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Abstract

We build a supersymmetric version of the minimal 3-3-1 model with just two Higgs triplets using the
superfield formalism. We study the mass spectrum of all particles in concordance with the experimental
bounds. At the tree level, the masses of charged gauge bosons are the same as those of charged Higgs
bosons. We also show that the electron, muon and their neutrinos as well as down and strange quarks gain
mass through the loop correction. The narrow constraint on the ratio tw = w

w′ is given by studying the new
invisible decay mode of the Z boson.
© 2013 Elsevier B.V. All rights reserved.

Keywords: Supersymmetric models; Extensions of electroweak Higgs sector; Supersymmetric partners of known
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1. Introduction

Models with SU(3)C ⊗ SU(3)L ⊗ U(1)X gauge symmetry (called 3-3-1 models for short)
are interesting possibilities for the physics at the TeV scale [1–4]. The 3-3-1 models can have
several representation contents depending on the embedding of the charge operator in the SU(3)L
generators,

Q

e
= 1

2
(λ3 − ϑλ8) + XI, (1)
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where the ϑ parameter defines the different representation contents, X denotes the U(1)X charge
and λ3, λ8 are the diagonal generators of SU(3).

In fact, this may be the last symmetry involving the lightest elementary particles: leptons.
The lepton sector is exactly the same as in the Standard Model (SM) [5] but now there is a
symmetry, at large energies among, say e−, νe and e+. Once this symmetry is imposed on the
lightest generation and extended to the other leptonic generations it follows that the quark sector
must be enlarged by considering exotic charged quarks. It means that some gauge bosons carry
lepton and baryon quantum numbers. Although these models coincide at low energies with the
SM it explains some fundamental questions that are accommodated, but not explained in the SM,
namely

(1) The family number must be three;
(2) It explains why sin2 θW < 1

4 is observed;
(3) They are the simplest models that include bileptons of both types: scalar and vectors ones;
(4) It solves the strong CP problem, the Peccei–Quinn symmetry occurs also naturally in these

models [6];
(5) The models have several sources of CP violation [7,8];
(6) Allow the quantization of electric charge [9];
(7) Since one generation of quarks is treated differently from the others this may lead to a natural

explanation for the large mass of the top quark [12];
(8) The models also produce a good candidate for Self-Interacting Dark Matter (SIDM) since

there are two Higgs bosons, one scalar and one pseudoscalar, which have the properties
of candidates for dark matter like stability, neutrality and that it must not overpopulate the
universe [13], etc.

Another interesting thing about this kind of models is that the gauge 3-3-1 symmetry is consid-
ered a subgroup of the popular E6 Grand Unified Theory (GUT), which can be itself derived
from E8 ⊗ E8 heterotic string theory [10,11].

In the minimal version, with ϑ = √
3, the charge conjugation of the right-handed charged

lepton for each generation is combined with the usual SU(2)L doublet of left-handed lepton
components to form an SU(3) triplet (ν, l, lc)L [2]. No extra lepton is needed in the mentioned
model, and we shall call such model as minimal 3-3-1 model. There are also another possibility
where the triplets (ν, l,Lc)L contain the extra charged leptons (L). The new charged leptons
(L) do not mix with the known leptons [3]. We would like to remind that there is no right-
handed (RH) neutrino in both models. There exists another interesting possibility (ϑ = 1/

√
3 ),

where a left-handed anti-neutrino to each usual SU(2)L doublet is added to form an SU(3) triplet
(ν, l, νc)L [4], and this model is called the 3-3-1 model with RH neutrinos. The 3-3-1 models
have been studied extensively over the last decade, see for example [14–20].

Despite attractive properties mentioned above, the usual 3-3-1 models have the weakness that
reduces their predictive possibility is a plenty in the scalar sectors. The attempt to realize simpler
scalar sectors has recently been constructed 3-3-1 model with minimal Higgs sector called the
economical 3-3-1 model [21,22]. The 3-3-1 model with minimal content of fermions and Higgs
sector (called the reduced minimal (RM) 3-3-1 model) has also been constructed in [23].

The supersymmetric version of the minimal 3-3-1 model [2] has been constructed in Refs. [11,
24–26] (MSUSY331) while the version with RH neutrinos [4] has already been constructed in
Refs. [27–30] (SUSY331RN). The supersymmetric economical 3-3-1 model (SUSYE331) has
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been presented recently [30]. Some others interesting supersymmetric extensions of the 3-3-1
models were presented in Refs. [31–35].

In this article we will present a supersymmetric version of the reduced minimal 3-3-1 model
with the triplet (ν, l, lc)L using only two triplets in the scalar sector.

The outline of the paper is as follows. In Section 2 we present representations of fermions
and Higgs bosons contained in the supersymmetric RM 3-3-1 model. The super-Lagrangian in
terms of superfields is studied in Section 3. In Sections 4, 5, 6, we present the mass eigenstates
of gauge bosons, fermions and Higgs bosons as well as the phenomenological consequence of
the model under consideration. The Lagrangians in term of fields are given in Appendix A. In
the last Section 7, we summary our results and given conclusions.

2. The supersymmetric RM 3-3-1 model

In order to consider supersymmetric model, we first consider the particle content in the model.
In this model, three lepton superfield families are transformed as the triplet under the SU(3)C ⊗
SU(3)L ⊗ U(1)X gauge group. We use the same notation for fermionic field content given in
Refs. [25,26]

L̂l =
⎛
⎝ ν̂l

l̂

l̂c

⎞
⎠

L

∼ (1,3,0), l = e,μ, τ. (2)

In parentheses it appears the transformation properties under the respective factors (SU(3)C,

SU(3)L, U(1)X).
In the quark sector, one quark superfield family is also put in the triplet representation of

SU(3)L as follows

Q̂1L =
⎛
⎝ û1

d̂1

Ĵ

⎞
⎠

L

∼
(

3,3,
2

3

)
, (3)

and their respective singlet quark superfields are given by

ûc
1L ∼

(
3∗,1,−2

3

)
, d̂c

1L ∼
(

3∗,1,
1

3

)
, Ĵ c

L ∼
(

3∗,1,−5

3

)
. (4)

The remaining two quark generations are transformed as antitriplet superfield representation of
SU(3)L such as

Q̂2L =
⎛
⎝ d̂2

−û2

ĵ1

⎞
⎠

L

, Q̂3L =
⎛
⎝ d̂3

−û3

ĵ2

⎞
⎠

L

∼
(

3,3∗,−1

3

)
, (5)

and their respective singlet superfields are transformed as follows

ûc
2L, ûc

3L ∼
(

3∗,1,−2

3

)
, d̂c

2L, d̂c
3L ∼

(
3∗,1,

1

3

)
,

ĵ c
1L, ĵ c

2L ∼
(

3∗,1,
4

3

)
. (6)

Eqs. (3), (5) explain exactly the meaning of item 7 given in the introduction of this article.
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On the other hand, the scalar superfields which are necessary to generate the fermion masses
are

ρ̂ =
⎛
⎝ ρ̂+

ρ̂0

ρ̂++

⎞
⎠ ∼ (1,3,+1), χ̂ =

⎛
⎝ χ̂−

χ̂−−

χ̂0

⎞
⎠ ∼ (1,3,−1). (7)

To remove chiral anomalies generated by the superpartners of the scalars, we have to introduce
two other scalar superfields as follows

ρ̂′ =
⎛
⎝ ρ̂′−

ρ̂′0

ρ̂′−−

⎞
⎠

L

∼ (
1,3∗,−1

)
, χ̂ ′ =

⎛
⎝ χ̂ ′+

χ̂ ′++

χ̂ ′0

⎞
⎠

L

∼ (
1,3∗,+1

)
. (8)

It is to be noted that the superfields formalism is useful in writing the Lagrangian which is
manifestly invariant under the supersymmetric transformations [36] with fermions and scalars
put in chiral superfields while the gauge bosons in vector superfields. As usual, the superfield of
a field φ will be denoted by φ̂ [37]. The chiral superfield of a multiplet φ is denoted by

φ̂(x, θ, θ̄ ) = φ̃(x) + iθσμθ̄∂μφ̃(x) + 1

4
θθ θ̄ θ̄�φ̃(x)

+ √
2 θφ(x) + i√

2
θθ θ̄ σ̄ μ∂μφ(x)

+ θθFφ(x). (9)

Concerning the gauge bosons and their superpartners, if we denote the gluons by gb the re-
spective superparticles, the gluinos, are denoted by λb

C , with b = 1, . . . ,8; and in the electroweak
sector we have V b , the gauge boson of SU(3)L, and their gaugino partners λb

A; finally we have
the gauge boson of U(1)X , denoted by B̂ , and its supersymmetric partner λB .

The vector superfield is given by

V̂ (x, θ, θ̄ ) = −θσμθ̄Vμ(x) + iθθ θ̄ λ̄(x) − iθ̄ θ̄θλ(x) + 1

2
θθ θ̄ θ̄D(x). (10)

As the other version of the SU(3)c ⊗ SU(3)L ⊗ U(1)X , the vector superfields for the gauge

bosons of each factor SU(3)C , SU(3)L and U(1)X are denoted by V̂C, ˆ̄V C ; V̂ , ˆ̄V ; and V̂ ′, re-
spectively, where we have defined

V̂C = T aV̂ a
C , ˆ̄V C = T̄ aV̂ a

C, a = 1, . . . ,8;
V̂ = T aV̂ a, ˆ̄V = T̄ aV̂ a,

V̂ ′ = T 9B̂, (11)

where T a = λa/2, T̄ a = −λ∗a/2 are the generators of triplet and antitriplet representations,
respectively, and λa are the Gell-Mann matrices, and the T 9 = (1/

√
6)diag(1, 1, 1) is the gen-

erator of U(1)X which satisfies the relation: Tr(T aT b) = 1/2δab with all a, b = 1,2, . . . ,9.

