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Proteins, chain molecules of amino acids, behave in ways which are similar to each other yet quite
distinct from standard compact polymers. We demonstrate that the Flory theorem, derived for
polymer melts, holds for compact protein native state structures and is not incompatible with the
existence of structured building blocks such asa helices andb strands. We present a discussion on
how the notion of the thickness of a polymer chain, besides being useful in describing a chain
molecule in the continuum limit, plays a vital role in interpolating between conventional polymer
physics and the phase of matter associated with protein structures. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1940059g

Proteins are chain molecules made up of small chemical
entities called amino acids. In spite of their small size, the
diverse physical and chemical attributes of the twenty types
of naturally occurring amino acids and the history-dependent
role played by evolution, globular proteins exhibit a range of
striking common characteristics.1 Traditional attempts at cre-
ating a framework for understanding proteins using ideas
from polymer physics have been largely unsuccessful as
stated by Flory.2 “Synthetic analogs of globular proteins are
unknown. The capability of adopting a dense globular con-
figuration stabilized by self-interactions and of transforming
reversibly to the random coil are peculiar to the chain mol-
ecules of globular proteins alone.” The standard models of
polymer physics do not provide an explanation for why there
are a relatively small numbersof order thousandd native state
folds,3 why they are inevitably made up of helices and
sheets4 and how these folds are adapted for biological func-
tion especially enzymatic activity.

In this paper, we seek to bridge this apparent gap be-
tween polymer physics and the physics of compact biomol-
ecules. We do this in two complementary ways: first, we
study the average behavior of compact protein native state
structures and show that, in spite of being made up mainly of
a helices andb strands, the Flory theorem derived for poly-
mer melts5,6 holds reasonably well for native state protein
structures as well; second, we demonstrate that the notion of
an anisotropic chain of nonzero thickness is valuable for ex-
trapolating from conventional polymer physics to the phase
used by nature to house protein structures.

Let us begin with an analysis of protein native state
structures from the protein data bank7 to assess the validity

of the Flory theorem. We consider a coarse-grained descrip-
tion in which each amino acid is represented by itsCa atom,
the hinges of the protein backbone. It is well known from
Flory’s work in polymer physics that polymer melts or even
a long compact polymer has very interesting substructure.5,8,9

The basic idea is that a short labeled piece of a polymer
chain from within such a dense melt exhibits statisticssdis-
tributions and an end-to-end distanced which are characteris-
tic of random-walk behavior. Physically, the effective ab-
sence of any interaction is believed to arise from the inability
of the chain to discern whether it is making contacts with
itself or with other chains. Does the presumed validity of the
Flory theorem and the existence of Gaussian random-walk
statistics for short chain segments preclude structures built
up from helices and sheets? Interestingly, it has been sug-
gested recently10 that the model denatured proteins can ex-
hibit random coil statistics in spite of having significant sec-
ondary structure.

Our principal results are summarized in Figs. 1–5 and
demonstrate that for compact proteins, characterized by an
end-to-end distance scaling approximately as the cube root
of the protein sizessee Fig. 1d:

s1d The Flory theorem is found to holdsFig. 2d for protein
segments made up of more than 48 amino acids. The
existence of secondary motifs results in an effective
persistence length of this order beyond which one ob-
tains Gaussian statisticssFig. 3d accompanied by
random-walk behavior.

s2d The validity of the Flory theorem isnot incompatible
with the existence of secondary motifs.9

s3d One can understand the crossover in Fig. 2 by studying
correlation functions of the tangent and the binormal
vectors along the chainsFigs. 4 and 5d.adElectronic mail: banavar@psu.edu
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Our results vividly demonstrate that proteins exhibit
properties that are not incompatible with those of generic
compact polymers. However, as stated before, the standard
models of polymer physics do not account for the rich phase
of matter associated with protein native state structures. In
order to proceed, let us recall that a dominant structural motif
used in biomolecular structures is the helix.12,13An everyday
object which, on compaction, can be coiled naturally and
efficiently into a helical shape is a garden hose or a tube.14 A
tube can be thought of as a thick polymer, a polymer chain

endowed with a natural thickness. We will proceed to study
the attributes of a tube and its relationship with conventional
descriptions of polymers.

