional to g. Due to this fact we expect that it must be
satisfied a condition Aj, k5 < g’, then we can explain the reason why neutrinos are much lighter
than the charged leptons.

As happened with the charged leptons, we can generate new contribution to neutrino masses in
an analogous way as done to the charged leptons. We draw the new contributions in Figs. 5 and 6.
Therefore, as in the previous case, including all the contributions, the electron’s and muon’s
neutrinos will get their masses can be satisfied the experimental data.

5.4. Quarks

Let us first consider the u-quark type. First, we define the basis as done in Ref. [38], particu-
larly

Vi =uwau)’, = u§us) (55)

where all the u-quark fields are still Weyl spinors, we can also define WX = (y;F,")7. Then,
the mass term is written in the form

~(/[wEvFwE +Hel].
Here Yui is given by
+ (0 X,{
Y, = (Xu A (56)
with
Xy = 3\ s Kanu 0 (57)

| [ 3w —K3pu 0)
—k331u k3psu 0

where the VEVs are defined in Eq. (25). The mass spectrum of the up quarks contains one
massless particle. However the lightest quark will get mass due its coupling to gluino as shown
in Fig. 7. Therefore the up quark’s mass is given by

. 2 2 2
I o sin(26;) - M TR M’il _ L In M'iz (58)
u T S M2 — 2 m% M2 — m% m2 ’

uj 8
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Fig. 7. Diagram giving mass to up quark which does not appear in the superpotential, # is the up-squark.
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Fig. 8. Diagram giving mass to quark ¢ which does not appear in the superpotential, g is the gluino, d;, i = 1,2, is the

down-squark.

where o = gs2 /(4m), mz and m; are the masses of the gluino and up-squark, respectively, and
6; is the mixing angle of left- and right-handed up-squarks given in Eq. (64).

Let us consider the d-quark type. Doing similarly as in the up quark sector, we define llfdi =
(ijd_)T, then the mass term is written in the form —(1/2)[4/5” Yajtl.l/a;IE + H.c.] where Yj is
given by

+ 0 X;
with
1 0 0 0
Xg=~= ( 0 0 0 ) : (60)
3 ’ / ’
Kiiu  Kppuo Ki13u

In this sector, there are two massless eigenvalues. We can implement the same mechanism ana-
lyzed in [47] to give mass to d- and s-quarks. Thus, the model under consideration is compatible
with chiral theory.

Analogously, looking at Fig. 8 and Eq. (64), we get the expression for mass of d-quark [40]

. 2 2 2 2
aS 81n(29d~) 5 MJ] 1 Md~1 Ma’} 1 Md~2 61
e T a2 —m2 2 ) "2 —mz "\ ) ©b
d 8 8 dy 8 8
For the s-quark, looking at Fig. 9 and Eq. (66), we obtain [47]
2 2 2
s @ p@__ Mi "
m‘Y:—:; {Rl(x Rzaﬁln —
4m? = (m —mda) m;
2 2
m= m=
(d) pld) 8 g
T Rig 28R40 R ln(m% )
8 dy+2 42
(d) p(d)
o (51). MRy
2 _ 2 2 _ 2 2 2 LR
(m i mja+2)(m§ mja)(mga+2 g)
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Fig. 9. Diagram giving mass to s-quark which does not appear in the superpotential, g is the gluino, §; and b;, i = 1,2,

are the squark s and sbottom, respectively.

2 2 2
m= m= m=
d d
x |m%m%2 In « V4m? miin =2 ) +m?: miin( 22 , (62)
Ao dara\ 2 A8\ 2 dosn '8 2
do:+2 do

where 0; are mixing angles, Rga is defined at Eq. (66) and mZ. are the eigenvalues of Eq. (65)

and they are the physical masses of 5y, 52, 51 and 52.

The electron mass is given by Eq. (51), the mass of up quarks is given by Eq. (58) and the
down quark is given by Eq. (61). Note that the quark masses are proportional to g; while lepton
masses are proportional to g. The fact that g; > g gives an explanation why quarks are heavier
than the leptons. The mass of s-quark is given by Eq. (62), comparing this formula with Eq. (61)
we can explain why s-quark is heavier than d-quark.