3. The Lagrangian

With the superfields introduced in the last section we can build an invariant supersymmetric
Lagrangian. As usual as in supersymmetric model, for the model under consideration, we have

L3-3-1 = LSUSY +Lsoft. (12)
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Here LSUSY is the supersymmetric piece, while Lsoft explicitly breaks supersymmetry. Below
we will write each of these Lagrangians in terms of the respective superfields.

3.1. The supersymmetric terms

The supersymmetric terms can be divided as follows

LSUSY = LLepton +LQuarks +LGauge +LScalar, (13)

where each term is given by

LLepton =
∫

d4θ
[ ˆ̄Le2gV̂ L̂

]
, (14)

LQuarks =
∫

d4θ
[ ˆ̄Q1e

2[gs V̂c+gV̂ +(2g′/3)V̂ ′]Q̂1 + ˆ̄Qαe2[gs V̂c+g ˆ̄V −(g′/3)V̂ ′]Q̂α

+ ˆ̄uie
2[gs

ˆ̄V c−(2g′/3)V̂ ′]ûi + ˆ̄die
2[gs

ˆ̄V c+(g′/3)V̂ ′]d̂i

+ ˆ̄Je2[gs
ˆ̄V c−(5g′/3)V̂ ′]Ĵ + ˆ̄j ie

2[gs
ˆ̄V c+(4g′/3)V̂ ′]ĵi

]
(15)

where the sum for i = 1,2,3, α = 1,2 and

LGauge = 1

4
×

[∫
d2θ

(
Wa

c Wa
c + WaWa + W ′W ′)

+
∫

d2θ̄
(
W̄ a

c W̄ a
c + W̄ aW̄ a + W̄ ′W̄ ′)], (16)

where V̂c,
ˆ̄V c, V̂ and ˆ̄V are defined in Eq. (11) and gs, g and g′ are the gauge couplings of

SU(3)C, SU(3)L and U(1)X , respectively. Wa
c , Wa and W ′ are the strength fields, and they are

given by

Wa
αc = − 1

8gs

D̄D̄e−2gs V̂cDαe−2gs V̂c ,

Wa
α = − 1

8g
D̄D̄e−2gV̂ Dαe−2gV̂ ,

W ′
α = −1

4
D̄D̄DαV̂ ′. (17)

Finally, the Lagrangian for the Higgs superfield is given as follows

LScalar =
∫

d4θ
[ ˆ̄ρe2gV̂ +g′V̂ ′

ρ̂ + ˆ̄χe2gV̂ −g′V̂ ′
χ̂ + ˆ̄ρ′

e2g ˆ̄V −g′V̂ ′
ρ̂′ + ˆ̄χ ′

e2g ˆ̄V +g′V̂ ′
χ̂ ′]

+
∫

d2θ W +
∫

d2θ̄ W̄ , (18)

where W is the superpotential that is written details in the next subsection. After integrating the
super-Lagrangian given in Eqs. (14), (15), (16) and Eq. (18), we obtain the Lagrangian given in
Appendix A.
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3.2. Superpotential

Let us write the full superpotential in the model under consideration. The superpotential which
is invariant under SU(3)C ⊗ SU(3)L ⊗ U(1)X group can be written by

W = W2

2
+ W3

3
, (19)

with W2 is a combination of two chiral superfields and the terms permitted by the considered
symmetry are

W2 = μρρ̂ρ̂′ + μχχ̂χ̂ ′, (20)

and W3 is invariant under the mentioned symmetry and a combination of three chiral superfields.
That term has the following form

W3 =
∑
a,b,c

λ1abcεL̂aL̂bL̂c +
∑
a

λ2aεL̂aχ̂ ρ̂ +
∑

i

κ1iQ̂1ρ̂
′d̂c

i + κ2Q̂1χ̂
′Ĵ c

+
∑
αi

κ3αiQ̂αρ̂ûc
i +

∑
αβ

κ4αβQ̂αχ̂ ĵ c
β +

∑
αij

κ5αij Q̂αL̂i d̂
c
j

+
∑
i,j,k

ξ1ijkd̂
c
i d̂

c
j û

c
k +

∑
ijβ

ξ2ijβ ûc
i û

c
j ĵ

c
β +

∑
iβ

ξ3iβ d̂c
i Ĵ

cĵ c
β , (21)

with i, j, k = 1,2,3, α = 2,3 and β = 1,2. The terms κ5 and ξ2 will induce the proton decay as
shown at [24].

Choosing, as we have done in [38], the following R-charges

nρ′ = −1, nρ = 1, nχ = nχ ′ = 0,

nL = nQi
= ndi

= 1/2, nJi
= −1/2, nu = −3/2, (22)

it is easy to see that all the fields χ , χ ′, ρ, ρ′, L, Qi , u, d and Ji have R-charge equal to one,
while their superpartners have opposite R-charge. This kind of symmetry is similar to that in the
MSSM. The superpotential which satisfies the R-symmetry given in (22) can be written by

W = μρ

2
ρ̂ρ̂′ μχ

2
χ̂ χ̂ ′

+ 1

3

[ ∑
a,b,c

λ1abcεL̂aL̂bL̂c +
∑
a

λ2aεL̂aχ̂ ρ̂ +
∑

i

κ1iQ̂1ρ̂
′d̂c

i + κ2Q̂1χ̂
′Ĵ c

+
∑
αi

κ3αiQ̂αρ̂ûc
i +

∑
αβ

κ4αβQ̂αχ̂ ĵ c
β +

∑
αij

κ5αij Q̂αL̂i d̂
c
j

]
. (23)

Based on the superpotential given in Eq. (23), we can generate mass to neutrinos and recover all
the nice consequences given in [38]. We will consider these details in the next section.

3.3. Broken structure from SUSY RM 3-3-1 to SU(3)C ⊗ U(1)Q

The pattern of the symmetry breaking of the model is given by the following scheme (using
the notation given in [38])
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SUSY RM 3-3-1
Lsoft�−→ SU(3)C ⊗ SU(3)L ⊗ U(1)X

〈χ〉〈χ ′〉�−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y

〈ρ〉〈ρ′〉�−→ SU(3)C ⊗ U(1)Q. (24)

For the sake of simplicity, here we assume that vacuum expectation values (VEVs) are real. This
means that the CP violation through the scalar exchange is not considered in this work. Note that
non-supersymmetric 3-3-1 model with non-real VEV was studied in [7,8] and it is the point 5
given in the introduction.

When one breaks the 3-3-1 symmetry to the SU(3)C ⊗ U(1)Q, the scalar fields get the fol-
lowing VEVs:

〈ρ〉 =
( 0

u

0

)
, 〈χ〉 =

( 0
0
w

)
,

〈
ρ′〉 =

( 0
u′
0

)
,

〈
χ ′〉 =

( 0
0
w′

)
, (25)

where u = vρ/
√

2, w = vχ/
√

2, u′ = vρ′/
√

2 and w′ = vχ ′/
√

2. Because of the pattern of the
symmetry breaking given in (24), the VEVs of the model under consideration have to be satisfied
the conditions:

w,w′ � u,u′. (26)

On the other hand, the constraint on the W bosons mass [26], see Eq. (37), we get the following
constraint on V 2

ρ

V 2
ρ = (246 GeV)2 (27)

where V 2
ρ = v2

ρ + v′2
ρ .

3.4. Soft terms

The most general soft supersymmetry breaking terms, which do not induce quadratic diver-
gence, are described by Girardello and Grisaru [39]. They found that the allowed terms can be
categorized as follows:

• The scalar mass term

LSMT = −m2A†A. (28)

• The gaugino mass term

LGMT = −1

2

(
Mλλ

aλa + H.c.
)
. (29)

• The scalar interaction terms

Lint = mijAiAj + fijkε
ijkAiAjAk + H.c. (30)

The soft SUSY breaking parameters are in general complex and they also can generate SUSY
flavor problem. Therefore we can expect that in this model, there are several sources of CP
violation as well as flavor problem. This subject can be explored in the future.
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In the model, the soft terms must be consistent with the 3-3-1 gauge symmetry. Hence, the
soft terms have the following form

Lsoft = LGMT +LSMT +Lint, (31)

where

LGMT = −1

2

[
mλC

8∑
a=1

(
λa

Cλa
C

) + mλ

8∑
a=1

(
λa

Aλa
A

) + m′λBλB + H.c.