In the continuum, a nonzero chain thickness serves a
valuable purpose. Consider first a polymer chain of vanish-

FIG. 1. Log-log plot of the radius of gyrationRg of a set of 700 proteins
obtained from the Protein Data BanksPDBd of sRef. 11d versus their length
L or the number of constituent amino acids.

FIG. 2. Log-log plot of the end-to-end distanceR versusl for protein seg-
ments. The plot was obtained by averaging over all segments of lengthl
selected from the data set depicted in Fig. 1. For a givenl, R was determined
as an average over all segments of that length in proteins whose lengths are
greater thanl3/2, in order to avoid finite-size effectssRef. 9d. The error bars
are of the order of the size of the symbols. Note the plateau which indicates
thatR is only slowly increasing withl around 24. For values ofl larger than
48, we find thatR, l1/2.

FIG. 3. Statistics of the end-to-end distance of segments of proteins of
length l. For l =48, 64, and 80, the distributions show a nice collapse to the
form expected for Gaussian statistics: the solid line denotes the function
Psxd=1/s3Î2/plx2 exps−x2/2s2d, wheres=2.164 Å. Forl =16, where the
presence of secondary motifs play a major role, the distribution is qualita-
tively different from the other sizes and exhibits a peak arising from the
presence ofa helices.

FIG. 4. Plot of the tangent-tangent and binormal-binormal correlation func-
tions along the protein sequence derived from our data set. The tangent
vector at locationi is defined as an unit vector pointing along the line
joining the positions of thei −1th and thei +1th amino acids. The normal
vector is defined by joining theith location to the center of the circle drawn
through three amino acidsi −1,i , i +1d locations. The binormal is perpen-
dicular to the plane defined by the tangent and the normal. Note that:sad the
negative tangent-tangent correlation at sequence separationk around 13 cor-
responds to a turning back, on average, of the chain direction and is related
to the crossover shown in Fig. 2;sbd the binormal-binormal correlation
remains nonzero for large separations.
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ing thickness in the continuum. It is well known5 that the
end-to-end distanceR of a swollen, self-avoiding chain
scales approximately as the third/fifth power of its lengthL.
In the absence of any other length scale in the problemsre-
call that we are dealing with a chain of zero thickness in the
continuumd, one is led to a fundamental problem in simple
dimensional analysis in expressing the relationship
R,L0.6—both R andL have units of length and there is no
other length scale in the problem which can be used to fix the
correct dimension in the scaling relation. In order to study a
chain molecule in the continuum, the traditional approach
has been to use the powerful machinery of renormalization
group theory.15 A tube of nonzero thickness circumvents this
problem by providing the required additional length scale
naturally, even in the continuum. Indeed, one may write a
scaling formRsL ,b,Dd=LFsL /D ,b/Dd, whereD is the tube
thickness. The continuum limit can be safely taken by letting
b go to 0 leading toR=LFsL /D ,0d,D1−nLn.

An interesting issue in polymer physics is the descrip-
tion, in the continuum, of a closed chain with certain knot
topologies. One, of course, requires physically that the knot
number be preserved in any dynamics. A string described by
in standard continuum approach is necessarily characterized
by an infinitesimal thickness and allows changes in the knot
topology with a finite-energy cost rendering the model some-
what unphysical in this regard. This problem is cured by the
tube description. Hard spheres have been studied for centu-
ries and their self-avoidance is ensured by considering all
pairs of spheres and requiring that their centers are no closer
than the sphere diameter. Strikingly, the generalization of this
result to a tube entails a simple modification of the standard
pairwise interactions.16 For each pair of points along the

tube axis, one draws two circles both passing through the
two points and each one tangential to the axis at one or the
other location. One then simply requires that none of the
radii is smaller than the tube radius.16,17 The use of many-
body potentials is an essential ingredient for describing a
tube in the continuum.16 The many-body potential replaces
the pairwise self-interaction potential and ought not to be
thought of as a higher-order correction.