5.5. Sfermions

It is known that in the general case, the sfermions have a flavor mixing. It leads to all sfermions
mass matrices are 6 x 6 matrices [47]. Therefore the slepton sector contains lepton flavor vio-
lation at the tree level. In order to avoid this problem we will neglect the generation mixing in
the slepton sector. This assumption is not held for all other squark sectors. Each 6 x 6 slepton
mass matrix can be divided into three 2 x 2 mass matrices. The off diagonal left-right mixing is
proportional to the fermion masses.

Here, we will only present the main formulas. In the case of charged sleptons we can generally
write 2 X 2 mass matrices

mZ army . (mi 0 .
Mi=| v T T ) =R, R (63)
f agmy  m 0

where f = ¢, i, T. The weak eigenstates f1 and fg are thus related to their mass eigenstates fi
and f>, where f] is the lighter sfermion, by

fl _ f(f:L) f_(cosé)f sinef)
<f2>_R fr)’ r= —sinf; cosf; ' (64)

where 6 7 is the slepton mixing angle.
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The four component vectors for up-squarks and down-squarks are, respectively, (i1, t2r,
U1R, UpR) and (d]L, dzL, d1 R» ng) Thus, the squark squared mass matrices are given by

M% cts) (Mé{b})LL MeisyActs) (MU{D})
Mia= EZQ{D};LL Mo Mog)re A (65)
’ 0By LR (MU{D )RL Mléc{s} (Mmm)RR
(Mé{D})LR my by Ar(b) (MU{D})RR %t{b}

In order to diagonalize M? iy two rotation 4 x 4 matrices, R™ and R“@, one for the up-
squarks and the other for down-squarks, are needed. Thus the squark mass eigenstates (g,,) and

the weak squark eigenstates (g, ) are related by

o= DR (66)
One obtains the squark mass eigenvalues and eigenstates after the diagonalization procedure as
indicated in Ref. [48].

5.6. Gluinos, exotic quarks and sfermions
For the exotic quarks and gluinos, their masses are the same as presented in [38].
6. Higgs potential

As usual, the scalar Higgs potential is written as
V3-3-1 = Vp + Vi + Veort (67)
with

p=—Lp= %(D“D“ + DD)

12
_ - - - 2
E(pp p'p" = xx+x'x)

g _ - 2
T Z(pi)‘?jpj + Xidijxj — /,)»fj“,oj -x AKG)
i,j

Ve=—Lp=)» F,F,
F

w n
=> | |Znf —Xx{ —xl : (68)
- 2
_ 2= 2 = 2 =1/ 2 210
Vsott = —Lsmr =m,pp +my X x +mypp +mi,x'x’, (69)
where m%, mi , mi/, m=, have the mass dimension.

All the four neutral scalar components p%, x?, p'%, x’® gain non-zero vacuum expectation
values. Expansions of the neutral scalars around their VEVs are usually
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1 0 1 0
<p>:_<vp+Hp+in>, <,0/):_(Up’+Hp’+in’>,
V2 0 V2 0

(O B R (L
(X)=—= 0 ; x)=—= 0 : (70)
\/E UX+HX+iFX \/E UX/+HX/+iFX/

Due to the requirement that the potential to reach a minimum at the chosen VEV’s, which is
equivalent to the condition of absence of the linear terms in fields, we get a system of constraint
equations

12m3 + 32 + g2 (207 — 202 — vy +v)2) + 8'* (v — v)F — v} +v)7) =0,
12m +3,up— g (2v} — 21);)2—1) + vl ) — g (v; — /z—v)z(—i—v;():O,
12m? +3MX—g (v —v 2v +2v/2) /z(vg ’2—1;)2(-1-1);():0,
12mx,+3ux+g (vp—vp _2”x+2vx) g (v —v)?