]
, (32)

where λC are the gluinos, λA are the gauginos of SU(3) and λB is the gauginos of U(1) [see
Eq. (A.16)]. The gauginos get their masses at SUSY broken scale while their superpartners (the
gauge bosons) are massless at this scale, because their masses appear only after we break the
symmetry SU(3)L ⊗ U(1)X [see Eq. (37)] in the next section. The second term which gains
masses to all the scalars is written as

LSMT = −m2
ρρ†ρ − m2

χχ†χ − m2
ρ′ρ′†ρ′ − m2

χ ′χ ′†χ ′

− m2
LL̂

†
aLL̂aL − m2

Qα
Q̂

†
αLQ̂αL − m2

Q3
Q̂

†
3LQ̂3L

− m2
ui

û
c†
iLûc

iL − m2
di

d̂
c†
iLd̂c

iL − m2
J Ĵ

c†
L Ĵ c

L − m2
jβ

ĵ
c†
βLĵ c

βL (33)

and the last term is given by

Lint = [
ε0abcεL̂aLL̂bLL̂cL + ε1abεL̂aLχρ + Q̂αL

(
ω1αiρûc

iL + ω3αaj L̂aLd̂c
jL

+ ω4αβχĵ c
βL

) + Q̂3L

(
ζ1iρ

′d̂c
iL + ζ3J χ ′Ĵ c

L

) + ς1ijkd̂
c
iLd̂c

jLûc
kL

+ ς2iβ d̂c
iLĴ c

Lĵ c
βL + ς3ijβ ûc

iLûc
jLĵ c

βL + H.c.
]
. (34)

4. Gauge boson masses

Just as it did in the usual 3-3-1 model [2,26,38], we can divide the gauge boson masses into
two parts namely the charged and neutral gauge boson masses. The mass Lagrangian for the
gauge bosons can be obtained by

Lgauge
mass =

(
0 0 vχ√

2

)(
g

2
λaV μ

a − g′
√

6
Bμ

)2 (
0 0 vχ√

2

)T

+
(

0 0
vχ ′√

2

)(
−g

2
λ∗aV μ

a + g′
√

6
Bμ

)2 (
0 0

vχ ′√
2

)T

+
(

0 vρ√
2

0
)(

g

2
λaV μ

a + g′
√

6
Bμ

)2 (
0 vρ√

2
0

)T

+
(

0
vρ′√

2
0

)(
−g

2
λ∗aV μ

a − g′
√

6
Bμ

)2 (
0

vρ′√
2

0
)T

. (35)

The Lagrangian in Eq. (35) produces the charged gauge boson mass terms given as follows

Lcharged
mass = M2

WW−
μ W+μ + M2

V V −
μ V +μ + M2

UU−−
μ U++μ, (36)

with
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M2
U = g2

8

(
v2
ρ + v2

χ + v2
ρ′ + v2

χ ′
)
,

M2
W = g2

8

(
v2
ρ + v2

ρ′
)
,

M2
V = g2

8

(
v2
χ + v2

χ ′
)

(37)

and the mass eigenvectors are given respectively

W±
μ (x) = 1√

2

[
V 1

μ(x) ∓ iV 2
μ(x)

]
,

V ±
μ (x) = 1√

2

[
V 4

μ(x) ± iV 5
μ(x)

]
,

U±±
μ (x) = 1√

2

[
V 6

μ(x) ± iV 7
μ(x)

]
. (38)

Before continuing we note

M2
W + M2

V = g2

8

(
v2
ρ + v2

ρ′ + v2
χ + v2

χ ′
)
. (39)

The neutral gauge bosons (V
μ
3 ,V

μ
8 ,Bμ) are mixing. The mass Lagrangian for neutral gauge

bosons is given as

Lneutral
mass = (

V
μ
3 V

μ
8 Bμ

)
M2

NG

(
V3μ V8μ Bμ

)T (40)

with

M2
NG = g2

4

⎛
⎜⎜⎜⎜⎝

v2
ρ+v2

ρ′
2 − v2

ρ+v2
ρ′√

3
−t

√
2
3 (v2

ρ + v2
ρ′ )

− v2
ρ+v2

ρ′√
3

1
3 (v2

ρ + v2
ρ′ + 4v2

χ + 4v2
χ ′ ) 2t

3
√

2
(v2

ρ + v2
ρ′ + 2v2

χ + 2v2
χ ′)

−t

√
2
3 (v2

ρ + v2
ρ′ ) 2t

3
√

2
(v2

ρ + v2
ρ′ + 2v2

χ + 2v2
χ ′ ) 2t2

3 (v2
ρ + v2

ρ′ + v2
χ + v2

χ ′ )

⎞
⎟⎟⎟⎟⎠ .

(41)

After diagonalization the matrix M2
NG, we obtain the mass eigenvalues as follows

M2
γ = 0,

M2
Z = g2(2 + t2)

24

(
v2
ρ + v2

ρ′ + v2
χ + v2

χ ′

−
√

−4(3 + 2t2)

2 + t2

(
v2
ρ + v2

ρ′
)(

v2
χ + v2

χ ′
) + (

v2
ρ + v2

ρ′ + v2
χ + v2

χ ′
)2

)
,

M2
Z′ = g2(2 + t2)

24

(
v2
ρ + v2

ρ′ + v2
χ + v2

χ ′

+
√

−4(3 + 2t2)

2 + t2

(
v2
ρ + v2

ρ′
)(

v2
χ + v2

χ ′
) + (

v2
ρ + v2

ρ′ + v2
χ + v2

χ ′
)2

)
(42)

and the mass eigenvectors, respectively:
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Aμ = 1√
1 + 2t2

3

(
t√
6
V

μ
3 − t√

2
V

μ
8 + Bμ

)
,

Zμ = −
√

3(cς + sς√
3+2t2

)

2
V

μ
3 −

−cς + 3sς√
3+2t2

2
V

μ
8 +

√
2tsς√

3 + 2t2
Bμ,

Z′μ = −
√

3(−sς + cς√
3+2t2

)

2
V

μ
3 −

sς + 3cς√
3+2t2

2
V

μ
8 −

√
2tcς√

3 + 2t2
Bμ,

with t and ς are defined as follows

t = g′

g
≡ 6 sin2 θW

1 − 4 sin2 θW

, (43)

tan(2ς) =
√

3 + 2t2

1 + t2

(
v2
χ + v2

χ ′ − v2
ρ − v2

ρ′

v2
χ + v2

χ ′ + v2
ρ + v2

ρ′

)
. (44)

The relation in (43) predicts that there exists an energy scale at which the model loses its pertur-
bative character as we have noted at the main aspect of the 3-3-1 models. Therefore, in order to
keep its perturbative character, we have sin2 θW (μ) < 1/4 at any energy scale.

Let us summary the gauge mass spectrum. The gauge boson mixing is separated into two
parts. One is charged gauge bosons and one is neutral gauge bosons. The exact eigenvectors and
eigenvalues are obtained. According to the limit given in (26), we get the constraint on the gauge
mass as follows

MZ′ > MU > MV > MZ > MW. (45)

This constraint is similar to those in [38]. As all new gauge masses are proportional to vχ and
vχ ′ , both are in the TeV scale [see Eq. (24)]. It explains why the new gauge bosons have not been
yet detected, but their masses can be discovered by the experiments at the Large Hadron Collider
(LHC) and at the International Linear Collider (ILC).

5. Fermion mass matrices

In this section we will show that all the fermions of this model get masses in concordance
with the experimental data.

5.1. Doubly charged charginos

As in previous works [26,38], we get the same result without any modification. These new
states can be discovered in the LHC throughout the following

p̄ + p −→ χ̃++χ̃−−. (46)

The similar one [38]

e− + e− −→ χ̃−−χ̃0, (47)

is a prospective reaction in the ILC.
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5.2. Charged leptons and charginos

Let us consider the mass spectrum of the charged leptons and charginos. In the model under
consideration, mass mixing matrix of the charged leptons and charginos is similar to that given
in [29,30,25]. In our case, the e,μ and τ leptons gain mass without a sextet Higgs or the charged
lepton singlet. Note that the Higgsinos ρ̃, χ̃ and their respective primed fields have the same
charge assignment of the triplets ρ and χ . Hence, they can mix with the usual leptons.

Let us first consider the charged lepton and chargino masses. Denoting

φ+ = (
ec,μc, τ c,−iλ+

W,−iλ+
V , ρ̃+, χ̃ ′+, ρ̃′+, χ̃+)T

,

φ− = (
e,μ, τ,−iλ−

W,−iλ−
V , ρ̃′−, χ̃−, ρ̃′−, χ̃−)T

, (48)

where all the fermionic fields are still Weyl spinors, we can also, as before, define Ψ ± =
(φ+φ−)T . Then, the mass term is written in the form −(1/2)[Ψ ±T Y±Ψ ± + H.c.] where Y± is
given by:

Y± =
(

0 XT

X 0

)
, (49)

with X matrix defined as

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 λ2e

3 w 0 0 0

0 0 0 0 0
λ2μ

3 w 0 0 0

0 0 0 0 0 λ2τ

3 w 0 0 0
0 0 0 mλ 0 gu 0 −gu′ 0
0 0 0 0 mλ 0 −gw′ 0 gw

λ2e

3 w
λ2μ

3 w
λ2τ

3 w gu 0 0 0 −μρ

2 0
0 0 0 0 −gw′ 0 0 0 −μχ

2
0 0 0 −gu′ 0 −μρ

2 0 0 0
0 0 0 0 gw 0 −μχ

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

This mass matrix gives two zero eigenvalues [25]. One of two zero eigenvalues is identified to
the electron mass and the remaining one is identified to the muon mass. It means that the electron
and muon are massless at the tree level. If there is not a discrete symmetry, which is added to the
Lagrangian, the charged lepton can get a mass by loop corrections as done in [40].

In this model, the electron still couples with the gaugino λB of U(1) group [see Eq. (A.4)], in
a similar way as shown in [40]. As the selectrons and the gauginos get their masses due the soft
terms given in Eqs. (32), (33), it allows us to draw the diagram of Fig. 1 that gives contribution
to the electron mass. Therefore, at the one loop correction the electron mass is given by:

me ∝ αU(1) sin(2θẽ)

π
m′

[
m2

ẽ1

m2
ẽ1

− m′2
ln

(
m2

ẽ1

m′2

)
− m2

ẽ2

m2
ẽ2

− m′2
ln

(
m2

ẽ2

m′2

)]
,

mμ ∝ αU(1) sin(2θμ̃)

π
m′

[
m2

μ̃1

m2
μ̃1

− m′2
ln

(
m2

μ̃1

m′2

)
− m2

μ̃2

m2
μ̃2

− m′2
ln

(
m2

μ̃2

m′2

)]
, (51)

where m′,mẽ,mμ̃ are soft parameters given in Eq. (32), αU(1) = g′2/(4π) and the θẽ, θμ̃ are
defined in Eq. (64). It is the simplest way to generate fermion masses through one-loop correction
[40–42]. As we expect the smuon is heavier than the selectron, it explains why the muon is
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Fig. 1. Diagram giving mass to electron which does not appear in the superpotential. The diagram to the muon is similar
(just change the selecton by the smuon).