The coarse-grained flexible tube model captures two es-
sential ingredients of proteins—the space within a tube
roughly allows for the packing of the protein atoms and local
steric effects are encapsulated by constraints on the local
radius of curvature; the effects of the geometrical constraints
imposed by the chemistry of backbone hydrogen bonds are
represented by the inherent anisotropy of a tubesa tube,
when discretized, may be imagined to be a chain of disksd.
The generic compact polymer phase arises for long tubes
with a thickness much smaller than the range of attractive
interactions promoting compaction.

Recent work18 has shown that the low-energy conforma-
tions adopted by tubelike polymers with certain constraints
on symmetry and geometry are made up of helices and

FIG. 6. sad Statistics of the end-to-end distance of segments of lengthl =6
taken from model protein structuressRef. 18d and from PDB structures. The
peak in the distributions arises from the presence ofa helices.sbd Same as
Fig. 3 but for segments of the model structures of lengthsl =8 and 12. The
fits to the Gaussian form given in the caption of Fig. 3 yields=2.61 Å for
l =8 ands=2.08 Å for l =12.

FIG. 5. Histogram of the magnitudes of the average tangent and binormal
vectors for each protein in our data set. For each protein, we measured the
magnitude as 1/NuSi=1

N viu, where vi is either the unit tangent or the unit
binormal vector at locationi andN is the number of such vectors for a given
protein. For comparison, a histogram of the magnitudes of the average of
randomly oriented vectors is shown as the shaded histogram.sHerevi was
selected to be a randomly oriented unit vector.d Note that several proteins
have a significant nonzero mean binormal vector due to the presence ofa
helices.

234910-3 Proteins and polymers J. Chem. Phys. 122, 234910 ~2005!

Downloaded 10 Apr 2006 to 193.205.157.10. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



sheets akin to marginally compact protein secondary struc-
tures. For classes of short homopolymers characterized by
generic geometrical constraints arising from backbone hy-
drogen bonds and sterics and with mild variations in their
overall hydrophobicity and local curvature energy penalty
parameters, one obtains a free-energy landscape,18 deter-
mined by geometry and symmetry, with multiple minima
corresponding to the menu of folds. We have generated a
thousand structures with low energies of a homopolymer of
length N=48. The structures are local energy minima in
simulated annealing simulations. A refined set of about 320
proteinlike structures is obtained by choosing only those that
are marginally compacts7.6 Å,Rg,12 Åd and have a suf-
ficient amount of secondary structure contentsthe fraction of
residues participating in either a helix or a sheet is larger
than 60% of the total number of residuesd. Strikingly, Fig.
6sad shows that the behavior of short segments of real pro-
teins and the model structures are qualitatively similar to
each other. The deviation from Gaussian behavior in both
cases is due to the presence of secondary structures, whose
characteristic length scale is smaller for the model structures
than for real proteins. Interestingly, even for relatively short
segment lengthssl =8,12d in the model structures, one ob-
serves statistical behavior somewhat similar to that of Gauss-
ian chainsfFig. 6sbdg along with significant deviations, most
notably a peak due to the presence of the secondary struc-
tures. Due to the limited chain length that one can reliably
study in the model we are not able to observe the crossover
to the regime predicted by Flory.

In summary, we have shown that there is a natural
bridge, provided by the chain thickness, between polymer
physics and the physics of biomolecular structures. The
thickness provides a physically motivated cut-off length
scale which allows for a well-defined continuum limit. The
Flory theorem is found to hold for proteins in spite of the
structured building blocks of protein native state structures.
Our results suggest that the powerful arsenal of techniques of
polymer physics can be brought to bear on the protein prob-

lem and conversely, the notion that the chain molecules are
inherently anisotropic and have a nonzero thickness provide
a new perspective in the field of polymer physics.
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