Let us consider the Higgs mass spectrum.

2 2 /
5 —vx+vx) 0.

6.1. Neutral scalar Higgs

Let us consider the mass spectrum of the neutral scalar Higgs bosons in the model under
consideration. The mass Lagrangian of neutral scalar Higgs can be written in the form

1 2 T
_E(Hp’HX7Hp/aHX/)MH(Hp7HX5H,0/’HX/) ’ (71)
where
t? —afitanae  —ah aty
1 —at) tano tan? o attane —tano
) 2y, 2 1 2
My = 3 (2g T8 )UX/ —aty aty tan o t22 —aty
aty —tan« —at 1
1
= E(Zgz + g/z)v)z(/M%H (72)
with
2 12
+
S . O<a<l),
2g2 +g/2
v, vy
t=—, = (t1, K1) and
vy Uy
Ux
tana = -2, (73)
Uy

Because det(M%H) = 0, we get a zero-eigenvalue. It is convenient to diagonalize the neutral

Higgs mass matrices in two stages. First, we find the transformation for original basis, particu-
larly

H, 0 10 0 Hip

_ H, | Jcosa 0 0O sinx Hyy

H=Chi<l g [= o o1 o Hyy 74
H, sine 0 0 —cosa Hyy



D.T. Huong et al. / Nuclear Physics B 870 (2013) 293-322 311
In the new basis (Hi,, Hiy, Hi,, Hiy’), we have

M22H = CTM%HC

0 0 0 0
2 atry
0 1§ —ahih —g 0 0 s
= 2 t = .
0 —ann 15 c?)sza 0 Msys
0 _an aty 1
cosa cosa cosa?

We would like to remind the reader of the energy scale vy, v,s 3> vy, v,. This limit leads to
tana > t1, t and the matrix M3 is a hierarchical matrix. Hence, it is very useful to use the method
of block diagonalization in order to find the eigenvectors and eigenvalues of the matrix M3.

Let us rewrite matrix M%H in the basis (Hy,/, Hy,, H1y). In this basis, the matrix M3 is 3 x 3
matrix which has form as follows:

1 aty _an
cos? a cosa cosa
15
M3y3 = Cgsza l22 —atity | - (76)
_an _ 2
coso atytp tl

Next we can use a unitary matrix U; such as

1 an - _ay
coso coso
U= 22 | 0 (77)
_an_ 0 1

coso

in order to transform M3 into the approximately block-diagonal form and also we change the
basis of Hy = (Hiy, Hip, H|,) into the new basis Hy = (Hzy, Ha, Hy,r). Details are as follows

Hy=U["H, (78)

1
3 0
;M3 1= ( 00502“ M2X2> (79)

with

2 2.2 (80)

t12 - a2t22 (a — 1)at1t2>
(a — Dati1tp ty —a’t

My = (

Eq. (79) proves the existence of the eigenvalues with value tan” & + 1. The matrix M3, produces
two eigenvalues as follows

map =3 (1= @) +8) (142 (12— B) — @ — 17073,

1
map =5 ((1=@)(F+8)+(1+2) (2~ ) — 4a - 12a2}53) e

with two eigenstates are, respectively
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H3, =cHyp — s¢ Hypy,
H3p/ =S8 Hzp + ¢t H2p/ (82)
with s; =sin¢, ¢; = cos¢ and ¢ is determined through tan ¢, as follows

_ 2a(1 —a)titp
S (+ai -1

Let us summarize the neutral Higgs mass spectrum. There is one massless Higgs namely x; and
there are three massive states. One heavy Higgs is (H»,) with mass

tan 2¢ (83)

1
mp2 = §(2g2 +£%)(1 +tan2a)v)2(,. (84)

Two remaining Higgs are H3,, H3, with masses, respectively

1
2 2 2 2
my, = §(2g +g )m3pvx/,
1
2 2 2 2
My, = 5(2g +4g )m3prvx,. (85)

6.2. Pseudo-scalar Higgs

The model under consideration contains four massless pseudo-scalar Higgs bosons, namely
Fy, Fy, F ;), F )/( , and the mass matrix elements in this case are all equal to zero. It means that all
pseudoscalars are massless.