Fig. 2. Diagram generating the electron mass taking into account the coupling κ5.

Fig. 3. Diagram generating the electron mass taking into account the coupling λ2 with E,Ec are the singlet charged
Higgsinos.

heavier than electron, see at SPS scenarios [43–45]. However, ones can worry about the following
fact: the supersymmetric masses are strongly constrained by recent LHC data [46]. Thus, it is not
clear at all that the obtained fermion masses are correct. Fortunately in this model there appear
two sources that the lepton particles obtained mass through radiative mechanism. We will below
comment in brief these mechanisms.

One of these sources is the coupling κ5αij , from Eq. (23), that generate the diagram of Fig. 2
(for more details, see [25]). The second mechanism is the coupling λ2, from Eq. (23). This con-
tribution will generate four diagrams, we draw only one of these possibilities in Fig. 3. We would
like to stress that the diagrams given in Figs. 2 and 3 are the sources of the non-renormalizable
interaction (Lχ)(Lρ) that appears in the non-supersymmetric model. Of course, from these con-
tributions we can get the new expression to the electron (and also to the muon) masses. They are
very similar to ones given in Eq. (51), but more larger. We will not write them here. We can now
show, including all the contributions the electron and the muon will get masses.

The tau gets its mass at tree level, it explains why the tau is heavier than the muon and
electron. The other four mass values are at GeV scale as shown in [25]. The way we perform
the diagonalization, as well, the particle definitions are given in [29,30,25].

5.3. Neutrinos and neutralinos

Because of the existence of the interaction between neutrinos and neutralinos, their mass
matrix has a mixture. The mass term in the basis

Ψ 0 = (
νe νμ ντ −iλ3

A −iλ8
A −iλB ρ̃0 ρ̃′0 χ̃0 χ̃ ′0 )T

(52)

is given by −(1/2)[(Ψ 0)T Y 0Ψ 0 + H.c.], where
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Fig. 4. Diagrams giving masses to electron’s and muon’s neutrinos which do not appear in the superpotential, ẽ is the
selectron and d̃ is the down-squark and the label α = 1,2.

Y 0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 λ2e

3 w 0 λ2e

3 u 0

0 0 0 0 0 0
λ2μ

3 w 0
λ2μ

3 u 0

0 0 0 0 0 0 λ2τ

3 w 0 λ2τ

3 u 0

0 0 0 mλ 0 0 − gu√
2

gu′√
6

0 0

0 0 0 0 mλ 0 gu√
6

− gu′√
6

gw√
6

− gw′√
6

0 0 0 0 0 m′ g′u√
6

− g′u′√
6

− g′w√
6

g′w′√
6

λ2e

3 w
λ2μ

3 w
λ2τ

3 w − gu√
2

gu√
6

g′u√
2

0 −μρ

2 0 0

0 0 0 gu′√
2

− gu′√
6

− g′u′√
6

−μρ

2 0 0 0
λ2e

3 u
λ2μ

3 u
λ2τ

3 u 0 gw√
6

g′w√
6

0 0 0 −μχ

2

0 0 0 0 − gw′√
6

g′w′√
6

0 0 −μχ

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(53)

This matrix has two zero eigenvalues. The parameter mλ is defined in Eq. (32). On the other
hand, the electron’s neutrino still couples with the selectron and down-squark, while the muon’s
neutrinos couple with smuons and strange-squark. These couplings lead to the diagrams shown
in Fig. 4. These diagrams give the contribution to the neutrino mass given in Eq. (54).

mνe � 1

8π2

2∑
ı=1

{
m′

[
λ1e11λ1e11

m2
ẽ1

m2
ẽ1

− m′2
ln

(
m2

ẽ1

m′2

)
− λ1e12λ1e12

m2
ẽ2

m2
ẽ2

− m′2
ln

(
m2

ẽ2

m′2

)]

+ 3mg̃

[
κ5e11κ5e11

m2
d̃1

m2
d̃1

− m′2
ln

(m2
d̃1

m2
g̃

)
− κ5e12κ5e12

m2
d̃2

m2
d̃2

− m′2
ln

(m2
d̃2

m2
g̃

)]}
,

mνμ � 1

8π2

2∑
ı=1

{
m′

[
λ1μ21λ1μ21

m2
μ̃1

m2
μ̃1

− m′2
ln

(
m2

μ̃1

m′2

)

− λ1μ22λ1μ22

m2
μ̃2

m2
μ̃2

− m′2
ln

(
m2

μ̃2

m′2

)]

+ 3mg̃

[
κ5μ21κ5μ21

m2
s̃1

m2
s̃1

− m′2
ln

(
m2

s̃1

m2
g̃

)
− κ5μ22κ5μ22

m2
s̃2

m2
s̃2

− m′2
ln

(
m2

s̃2

m2
g̃

)]}
,

(54)

where mg̃ is the mass of a gluino, m
d̃

is the down-squark mass and ms̃ is the strange-squark
mass.
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Fig. 5. Diagram generating the electron’s neutrino mass taking into account the coupling κ5.

Fig. 6. Diagram generating the electron’s neutrino mass taking into account the coupling λ2.

The neutrino masses are proportional to λ1, κ5, the parameters which break the lepton number
conservation. The electron mass is proportional to g. Due to this fact we expect that it must be
satisfied a condition λ1, κ5 � g′, then we can explain the reason why neutrinos are much lighter
than the charged leptons.

As happened with the charged leptons, we can generate new contribution to neutrino masses in
an analogous way as done to the charged leptons. We draw the new contributions in Figs. 5 and 6.
Therefore, as in the previous case, including all the contributions, the electron’s and muon’s
neutrinos will get their masses can be satisfied the experimental data.

5.4. Quarks

Let us first consider the u-quark type. First, we define the basis as done in Ref. [38], particu-
larly

ψ+
u = (u1 u2 u3)

T , ψ−
u = (

uc
1 uc

2 uc
3

)T
, (55)

where all the u-quark fields are still Weyl spinors, we can also define Ψ ±
u = (ψ+

u ψ−
u )T . Then,

the mass term is written in the form

−(1/2)
[
Ψ ±T

u Y±
u Ψ ±

u + H.c.
]
.

Here Y±
u is given by

Y±
u =

(
0 XT

u

Xu 0

)
, (56)

with

Xu = 1

3

(
κ311u −κ312u 0

−κ321u κ322u 0
−κ331u κ323u 0

)
, (57)

where the VEVs are defined in Eq. (25). The mass spectrum of the up quarks contains one
massless particle. However the lightest quark will get mass due its coupling to gluino as shown
in Fig. 7. Therefore the up quark’s mass is given by

mu ∝ αs sin(2θũ)

π
mg̃

[
M2

ũ1

M2 − m2
ln

(
M2

ũ1

m2

)
− M2

ũ2

M2 − m2
ln

(
M2

ũ2

m2

)]
, (58)
ũ1 g̃ g̃ ũ2 g̃ g̃
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Fig. 7. Diagram giving mass to up quark which does not appear in the superpotential, ũ is the up-squark.

Fig. 8. Diagram giving mass to quark d which does not appear in the superpotential, g̃ is the gluino, d̃i , i = 1,2, is the
down-squark.

where αs = g2
s /(4π), mg̃ and mũ are the masses of the gluino and up-squark, respectively, and

θũ is the mixing angle of left- and right-handed up-squarks given in Eq. (64).
Let us consider the d-quark type. Doing similarly as in the up quark sector, we define Ψ ±

d =
(ψ+

d ψ−
d )T , then the mass term is written in the form −(1/2)[Ψ ±T

d Y±
d Ψ ±

d + H.c.] where Y±
d is

given by

Y±
d =

(
0 XT

d

Xd 0

)
, (59)

with

Xd = 1

3

( 0 0 0
0 0 0

κ11u
′ κ12u

′ κ13u
′

)
. (60)

In this sector, there are two massless eigenvalues. We can implement the same mechanism ana-
lyzed in [47] to give mass to d- and s-quarks. Thus, the model under consideration is compatible
with chiral theory.

Analogously, looking at Fig. 8 and Eq. (64), we get the expression for mass of d-quark [40]

md ∝ αs sin(2θ
d̃
)

π
mg̃

[ M2
d̃1

M2
d̃1

− m2
g̃

ln

(M2
d̃1

m2
g̃

)
−

M2
d̃2

M2
d̃2

− m2
g̃

ln

(M2
d̃2

m2
g̃

)]
. (61)

For the s-quark, looking at Fig. 9 and Eq. (66), we obtain [47]

ms = αsmg̃

4π3

2∑
α=1

{
R

(d)
1α R

(d)
2α

m2
g̃

(m2
g̃

− m2
d̃α

)
ln

(
m2

g̃

m2
d̃α

)

+ R
(d)
1α+2R

(d)
2α+2

m2
g̃

(m2
g̃

− m2
d̃α+2

)
ln

(
m2

g̃

m2
d̃α+2

)

+ R
(d)
1α R

(d)
2α+2

(m2
˜ − m2

˜ )(m2
g̃

− m2
˜ )(m2

˜ − m2
g̃
)

(
δd

12

)
LR

M2
SUSY
dα dα+2 dα dα+2
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Fig. 9. Diagram giving mass to s-quark which does not appear in the superpotential, g̃ is the gluino, s̃i and b̃i , i = 1,2,
are the squark s and sbottom, respectively.

×
[
m2

d̃α
m2

d̃α+2
ln

( m2
d̃α

m2
d̃α+2

)
+ m2

d̃α
m2

g̃ ln

(
m2

g̃

m2
d̃α

)
+ m2

d̃α+2
m2

g̃ ln

(m2
d̃α+2

m2
g̃

)]}
, (62)

where θ
d̃

are mixing angles, Rd
βα is defined at Eq. (66) and m2

d̃α
are the eigenvalues of Eq. (65)

and they are the physical masses of s̃1, s̃2, b̃1 and b̃2.
The electron mass is given by Eq. (51), the mass of up quarks is given by Eq. (58) and the

down quark is given by Eq. (61). Note that the quark masses are proportional to gs while lepton
masses are proportional to g. The fact that gs � g gives an explanation why quarks are heavier
than the leptons. The mass of s-quark is given by Eq. (62), comparing this formula with Eq. (61)
we can explain why s-quark is heavier than d-quark.

5.5. Sfermions

It is known that in the general case, the sfermions have a flavor mixing. It leads to all sfermions
mass matrices are 6 × 6 matrices [47]. Therefore the slepton sector contains lepton flavor vio-
lation at the tree level. In order to avoid this problem we will neglect the generation mixing in
the slepton sector. This assumption is not held for all other squark sectors. Each 6 × 6 slepton
mass matrix can be divided into three 2 × 2 mass matrices. The off diagonal left–right mixing is
proportional to the fermion masses.

Here, we will only present the main formulas. In the case of charged sleptons we can generally
write 2 × 2 mass matrices

M2
f̃

=
(

m2
f̃L

af mf

af mf m2
f̃R

)
= (

Rf̃
)(

m2
f̃1

0

0 m2
f̃2

)
Rf̃ , (63)

where f̃ = ẽ, μ̃, τ̃ . The weak eigenstates f̃L and f̃R are thus related to their mass eigenstates f̃1
and f̃2, where f̃1 is the lighter sfermion, by(

f̃1

f̃2

)
=Rf̃

(
f̃L

f̃R

)
, Rf̃ =

(
cos θ

f̃
sin θ

f̃

− sin θ
f̃

cos θ
f̃

)
, (64)

where θ ˜ is the slepton mixing angle.

f
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The four component vectors for up-squarks and down-squarks are, respectively, (ũ1L, ũ2L,
ũ1R , ũ2R) and (d̃1L, d̃2L, d̃1R , d̃2R). Thus, the squark squared mass matrices are given by

M2
ũ,d̃

=

⎛
⎜⎜⎜⎜⎝

M2
L̃,c{s} (M2

Ũ{D̃})LL mc{s}Ac{s} (M2
Ũ {D̃})LR

(M2
Ũ{D̃})LL M2

L̃t{b} (M2
Ũ{D̃})RL mt{b}At{b}

(M2
Ũ{D̃})LR (M2

Ũ{D̃})RL M2
R̃c{s} (M2

Ũ{D̃})RR

(M2
Ũ{D̃})LR mt{b}At{b} (M2

Ũ{D̃})RR M2
R̃t{b}

⎞
⎟⎟⎟⎟⎠ . (65)

In order to diagonalize M2
ũ{d̃}, two rotation 4 × 4 matrices, R(u) and R(d), one for the up-

squarks and the other for down-squarks, are needed. Thus the squark mass eigenstates (q̃ ′
α) and

the weak squark eigenstates (q̃α) are related by

q̃ ′
α =

∑
R

(q)
αβ q̃β . (66)

One obtains the squark mass eigenvalues and eigenstates after the diagonalization procedure as
indicated in Ref. [48].

5.6. Gluinos, exotic quarks and sfermions

For the exotic quarks and gluinos, their masses are the same as presented in [38].

6. Higgs potential

As usual, the scalar Higgs potential is written as

V3-3-1 = VD + VF + Vsoft (67)

with

VD = −LD = 1

2

(
DaDa + DD

)
= g′2

12

(
ρ̄ρ − ρ̄′ρ′ − χ̄χ + χ̄ ′χ ′)2

+ g2

8

∑
i,j

(
ρ̄iλ

a
ij ρj + χ̄iλ

a
ijχj − ρ̄′

iλ
∗a
ij ρ′

j − χ̄ ′
iλ

∗a
ij χ ′

j

)2
,

VF = −LF =
∑
F

F̄μFμ

=
∑

i

[∣∣∣∣μρ

2
ρ′

i

∣∣∣∣
2

+
∣∣∣∣μχ

2
χ ′

i

∣∣∣∣
2

+
∣∣∣∣μρ

2
ρi

∣∣∣∣
2

+
∣∣∣∣μχ

2
χi

∣∣∣∣
2]

, (68)

Vsoft = −LSMT = m2
ρρ̄ρ + m2

χ χ̄χ + m2
ρ′ ρ̄′ρ′ + m2

χ ′ χ̄ ′χ ′, (69)

where m2
ρ,m2

χ ,m2
ρ′ ,m2

χ ′ have the mass dimension.

All the four neutral scalar components ρ0, χ0, ρ′0, χ ′0 gain non-zero vacuum expectation
values. Expansions of the neutral scalars around their VEVs are usually
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〈ρ〉 = 1√
2

( 0
vρ + Hρ + iFρ

0

)
,

〈
ρ′〉 = 1√

2

( 0
vρ′ + Hρ′ + iFρ′

0

)
,

〈χ〉 = 1√
2

( 0
0

vχ + Hχ + iFχ

)
,

〈
χ ′〉 = 1√

2

( 0
0

vχ ′ + Hχ ′ + iFχ ′

)
. (70)

Due to the requirement that the potential to reach a minimum at the chosen VEV’s, which is
equivalent to the condition of absence of the linear terms in fields, we get a system of constraint
equations

12m2
ρ + 3μ2

ρ + g2(2v2
ρ − 2v′2

ρ − v2
χ + v′2

χ

) + g′2(v2
ρ − v′2

ρ − v2
χ + v′2

χ

) = 0,

12m2
ρ′ + 3μ2

ρ − g2(2v2
ρ − 2v′2

ρ − v2
χ + v′2

χ

) − g′2(v2
ρ − v′2

ρ − v2
χ + v′2

χ

) = 0,

12m2
χ + 3μ2

χ − g2(v2
ρ − v′2

ρ − 2v2
χ + 2v′2

χ

) − g′2(v2
ρ − v′2

ρ − v2
χ + v′2

χ

) = 0,

12m2
χ ′ + 3μ2

χ + g2(v2
ρ − v′2

ρ − 2v2
χ + 2v′2

χ

) + g′2(v2
ρ − v′2

ρ − v2
χ + v′2

χ

) = 0.

Let us consider the Higgs mass spectrum.

6.1. Neutral scalar Higgs

Let us consider the mass spectrum of the neutral scalar Higgs bosons in the model under
consideration. The mass Lagrangian of neutral scalar Higgs can be written in the form

LH = −1

2
(Hρ,Hχ,Hρ′ ,Hχ ′)M2

H(Hρ,Hχ,Hρ′ ,Hχ ′)T , (71)

where

M2
H = 1

3

(
2g2 + g′2)v2

χ ′

⎛
⎜⎜⎝

t2
1 −at1 tanα −at1t2 at1

−at1 tanα tan2 α at2 tanα − tanα

−at1 at2 tanα t2
2 −at2

at1 − tanα −at2 1

⎞
⎟⎟⎠

= 1

3

(
2g2 + g′2)v2

χ ′M2
1H (72)

with

a = g2 + g′2

2g2 + g′2
(0 < a < 1),

t1 = vρ

vχ ′
, t2 = vρ′

vχ ′
(t1, t2 � 1) and

tanα = vχ

vχ ′
. (73)

Because det(M2
1H) = 0, we get a zero-eigenvalue. It is convenient to diagonalize the neutral

Higgs mass matrices in two stages. First, we find the transformation for original basis, particu-
larly

H = CH1 ↔
⎛
⎜⎝

Hρ

Hχ

Hρ′

⎞
⎟⎠ =

⎛
⎜⎝

0 1 0 0
cosα 0 0 sinα

0 0 1 0

⎞
⎟⎠

⎛
⎜⎝

H1ρ

H1χ

H1ρ′

⎞
⎟⎠ . (74)
Hχ ′ sinα 0 0 − cosα H1χ ′



D.T. Huong et al. / Nuclear Physics B 870 (2013) 293–322 311
In the new basis (H1ρ,H1χ ,H1ρ′ ,H1χ ′), we have

M2
2H = CT M2

1HC

=

⎛
⎜⎜⎝

0 0 0 0
0 t2

1 −at1t2 − at1
cosα

0 −at1t2 t2
2

at2
cosα

0 − at1
cosα

at2
cosα

1
cosα2

⎞
⎟⎟⎠ =

(
0 0
0 M3×3

)
. (75)

We would like to remind the reader of the energy scale vχ , vχ ′ � vρ, vρ′ . This limit leads to
tanα � t1, t2 and the matrix M3 is a hierarchical matrix. Hence, it is very useful to use the method
of block diagonalization in order to find the eigenvectors and eigenvalues of the matrix M3.