6.3. Singly charged Higgs boson

In the basis (0, p’~, x ~, x'7), the mass Lagrangian for singly charged Higgs bosons has the
form

T

Singly - = = = Singly - = = =
’Ccharged = ('0 PO X X )Mcharged (p P X X ) (86)
with the mass matrix elements are given by
g g
M11=§vp/, M12=—§vpvp/, Miz = Mg = Moz =Mz =0,
2 2 2 2
8 8 8 8
Mo = gv%, Mizz = §vi/, Myy = gvi, M3y = ?vxv;(' 87)
The matrix Miiﬁlaieed produces two massless states, namely
1
+ + 2+
= s (o' 030, ®
P 4
1
+ + 2+
H,, = m(vxvx/x X ) (89)
X x'

and two massive singly charged Higgs bosons
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1

Hf=—— (—vu,0 T +0v2pt), (90)
P3 U;2)+U/2)/( pVp' P pp)
1
o (—vaX/X’++v)2(x+) 1)

ps 9 2
vX~|—vX,

and their eigenvalues are, respectively

2
2 _ 8 /2 2\ 2
meg _§(Up+vp/)_mw’

2
m?, =5 (2 402)=ml 92)
Ha_g X x') Ve

The singly charged Higgs bosons part contains two massless states and two massive states. One
has mass equal to the mass of the W gauge boson and other one has mass equal to those of the V
gauge boson. This characteristic property of the considered model is similar to that of the SUSY
economical 3-3-1 model [50]. We would like to emphasized that in SUSY models, the Higgs self-
couplings are the gauge couplings. Hence the Higgs mass spectrum can be related to the gauge
mass spectrum. One of the main points we would like to remind that because the Higgs sector in
SUSY economical 3-3-1 model and the model under consideration are very simple. Hence, we
can easily obtain the Higgs mass spectrum. However the other SUSY versions of 3-3-1 models,
the Higgs sector is very complicated, and it is hard to obtain the Higgs mass spectrum. Hence,
we cannot see the relation between the masses of the charged scalar and vector fields in other
SUSY 3-3-1 versions.

6.4. Doubly charged Higgs boson

The model under consideration contains four doubly charged Higgs bosons, namely p~—,
——

X~ 7, 077, x'77. On this basis, we obtain the mass matrix for doubly charged Higgs boson as
follows
24121 nt - —
2 T3 113 515) 3l
5 g2 ft3 -t +1 —hot -3
My == 2_ 2 (93)
8 —nn —ht3 t—t5+1 153
—1 —13 t —1} 413+ 13
The mass matrix in Eq. (93) produces the mass eigenvalues
2 2 g > 2 2_ .2
mHl,,ZO, mHszzg(vX/_UX‘va—vp/),
2 2 2 g 2 2 2 2 2
mH;_:—mHz__, mH;_zg(vX,—l—vX+vp+vp,):mU__ 94)

and their mass eigenvectors are, respectively

1

H— = (—1p™ " +nxT =T+ XT),
J1+ii+8+13
Hy = (ox™"+077),

1
J1+8
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Fig. 10. The invisible decay rate of Z* into the massless of the doubly charged Higgs bosons by studying random scan
over the parameter space w = 103-10° GeV, ty, = 0-10 and t, = 0-100, vfo =246 GeV.