Let us rewrite matrix M2
2H in the basis (H1χ ′ ,H1ρ′ ,H1χ ). In this basis, the matrix M3 is 3×3

matrix which has form as follows:

M3×3 =
⎛
⎜⎝

1
cos2 α

at2
cosα

− at1
cosα

at2
cosα

t2
2 −at1t2

− at1
cosα

−at1t2 t2
1

⎞
⎟⎠ . (76)

Next we can use a unitary matrix U1 such as

U1 =
⎛
⎝ 1 at2

cosα
− at1

cosα
at2

cosα
1 0

− at1
cosα

0 1

⎞
⎠ (77)

in order to transform M3 into the approximately block-diagonal form and also we change the
basis of H1 = (H1χ ,H1ρ,H1ρ′) into the new basis H2 = (H2χ ,H2ρ,H2ρ′). Details are as follows

H2 = U−1
1 H1, (78)

U
†
1 M3U1 �

( 1
cos2 α

0

0 M2×2

)
(79)

with

M2×2 =
(

t2
1 − a2t2

2 (a − 1)at1t2

(a − 1)at1t2 t2
2 − a2t2

1

)
. (80)

Eq. (79) proves the existence of the eigenvalues with value tan2 α+1. The matrix M2×2 produces
two eigenvalues as follows

m3ρ = 1

2

((
1 − a2)(t2

1 + t2
2

) −
√(

1 + a2
)2(

t2
1 − t2

2

)2 − 4(a − 1)2a2t2
1 t2

2

)
,

m3ρ′ = 1

2

((
1 − a2)(t2

1 + t2
2

) +
√(

1 + a2
)2(

t2
1 − t2

2

)2 − 4(a − 1)2a2t2
1 t2

2

)
(81)

with two eigenstates are, respectively
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H3ρ = cζ H2ρ − sζ H2ρ′ ,

H3ρ′ = sζ H2ρ + cζ H2ρ′ (82)

with sζ ≡ sin ζ, cζ ≡ cos ζ and ζ is determined through tan ζ , as follows

tan 2ζ = 2a(1 − a)t1t2

(1 + a)(t2
1 − t2

2 )
. (83)

Let us summarize the neutral Higgs mass spectrum. There is one massless Higgs namely χ ′
1 and

there are three massive states. One heavy Higgs is (H2χ ) with mass

mH 2
2χ

= 1

3

(
2g2 + g′2)(1 + tan2 α

)
v2
χ ′ . (84)

Two remaining Higgs are H3ρ,H3ρ′ with masses, respectively

m2
H3ρ

= 1

3

(
2g2 + g′2)m3ρv2

χ ′ ,

m2
H3ρ′ = 1

3

(
2g2 + g′2)m3ρ′v2

χ ′ . (85)

6.2. Pseudo-scalar Higgs

The model under consideration contains four massless pseudo-scalar Higgs bosons, namely
Fρ,Fχ ,F ′

ρ,F ′
χ , and the mass matrix elements in this case are all equal to zero. It means that all

pseudoscalars are massless.

6.3. Singly charged Higgs boson

In the basis (ρ−, ρ′−, χ−, χ ′−), the mass Lagrangian for singly charged Higgs bosons has the
form

LSingly
charged = (

ρ−, ρ′−, χ−, χ ′−)
MSingly

charged

(
ρ−, ρ′−, χ−, χ ′−)T (86)

with the mass matrix elements are given by

M11 = g2

8
v2
ρ′ , M12 = −g2

8
vρvρ′ , M13 = M14 = M23 = M24 = 0,

M22 = g2

8
v2
ρ, M33 = g2

8
v2
χ ′ , M44 = g2

8
v2
χ , M34 = g2

8
vχv′

χ . (87)

The matrix Msingle
charged produces two massless states, namely

H+
ρ1

= 1

v2
ρ + v2

ρ′

(
vρvρ′ρ′+ + v2

ρ′ρ+)
, (88)

H+
ρ2

= 1

v2
χ + v2

χ ′

(
vχvχ ′χ ′+ + v2

χ ′χ+)
, (89)

and two massive singly charged Higgs bosons
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H+
ρ3

= 1

v2
ρ + v2

ρ′

(−vρvρ′ρ′+ + v2
ρρ+)

, (90)

H+
ρ4

= 1

v2
χ + v2

χ ′

(−vχvχ ′χ ′+ + v2
χχ+)

(91)

and their eigenvalues are, respectively

m2
H+

ρ3
= g2

8

(
v2
ρ + v2

ρ′
) = m2

W,

m2
H+

ρ4
= g2

8

(
v2
χ + v2

χ ′
) = m2

V . (92)

The singly charged Higgs bosons part contains two massless states and two massive states. One
has mass equal to the mass of the W gauge boson and other one has mass equal to those of the V

gauge boson. This characteristic property of the considered model is similar to that of the SUSY
economical 3-3-1 model [50]. We would like to emphasized that in SUSY models, the Higgs self-
couplings are the gauge couplings. Hence the Higgs mass spectrum can be related to the gauge
mass spectrum. One of the main points we would like to remind that because the Higgs sector in
SUSY economical 3-3-1 model and the model under consideration are very simple. Hence, we
can easily obtain the Higgs mass spectrum. However the other SUSY versions of 3-3-1 models,
the Higgs sector is very complicated, and it is hard to obtain the Higgs mass spectrum. Hence,
we cannot see the relation between the masses of the charged scalar and vector fields in other
SUSY 3-3-1 versions.

6.4. Doubly charged Higgs boson

The model under consideration contains four doubly charged Higgs bosons, namely ρ−−,
χ−−, ρ′−−, χ ′−−. On this basis, we obtain the mass matrix for doubly charged Higgs boson as
follows

M2
H−− = g2

8

⎛
⎜⎜⎝

t2
2 + t2

3 − 1 t1t3 −t1t2 −t1

t1t3 t2
1 − t2

2 + 1 −t2t3 −t3

−t1t2 −t2t3 t2
1 − t2

3 + 1 t2

−t1 −t3 t2 −t2
1 + t2

2 + t2
3

⎞
⎟⎟⎠ . (93)

The mass matrix in Eq. (93) produces the mass eigenvalues

m2
H−−

1
= 0, m2

H−−
2

= g2

8

(
v2
χ ′ − v2

χ + v2
ρ − v2

ρ′
)
,

m2
H−−

3
= −m2

H−−
2

, m2
H−−

4
= g2

8

(
v2
χ ′ + v2

χ + v2
ρ + v2

ρ′
) = m2

U−− (94)

and their mass eigenvectors are, respectively

H−−
1 = 1√

1 + t2
1 + t2

2 + t2
3

(−t1ρ
−− + t3χ

−− − t2ρ
′−− + χ ′−−)

,

H−−
2 = 1√

1 + t2

(
t2χ

−− + ρ′−−)
,

2
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Fig. 10. The invisible decay rate of Zμ into the massless of the doubly charged Higgs bosons by studying random scan
over the parameter space w = 103–105 GeV, tw = 0–10 and tv = 0–100, v′

ρ = 246 GeV.

H−−
3 = 1√

1 + t2
1

(
ρ−− + t1χ

′−−)
,

H−−
4 = CH−−

4

(
−t1ρ

−− − (1 + t2
1 )t3

t2
2 + t2

3

χ−− + (1 + t2
1 )t2

t2
2 + t2

3

ρ′−− + χ ′−−
)

(95)

with CH−−
4

=
√

(1+t2
1 )(1+t2

1 +t2
2 +t2

3 )

t2
2 +t2

3
.

The mass spectrum of the doubly charged Higgs given in Eqs. (94) shows that the model con-
tains one massive particle with mass equal to that of the doubly charged gauge boson U−− and
at least one tachyon field, one massless field H−−

1 which is identified to the Goldstone boson. To
remove tachyon in the model, we have to include the following condition: v2

χ ′ − v2
χ = v2

ρ − v2
ρ′ .

This leads to appear two other massless particles H−−
2 ,H−−

3 in the doubly charged Higgs spec-
trum. The presence of these particles maybe effect to the invisible Z bosons decay modes. Let
us consider the invisible decay modes of Zμ into the massless doubly charged Higgs, namely
Zμ → Hρ−−

2
Hρ++

2
, Zμ → Hρ−−

3
Hρ++

3
. Fig. 10 predicts the invisible decay rate of Zμ into the

massless doubly charged Higgs bosons by studying random scan over the parameter space, such

as w = 103–105GeV, tv = v′
ρ

vρ
= 0–100, tw = v′

χ

vχ
= 0–10 and v′

ρ = 246 GeV. The obtained re-
sult predicts the contribution of massless doubly charged Higgs into invisible partial width of
Z decay modes is very suppressed. It is suitable to limit on Z-decays into unknown new par-
ticles width Γnew < 6.3 MeV at 95% confidence level given in Ref. [49]. If we compare our
predicted results with constraint given in Ref. [49], we obtain very hard constraint on the tw
parameter particularly tw = 0.65–0.85. On the other hand, Fig. 11 predicts the Z bosons de-
cay into two doubly charged Higgs decay width by studying random scan over tw = 0.68–0.8,
v′
ρ = 246 GeV, wχ = 103–105 GeV. Fig. 11 plays probability to obtain the small invisible Z de-

cay width (Γinvisible � 2) MeV is large and the probability is almost independent upon parameter
tv . It means that there is no constraint on the tv parameter in this case.

7. Conclusions

We have built the supersymmetric version of the reduced minimal 3-3-1 model with two Higgs
triplets. We have studied the mass spectrum of all particles contained in the model. The exact
mass spectrum of gauge bosons is studied. In this sector beyond the usual gauge bosons, W±,Z

gauge bosons, we have two additional charged bosons, V ± and U±±, and one additional neutral
gauge boson Z′. The constraint on the gauge mass is given by MZ′ > MU > MV > MZ > MW .
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Fig. 11. The invisible decay rate of Zμ into the massless doubly charged Higgs bosons as the function of tv by studying
random scan over the parameter space w = 103–105 GeV, tw = 0.68–0.8, v′

ρ = 246 GeV.