H ~=——(p  +nux"").
1+17
-  Q+ths . (A+tHt
f, —CH<_“P el S e e A 4 (95)
1+ 13 1+ 13

1+:3)(1
with €y = 1+ (141} +t2+t D
3412

The mass spectrum of the doubly charged Higgs given in Eqgs. (94) shows that the model con-
tains one massive particle with mass equal to that of the doubly charged gauge boson U™~ and
at least one tachyon field, one massless field H;”~ which is identified to the Goldstone boson. To

2 2 2_ .2

remove tachyon in the model, we have to include the following condition: Uy TV =V = U

This leads to appear two other massless particles H, —, H; — in the doubly charged Higgs spec-
trum. The presence of these particles maybe effect to the invisible Z bosons decay modes. Let
us consider the invisible decay modes of Z* into the massless doubly charged Higgs, namely
ZH — H, ——H S Zr —~ H 3——H Ao Fig. 10 predicts the invisible decay rate of Z* into the

massless doubly charged nggs bosons by studymg random scan over the parameter space, such

as w = 10-10°GeV, 1, = 32 = 0-100, 1, = Z— = 0-10 and v}, = 246 GeV. The obtained re-

sult predicts the contribution of massless doubly charged nggs into invisible partial width of
Z decay modes is very suppressed. It is suitable to limit on Z-decays into unknown new par-
ticles width Iqew < 6.3 MeV at 95% confidence level given in Ref. [49]. If we compare our
predicted results with constraint given in Ref. [49], we obtain very hard constraint on the 7,
parameter particularly f,, = 0.65-0.85. On the other hand, Fig. 11 predicts the Z bosons de-
cay into two doubly charged Higgs decay width by studying random scan over #,, = 0.68-0.8,
v;) =246 GeV, wy = 103-10° GeV. Fig. 11 plays probability to obtain the small invisible Z de-
cay width (Ipvisible < 2) MeV is large and the probability is almost independent upon parameter
ty. It means that there is no constraint on the #, parameter in this case.

7. Conclusions

We have built the supersymmetric version of the reduced minimal 3-3-1 model with two Higgs
triplets. We have studied the mass spectrum of all particles contained in the model. The exact
mass spectrum of gauge bosons is studied. In this sector beyond the usual gauge bosons, W*, Z
gauge bosons, we have two additional charged bosons, V* and U**, and one additional neutral
gauge boson Z’. The constraint on the gauge mass is given by Mz > My > My > Mz > My .
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I'*invisible (GeV)

Fig. 11. The invisible decay rate of Z* into the massless doubly charged Higgs bosons as the function of #, by studying
random scan over the parameter space w = 103-10° GeV, 1, = 0.68-0.8, v;) =246 GeV.

In the charged-fermion sector only the tau, top, bottom and charm quarks get their masses at
tree level, the others get their masses at one loop level. In the neutrino sector only one neutrino
gets mass at tree level, the others two v, and v, get their masses at one loop level. The neutrino
masses are smaller than those of the charged leptons. It means that we explained the hierarchy
of fermion masses in the model under consideration. In the Higgs sector, we can solve exactly
the mass eigenstates and mass eigenvalues for charged Higgs bosons. The masses of the massive

charged Higgs equal those of the charged gauge bosons, namely mili =M %Vi’ m?{i =M ‘z,i and
P3 P4
m?2 __ = M?__.In addition to massive charged Higgs bosons, in the sector of the doubly charged

H;~ U=
Hig4gs bosons it also appears the tachyon field. If the tachyon field is removed, the model contains
two massless doubly charged Higgs bosons. By studying the effect of Z — HZ ; H, 3 modes on
invisible decay width of the Z bosons, we obtain the narrow constraint on #,, = 0.65-0.8. In the
neutral Higgs bosons, it is very hard to obtain the exact mass spectrum. However, with the help of
the relation u, u’ < w, w’, the diagonalization of neutral Higgs boson sector has been performed
by using the method of block diagonalization. It leads to the neutral Higgs sector contained three
massive states and one massless particle. All pseudo-scalar particles are massless. Some of which
are identified to the Goldstone bosons and the remaining pseudo-scalar particles can be identified
to the axion. This analysis is not considered in details in this paper.
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Appendix A. Lagrangian

We are going to write the Lagrangians in terms of the fields in this model

A.l. Lepton Lagrangian

2 AT o A
[,Lepton=/d49LeXp|:2<g7Va>:|L

lep lep lep lep lep lep lep
=L+ LoD+ L0+ L+ L+ L+ L) (A1)
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The leptons in this model interact only with the weak SU(3) 1, boson, V¢, and they do not directly
couple to the U(1)x boson V,,. The interaction between leptons and gauge bosons in component
is given by

lep 875~
Lyy = EL“MMLV::, (A.2)
where A% are the usual Gell-Mann matrices. The next part is the slepton gauge boson interaction
lep _ 1817 a0uf _ Fraquilya
Ly ="% [LA0"L — LA“9" L]V (A3)

The interaction between lepton—slepton—gaugino is given by the following term

lep _ ig afva F.ayqa
o= ﬁ(u L34 — LA LA%), (A4)
and the four-interaction between sleptons and gauge bosons
lep a bp, asby
Eﬁvv 4 Vu VORLAYAPL. (A.5)

The kinetic parts of the leptons and sleptons are

LP =10, L —iLo"d,L. (A.6)
The last two terms in Eq. (A.1) are the usual F and D terms given by
l
A =IFLl%,
clep ireipe. (A7)

A.2. Quark Lagrangian

LQuarks = /d49 [5162[85‘70+g‘7+(2g//3)‘7/]Ql + éan[g_yVCJrg&—(g/m)v/] Oy
4PV e=@e BV 4 3 e Ve 3V
+ J_ez[gsvc_(sg /3)V ]f + jﬁez[gsvc+(4g /3)‘/ ]jﬂ]
k k k
:[:qu +£qu +L qGV +£quV +£§:1nar +£(Il;uar +£char (A.8)
withi, j,k=1,2,3, 0 =2,3 and 8 = 1, 2. In this case, as in the lepton sector we can write
L™ = 0:007 + af0ag™ +d 0de + J0J* — i1 0i0%0, Qi — iufort 0, i
—idfo™d,df —iJford, !,
k
L =IFQ,|2+|FM,|2+|Fd,|2+|FJ,.|2,
=C
L3 (Q A9y — G — d A — J 20 ) D
—(sz“ 03 — 041" 00) D

/

+2f

|: Q3Q3 éaQa -
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4 = 1 = - =C ~
-8 (@0 ) + (8,00 +310)

VB35 1652

where we used the following short identities J; = J, J> = j; and J3 = js.

A.3. Scalar Lagrangian

Lscalar =/d40 [ 2V 4V o+ XeZgV gV X

+ ,0/ 2gV g V '5/ + X/ 2gV+g V )2/]
= L3 + L5 + Lrtiggs + Lhiggsinos T Ly 77+
where the terms with the auxiliary fields can be rewritten as
LEN = |Fp* + | Fy P + | Fpr P + | Fy 2,
legalar _ g['éka’o + ANy = parp — 'y | D

/

2«/—

while the kinetics terms are

[pp—xx—0'0 +Xx'Xx'|D,

Ltiiggs = (Dup) (D" p) + (D) (D  x)
+ (D) (D7) + (') (D7),
EHiggsinos = i)é&MDu,a + l'):((_TMDp,)z + iﬁ/é“D_ﬂﬁ/ + i):(/(}M'D_M)z/.

The covariant derivatives are given by

(o Y
Du¢i = 0u¢i — lg<V;4~§) ¢ —ig' X5, T’ Bugi,
i
~ . d X J ./ 9
Dﬂ(ﬁi:BM(ﬁi—lg V#.E ¢j—lg Xy, T° B, ¢;.
i
The interaction between the scalar—gaugino—higgsino is given by

ig = = —a -~ = = - ~
Ly = _E[ A pAG — PAYPAG + XA XA — XA A
— /5/)»*6‘/0/5& + ,5/)»*”,5/)»‘2 N ):(/)VMX/)_\?A + )—(/)L*ux/ki]
g/
V3

+xirg — 0 0'As+ 0 5 A+ X x A — X' % MB]

[/5/0% — pprE — XXMB

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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A.4. Gauge Lagrangian