In the charged-fermion sector only the tau, top, bottom and charm quarks get their masses at
tree level, the others get their masses at one loop level. In the neutrino sector only one neutrino
gets mass at tree level, the others two νμ and νe get their masses at one loop level. The neutrino
masses are smaller than those of the charged leptons. It means that we explained the hierarchy
of fermion masses in the model under consideration. In the Higgs sector, we can solve exactly
the mass eigenstates and mass eigenvalues for charged Higgs bosons. The masses of the massive
charged Higgs equal those of the charged gauge bosons, namely m2

H±
ρ3

= M2
W± ,m2

H±
ρ4

= M2
V ± and

m2
H−−

4
= M2

U−− . In addition to massive charged Higgs bosons, in the sector of the doubly charged

Higgs bosons it also appears the tachyon field. If the tachyon field is removed, the model contains
two massless doubly charged Higgs bosons. By studying the effect of Z → H++

2,3 H−−
2,3 modes on

invisible decay width of the Z bosons, we obtain the narrow constraint on tw = 0.65–0.8. In the
neutral Higgs bosons, it is very hard to obtain the exact mass spectrum. However, with the help of
the relation u,u′ � w,w′, the diagonalization of neutral Higgs boson sector has been performed
by using the method of block diagonalization. It leads to the neutral Higgs sector contained three
massive states and one massless particle. All pseudo-scalar particles are massless. Some of which
are identified to the Goldstone bosons and the remaining pseudo-scalar particles can be identified
to the axion. This analysis is not considered in details in this paper.
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Appendix A. Lagrangian

We are going to write the Lagrangians in terms of the fields in this model

A.1. Lepton Lagrangian

LLepton =
∫

d4θ ˆ̄L exp

[
2

(
g

λa

2
V̂ a

)]
L̂

= Llep +Llep +Llep +Llep +Llep +Llep +Llep
. (A.1)
llV l̃l̃V ll̃Ṽ l̃l̃V V kin F D
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The leptons in this model interact only with the weak SU(3)L boson, V a
μ , and they do not directly

couple to the U(1)X boson Vμ. The interaction between leptons and gauge bosons in component
is given by

Llep
llV = g

2
L̄σ̄ μλaLV a

μ, (A.2)

where λa are the usual Gell-Mann matrices. The next part is the slepton gauge boson interaction

Llep
l̃ l̃V

= − ig

2

[
L̃λa∂μ ¯̃

L − ¯̃
Lλa∂μL̃

]
V a

μ . (A.3)

The interaction between lepton–slepton–gaugino is given by the following term

Llep
ll̃Ṽ

= − ig√
2

(
L̄λaL̃λ̄a

A − ¯̃
LλaLλa

A

)
, (A.4)

and the four-interaction between sleptons and gauge bosons

Llep
l̃ l̃V V

= g2

4
V a

μV bμ ¯̃
LλaλbL̃. (A.5)

The kinetic parts of the leptons and sleptons are

Llep
kin = −|∂μL̃|2 − iLσμ∂μL̄. (A.6)

The last two terms in Eq. (A.1) are the usual F and D terms given by

Llep
F = |FL|2,

Llep
D = ¯̃

LλaL̃Da. (A.7)

A.2. Quark Lagrangian

LQuarks =
∫

d4θ
[ ˆ̄Q1e

2[gs V̂c+gV̂ +(2g′/3)V̂ ′]Q̂1 + ˆ̄Qαe2[gs V̂c+g ˆ̄V −(g′/3)V̂ ′]Q̂α

+ ˆ̄uie
2[gs

ˆ̄V c−(2g′/3)V̂ ′]ûi + ˆ̄die
2[gs

ˆ̄V c+(g′/3)V̂ ′]d̂i

+ ˆ̄Je2[gs
ˆ̄V c−(5g′/3)V̂ ′]Ĵ + ˆ̄jβe2[gs

ˆ̄V c+(4g′/3)V̂ ′]ĵβ

]
= LqqV +Lq̃q̃V +L

qq̃Ṽ
+Lq̃q̃V V +Lquark

kin +Lquark
F +Lquark

D (A.8)

with i, j, k = 1,2,3, α = 2,3 and β = 1,2. In this case, as in the lepton sector we can write

Lquark
kin = Q̃i�Q̃∗

i + ũc
i�ũc∗

i + d̃c
i �d̃c∗

i + J̃ c
i �J̃ c∗

i − iQiσ
μ∂μQ̄i − iuc

i σ
μ∂μūc

i

− idc
i σ

μ∂μd̄c
i − iJ c

i σμ∂μJ̄ c
i ,

Lquark
F = |FQi

|2 + |Fui
|2 + |Fdi

|2 + |FJi
|2,

Lquark
D = gs

2

( ¯̃
Qiλ

aQ̃i − ¯̃uc

i λ
∗aũc

i − ¯̃
d

c

i λ
∗ad̃c

i − ¯̃
J

c

i λ
∗aJ̃ c

i

)
Da

c

+ g

2

( ¯̃
Q3λ

aQ̃3 − ¯̃
Qαλ∗aQ̃α

)
Da

+ g′
√

[
2 ¯̃
Q3Q̃3 − 1 ¯̃

QαQ̃α − 2 ¯̃uc

i ũ
c
i + 1 ¯̃

d
c

i d̃
c
i − 5 ¯̃

J
c
J̃ c + 4 ¯̃

j
c

β j̃ c
β

]
D,
2 6 3 3 3 3 3 3
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LqqV = gs

2

(
Q̄i σ̄

μλaQi − ūc
i σ̄

μλ∗auc
i − d̄c

i σ̄
μλ∗adc

i − J̄ c
i σ̄ μλ∗aJ c

i

)
ga

μ

+ g

2

(
Q̄3σ̄

μλaQ3 − Q̄ασ̄ μλ∗aQα

)
V a

μ

+ g′

2
√

6

(
2

3
Q̄3σ̄

μQ3 − 1

3
Q̄ασ̄ μQα − 2

3
ūc

i σ̄
μuc

i

+ 1

3
d̄c
i σ̄

μdc
i − 5

3
J̄ cσ̄ μJ c + 4

3
j̄ c
β σ̄ μjc

β

)
Bμ,

Lq̃q̃V = −igs

2

[(
Q̃iλ

a∂μ ¯̃
Qi − ¯̃

Qiλ
a∂μQ̃i − ũc

i λ
∗a∂μ ¯̃uc

i + ¯̃uc

i λ
∗a∂μũc

i

− d̃c
i λ

∗a∂μ ¯̃
d

c

i + ¯̃
d

c

i λ
∗a∂μd̃c

i − J̃ c
i λ∗a∂μ ¯̃

J
c

i + ¯̃
J

c

i λ
∗a∂μJ̃ c

i

)
ga

μ

]
− ig

2

(
Q̃3λ

a∂μ ¯̃
Q3 − ¯̃

Q3λ
a∂μQ̃3 − Q̃αλ∗a∂μ ¯̃

Qα + ¯̃
Qαλ∗a∂μQ̃α

)
V a

μ

− ig′

2
√

6

[
2

3

(
Q̃3∂

μ ¯̃
Q3 − ¯̃

Q3∂
μQ̃3

) − 1

3

(
Q̃α∂μ ¯̃

Qα − ¯̃
Qα∂μQ̃α

)
− 2

3

(
ũc

i ∂
μ ¯̃uc

i − ¯̃uc

i ∂
μũc

i

) + 1

3

(
d̃c
i ∂

μ ¯̃
d

c

i − ¯̃
d

c

i ∂
μd̃c

i

)
− 5

3

(
J̃ c∂μ ¯̃

J
c − ¯̃

J
c
∂μJ̃ c

) + 4

3

(
j̃ c
β∂μ ¯̃

j
c

β − ¯̃
j

c

β∂μj̃ c
β

)]
Bμ,

L
qq̃Ṽ

= −igs√
2

[(
Q̄iλ

aQ̃i − ūc
i λ

∗aũc
i − d̄c

i λ
∗ad̃c

i − J̄ c
i λ∗aJ̃ c

i

)
λ̄a

c

− ( ¯̃
Qiλ

aQi − ¯̃uc

i λ
∗auc

i − ¯̃
d

c

i λ
∗adc

i − ¯̃
J

c

i λ
∗aJ c

i

)
λa

c

]
− ig√

2

[(
Q̄3λ

aQ̃3 − Q̄αλ∗aQ̃α

)
λ̄a

A − ( ¯̃
Q3λ

aQ3 − ¯̃
Qαλ∗aQα

)
λa

A

]
− ig′

2
√

3

[(
2

3
Q̄3Q̃3 − 1

3
Q̄αQ̃α − 2

3
ūc

i ũ
c
i + 1

3
d̄c
i d̃

c
i − 5

3
J̄ cJ̃ c + 4

3
j̄ c
β j̃ c

β

)
λ̄B

−
(

2

3
¯̃
Q3Q3 − 1

3
¯̃
QαQα − 2

3
¯̃uc

i u
c
i + 1

3
¯̃
d

c

i d
c
i − 5

3
¯̃
J

c
J c + 4

3
¯̃
j

c

βjc
β

)
λB

]
,

Lq̃q̃V V = −1

4

[
g2

s

( ¯̃
Qiλ

aλbQ̃i + ¯̃uc

i λ
∗aλ∗bũc

i

+ ¯̃
d

c

i λ
∗aλ∗bd̃c

i + ¯̃
J

c

i λ
∗aλ∗bJ̃ c

i

)
ga

μgbμ
]

− 1

4

[
g2( ¯̃

Q3λ
aλbQ̃3 + ¯̃

Qαλ∗aλ∗bQ̃α

)]
V a

μV bμ

− 1

2

[
gsg

( ¯̃
Q3λ

aλbQ̃3 + ¯̃
Qαλaλ∗bQ̃α

)]
ga

μV bμ

− gsg
′

2
√

6

[
2

3
¯̃
Q3λ

aQ̃3 − 1

3
¯̃
QαλaQ̃α + 2

3
¯̃uc

i λ
∗aũc

i

− 1

3
¯̃
d

c

i λ
∗ad̃c

i + 5

3
¯̃
J

c
λ∗aJ̃ c − 4

3
¯̃
j

c

βλ∗aj̃ c
β

]
gaμBμ

− gg′
√

[
2 ¯̃
Q3λ

aQ̃3 + 1 ¯̃
Qαλ∗aQ̃α

]
V aμBμ
2 6 3 3
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− g′2

24

[
4

9

( ¯̃
Q3Q̃3 + ¯̃uc

i ũ
c
i

) + 1

9

( ¯̃
QαQ̃α + ¯̃

d
c

i d̃
c
i

)
+ 25

9
¯̃
J

c
J̃ c + 16

9
¯̃
j

c

β j̃ c
β

]
BμBμ, (A.9)

where we used the following short identities J1 = J , J2 = j1 and J3 = j2.