1
LGauge = Z[ / d*0 (WEWE + WOW* + W'W)
+/dZé(WfWg‘+W“W“+W’W’)}
= Lac + L5 (A.15)
The kinetic term has the following form
1
Ly = —Z(G“’“’G“v + WHWS + B*B,,,)
— (A& DAL + 146 DEAY + K67 0uhs), (A.16)
with
G4, = 0,88 — d,8% — gf " ghgs.
=3,V — 3,V — gf*vhve,
B;w = aﬂ v au W
DI = 0,0 — g fgh AL
DEAY = 0,04 — gf P ViAS, (A.17)

where ¢ are the structure constants of the gauge group SU(3), and we have the usual self-
interactions (cubic and quartic) of the gauge bosons. The last term in Eq. (A.15) is

LT = 5 (D“ D¢+ DD+ DD). (A.18)
A.5. Superpotential

The superpotential of the model is given in Eq. (23). The superpotential in terms of the fields
is given by
=LY+ Law,
= L3 + Lyi+ Lun + Ly + Loy

+ Liyy + Lagn + Lz + Ligg + Liyg, (A.19)
where
EWZ_“’P( F /F oy F /F
F —70 o TP )+7(x ¥ T X X),
Mo ~ ~ My ~ -
LuMT = ——=- > L 5l — 2X XiXi,

LYy = 5[3’\‘€FLZ’: +ae(FLxp+ LF, p+ LxF,)

+k1(Fo,p'df + Q1Fydf + 010’ Fy,)
+K2(Fle’jC + QlFX’jc + QIX/FJ)
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+K3(FQQP’/7,? + QanﬁiC + QapFu,-)
+K4(FQQX]TE + QanjE + QaXFj,g)
+ks(Fo,Ldf + QuFrdf + QoL Fy,)],
A .. 3
Lyj=—7€(LLL+LLL+LLL),
A2 - -
Ligy =—5€Lxp+Lxp).
1 .
Logn = —g[KlleldiC + 1201 I + k3 Q0 pui + k4 Qu xjf ],
1 e ca
Loz =—31K1(Q1d] + Q1d}) 5 +12(Q1T° + Q1) X'
+13(Qult§ + Qutf)f + k4(Qu b + Qu i) X .
K5 ~ ~
Ligg = =7 (Qadi + Qudi)L,

K5 ~
Equ = _?QaLd,'C,
A ~
Liyn=—5Lxp. (A.20)

A.6. Superpotential

The superpotential of the model is given in Eq. (23). The superpotential in terms of the fields
is given by

Wy = ﬁ}?n + Lf,L + Lumr,
W3 =L+ L+ Lun + Lijg + Loy

+£fHH+£qu +£qqﬁ+£lqé+£iqu (A.21)
where
w2 _ Hp / My /
L —T(PFp""pFﬂ)WLT(XFx"FX Fy),
Hp ~ o My A A
EHMT:—TPiPl{_TXiX,'/,

o %[3A16FLI:£ +hoe(FLxp+ LFyp+ Ly Fy)
+ K (Fle’c?f + Q1 Fydf + le’Fdi)
+K2(FQ]X/jC + Q]Fx’jc + QIX/FJ)

+ k3(Fo, pit§ + Qo Fpiié + QaPFul-)
+K4(FQaXf§ + QanfE + Qux Fj)
+ics(Fo, Ldf + QuFrdf + QL Fy)],

A . .
L= —?]G(LLL +iLL+LLL),

i
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A2 N R
Lipy= —?G(pr + Lxp),

1 .
Loga = —§[K1Q1,0/d,~c + k201 %' T + K304 pui +K4QaXJ§],

1 A A o ~
_5[/(] (Q1df + 01df)p" + k2(Q1 I+ Q1) X
+ K3(Qa’2? + Qaulc)ﬁ +K4(Qotjé + Qot]é))%]»
ﬁlqé = _I;_S(Qa‘?ic + Qadf)L,

Ks A
Liqq = —?Qal‘dlc,
A2~
Liyg= —?Lx,o. (A.22)
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