A.3. Scalar Lagrangian

LScalar =
∫

d4θ
[ ˆ̄ρe2gV̂ +g′V̂ ′

ρ̂ + ˆ̄χe2gV̂ −g′V̂ ′
χ̂

+ ˆ̄ρ′e2g ˆ̄V −g′ ˆ̄V ′
ρ̂′ + ˆ̄χ ′e2g ˆ̄V +g′ ˆ̄V ′

χ̂ ′]
= Lscalar

F +Lscalar
D +LHiggs +LHiggsinos +L

HH̃Ṽ
, (A.10)

where the terms with the auxiliary fields can be rewritten as

Lscalar
F = |Fρ |2 + |Fχ |2 + |Fρ′ |2 + |Fχ ′ |2,

Lscalar
D = g

2

[
ρ̄λaρ + χ̄λaχ − ρ̄′λ∗aρ′ − χ̄ ′λ∗aχ ′]Da

+ g′

2
√

6

[
ρ̄ρ − χ̄χ − ρ̄′ρ′ + χ̄ ′χ ′]D, (A.11)

while the kinetics terms are

LHiggs = (Dμρ)†(Dμρ
) + (Dμχ)†(Dμχ

)
+ (

Dμρ′)†(Dμρ′) + (
Dμχ ′)†(Dμχ ′),

LHiggsinos = i ¯̂ρσ̄μDμρ̂ + i ¯̂χσ̄μDμχ̂ + i ¯̂ρ ′σ̄ μDμρ̂′ + i ¯̂χ ′σ̄ μDμχ̂ ′. (A.12)

The covariant derivatives are given by

Dμφi = ∂μφi − ig

(
�Vμ.

�λ
2

)j

i

φj − ig′Xφi
T 9Bμφi,

Dμφi = ∂μφi − ig

(
�Vμ.

�λ
2

)j

i

φj − ig′Xφi
T 9Bμφi. (A.13)

The interaction between the scalar–gaugino–higgsino is given by

L
HH̃Ṽ

= − ig√
2

[ ¯̃ρλaρλ̄a
A − ρ̄λaρ̃λa

A + ¯̃χλaχλ̄a
A − χ̄λaχ̃λa

A

− ¯̃ρ′λ∗aρ′λ̄a
A + ρ̄′λ∗aρ̃′λa

A − ¯̃χ ′λ∗aχ ′λ̄a
A + χ̄ ′λ∗aχ̃ ′λa

A

]
− ig′

2
√

3

[ ¯̃ρρλ̄B − ρ̄ρ̃λB − ¯̃χχλ̄B

+ χ̄ χ̃λB − ¯̃ρ′ρ′λ̄B + ρ̄′ρ̃′λB + ¯̃χ ′χ ′λ̄B − χ̄ ′χ̃ ′λB

]
. (A.14)
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A.4. Gauge Lagrangian

LGauge = 1

4

[∫
d2θ

(
Wa

c Wa
c + WaWa + W ′W ′)

+
∫

d2θ̄
(
W̄ a

c W̄ a
c + W̄ aW̄ a + W̄ ′W̄ ′)]

= Ldc +Lgauge
D . (A.15)

The kinetic term has the following form

Ldc = −1

4

(
GaμνGa

μν + WaμνWa
μν + BμνBμν

)
− i

(
λ̄a

Cσ̄ μDC
μλa

C + λ̄a
Aσ̄μDL

μλa
A + λ̄B σ̄ μ∂μλB

)
, (A.16)

with

Ga
μν = ∂μga

ν − ∂νg
a
μ − gf abcgb

μgc
ν,

Wa
μν = ∂μV a

ν − ∂νV
a
μ − gf abcV b

μV c
ν ,

Bμν = ∂μBν − ∂νBμ,

DC
μλa

C = ∂μλa
C − gsf

abcgb
μλc

C,

DL
μλa

A = ∂μλa
A − gf abcV b

μλc
A, (A.17)

where f abc are the structure constants of the gauge group SU(3), and we have the usual self-
interactions (cubic and quartic) of the gauge bosons. The last term in Eq. (A.15) is

Lgauge
D = 1

2

(
Da

CDa
C + DaDa + DD

)
. (A.18)

A.5. Superpotential

The superpotential of the model is given in Eq. (23). The superpotential in terms of the fields
is given by

W2 = LW2
F +LHMT,

W3 = LW3
F +L

lll̃
+LllH +L

ll̃H̃
+L

lH̃H

+L
l̃HH

+LqqH +L
qq̃H̃

+Llqq̃ +L
l̃qq̃

, (A.19)

where

LW2
F = μρ

2

(
ρFρ′ + ρ′Fρ

) + μχ

2

(
χFχ ′ + χ ′Fχ

)
,

LHMT = −μρ

2
ρ̃i ρ̃

′
i − μχ

2
χ̃i χ̃

′
i ,

LW3
F = 1

3

[
3λ1εFLL̃L̃ + λ2ε(FLχρ + L̃Fχρ + L̃χFρ)

+ κ1
(
FQ1ρ

′d̃c
i + Q̃1Fρ′ d̃c

i + Q̃1ρ
′Fdi

)
+ κ2

(
FQ χ ′J̃ c + Q̃1Fχ ′ J̃ c + Q̃1χ

′FJ

)

1
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+ κ3
(
FQαρũc

i + Q̃αFρũc
i + Q̃αρFui

)
+ κ4

(
FQαχj̃ c

β + Q̃αFχ j̃ c
β + Q̃αχFjβ

)
+ κ5

(
FQαL̃d̃c

i + Q̂αFLd̃c
i + Q̃αL̃Fdi

)]
,

L
lll̃

= −λ1

3
ε(LLL̃ + L̃LL + LL̃L),

L
lH̃H

= −λ2

3
ε(Lχ̃ρ + Lχρ̃),

LqqH = −1

3

[
κ1Q1ρ

′dc
i + κ2Q1χ

′J c + κ3Qαρuc
i + κ4Qαχjc

β

]
,

L
qq̃H̃

= −1

3

[
κ1

(
Q1d̃

c
i + Q̃1d

c
i

)
ρ̃′ + κ2

(
Q1J̃

c + Q̃1J
c
)
χ̃ ′

+ κ3
(
Qαũc

i + Q̃αuc
i

)
ρ̃ + κ4

(
Qαj̃c

β + Q̃αjc
β

)
χ̃

]
,

Llqq̃ = −κ5

3

(
Qαd̃c

i + Q̃αdc
i

)
L,

L
l̃qq

= −κ5

3
QαL̃dc

i ,

L
l̃HH

= −λ2

3
L̃χρ. (A.20)

A.6. Superpotential

The superpotential of the model is given in Eq. (23). The superpotential in terms of the fields
is given by

W2 = LW2
F +Lη̂L +LHMT,

W3 = LW3
F +L

lll̂
+LllH +L

ll̂Ĥ
+L

lĤH

+L
l̂HH

+LqqH +L
qq̂Ĥ

+Llqq̂ +L
l̂qq̂

, (A.21)

where

LW2
F = μρ

2

(
ρFρ′ + ρ′Fρ

) + μχ

2

(
χFχ ′ + χ ′Fχ

)
,

LHMT = −μρ

2
ρ̂i ρ̂

′
i − μχ

2
χ̂i χ̂

′
i ,

LW3
F = 1

3

[
3λ1εFLL̂L̂ + λ2ε(FLχρ + L̂Fχρ + L̂χFρ)

+ κ1
(
FQ1ρ

′d̂c
i + Q̂1Fρ′ d̂c

i + Q̂1ρ
′Fdi

)
+ κ2

(
FQ1χ

′Ĵ c + Q̂1Fχ ′ Ĵ c + Q̂1χ
′FJ

)
+ κ3

(
FQαρûc

i + Q̂αFρûc
i + Q̂αρFui

)
+ κ4

(
FQαχĵ c

β + Q̂αFχ ĵ c
β + Q̂αχFjβ

)
+ κ5

(
FQαL̂d̂c

i + Q̂αFLd̂c
i + Q̂αL̂Fdi

)]
,

L
lll̂

= −λ1
ε(LLL̂ + L̂LL + LL̂L),
3
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L
lĤH

= −λ2

3
ε(Lχ̂ρ + Lχρ̂),

LqqH = −1

3

[
κ1Q1ρ

′dc
i + κ2Q1χ

′J c + κ3Qαρuc
i + κ4Qαχjc

β

]
,

L
qq̂Ĥ

= −1

3

[
κ1

(
Q1d̂

c
i + Q̂1d

c
i

)
ρ̂′ + κ2

(
Q1Ĵ

c + Q̂1J
c
)
χ̂ ′

+ κ3
(
Qαûc

i + Q̂αuc
i

)
ρ̂ + κ4

(
Qαĵc

β + Q̂αjc
β

)
χ̂

]
,

Llqq̂ = −κ5

3

(
Qαd̂c

i + Q̂αdc
i

)
L,

L
l̂qq

= −κ5

3
QαL̂dc

i ,

L
l̂HH

= −λ2

3
L̂χρ. (A.22)
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