PUBLISHED FOR SISSA BY 4) SPRINGER

RECEIVED: June 10, 2024
ACCEPTED: September 3, 2024
PUBLISHED: October 4, 2024

Measurements of the branching fractions of =) — E%#°,

=0 =0 =0 =0,./
= — =, and = — =n and asymmetry parameter

of 20 — =070

D

o

Belle I

The Belle and Belle 1l collaboration

E-mail: coll-publications@belle2.org, jiasen@seu.edu.cn

ABSTRACT: We present a study of 20 — =070, 20 — =%, and % — =% decays using the
Belle and Belle IT data samples, which have integrated luminosities of 980 fb~! and 426 fb™*,
respectively. We measure the following relative branching fractions

B(E% - 2%79)/B(20 — =77 T) = 0.48 + 0.02(stat) & 0.03(syst),

for the first time, where the uncertainties are statistical (stat) and systematic (syst). By
multiplying by the branching fraction of the normalization mode, B(Z2 — Z~71), we obtain
the following absolute branching fraction results

B(E% — 2%7°%) = (6.9 & 0.3(stat) # 0.5(syst) = 1.3(norm)) x 1073,

B(E% — =%) = (1.6 £ 0.2(stat) & 0.2(syst) £ 0.3(norm)) x 1073,

B(EY — 2%) = (1.2 £ 0.3(stat) & 0.1(syst) £ 0.2(norm)) x 1073,

where the third uncertainties are from B(Z? — Z~7F). The asymmetry parameter for

=9 — =079 is measured to be (22 — Z970) = —0.90 4 0.15(stat) 4 0.23(syst).
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1 Introduction

Charmed baryons provide an interesting dynamical system to study the interplay of strong
and weak interactions. Recently, there have been several impactful measurements for the =¥
baryon. In particular, the absolute branching fractions of several Z decay modes, especially
the normalization mode =0 — =~ 71, have been measured [1], allowing for the determination of
branching fractions for other channels using ratios of branching fractions. In addition, the Belle
experiment has recently measured branching fractions and decay asymmetry parameters for
several Cabibbo-favored (CF) decays, including the two-body 20 — B V decays Z0 — AK*0,
YOK*0 and St K*~ [2] as well as the branching fractions for the two-body =0 — B P decays
=0 — AKg, ZOKg, and X1t K~ [3], where B, V, and P represent light baryons, vector mesons,
and pseudoscalar mesons, respectively. Additional measurements of Z branching fractions
and decay asymmetry parameters may allow for a more complete description of the dynamics
of the strong and weak interactions in charmed baryon decays.

In hadronic weak-interaction decays of charmed baryons, nonfactorizable amplitudes
arising from internal W-emission and W-exchange quark-level processes play an essential
role and lead to difficulties for theoretical predictions [4]. Figure 1 shows the Feynman
diagrams for the internal W-emission and W-exchange amplitudes in CF ZY — Z9h° decays,
to which only the nonfactorizable amplitudes contribute [4]. In the following, k" refers to
79, n, or ' mesons. Various approaches have been developed to describe the nonfactorizable
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Figure 1. Feynman diagrams for (a) internal W-emission and (b) W-exchange in 2% — Z4°
decays [4].

Reference Model B(EY — =079 B(E2 — 2%) B(E? - 2%) a(E) — =079)
Korner, Krdmer [5] Quark 0.5 3.2 11.6 0.92
Ivanov et al. [6] Quark 0.5 3.7 4.1 0.94
Xu, Kamal [7] Pole 7.7 - - 0.92
Cheng, Tseng [8] Pole 3.8 - - —-0.78
Zenczykowski [9] Pole 6.9 0.1 0.9 0.21
Zou et al. [10] Pole 18.2 26.7 - -0.77
Sharma, Verma [11] CA - - - —0.8
Cheng, Tseng [8] CA 17.1 - - 0.54
Geng et al. [12] SU3)r 43409 1.7+19 8.61§5" -
Geng et al. [13] SU(3)r 7.6+1.0 10.342.0 9.1+4.1 ~1.0010:97
Zhao et al. [14] SU3)p 47409 8.3+2.3 72419 -
Huang et al. [15] SUB3)r 2.56 £0.93 - - —0.23 £ 0.60
Hsiao et al. [16] SU(3)p 6.0+1.2 4.2118 - -
Hsiao et al. [16] SU(3)p-breaking 3.6+1.2 7.3+3.2 - -
Zhong et al. [17] SU(3)r 1137939 156 £1.92  0.68373272 0.501037
Zhong et al. [17] SU(3)p-breaking 7.741252 2.437210 163129 —0.2975-29
Xing et al. [18] SUB3)r 1.30 £ 0.51 - - —0.28£0.18
Geng et al. [19] SU@3)p 7104041 2944097 5664093  —0.49 4 0.09
Zhong et al. [20]  Diagrammatic-SU(3)p ~ 7.45+0.64  2.87+0.66  531+1.33  —0.51 +0.08
Zhong et al. [20] Irreducible-SU(3)p 7.72 £ 0.65 2.28+0.53 5.66 + 1.62 —0.51 +£0.09

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for
=9 — =0hY decays. Branching fractions are given in units of 1073.

effects, including the covariant confined quark model [5, 6], the pole model [7-10], current
algebra (CA) [8-11], and SU(3)r flavor symmetry [12-20] based treatments. Theoretical
predictions for the branching fractions of Z% — Z°h° decays based on these approaches are
listed in table 1. Measurements of the branching fractions for =0 — Z°h° decays will help
to clarify the theoretical picture.

In addition to the branching fraction measurement, parity violation can also be studied.
In weak-interaction decays, the interference between the parity-violating and parity-conserving
amplitudes leads to an asymmetry in the angular decay distribution, which can be quantified

by the parameter a. In 20 — Z°hY decays, a can be extracted by fitting to the Z0 decay



angular distribution, using the differential decay rate function [21],

dN

m x 1 + CV(Eg — EOhD)Oé(EO — A7TO> COS 950, (11)

where a(2° — A7nY) is the asymmetry parameter for Z° — An® and cosf=o is the angle
between the A momentum vector and the direction opposite to the Z2 momentum vector
‘
in table 1. In addition to a(ZY — B V) [2], a(ZY — Z~71) has also been measured by
CLEO and Belle [22, 23].

0

In this paper, we present the first measurement of the branching fractions for =0 — =079,

in the =0 rest frame. Predictions for a(Z? — Z°7%) from various models are also listed

—_
—

=20 — =%, and 20 — =% decays, and the asymmetry parameter of the Z0 — =79 decay.
The =0 — =7+ decay is taken as the normalization mode for absolute branching fraction
measurements. The signal yields used for branching fraction measurements are extracted from

fits to the invariant mass distributions of fully reconstructed =¥ candidates. The asymmetry

0

parameter a(ZY — Z97%) is obtained from a linear fit to the =7

signal yield as a function
of cosf=zo. This analysis combines data samples with integrated luminosities of 980 fb~!
and 426 fb~! collected with the Belle and Belle IT detectors operating at the KEKB and
SuperKEKB asymmetric-energy ete™ colliders, respectively. Charge-conjugate modes are

implied throughout the paper.

2 Belle and Belle IT detectors

The Belle detector [24, 25] operated from 1999 to 2010 at the KEKB asymmetric-energy ete™
collider [26, 27]. Belle was a large cylindrical solid-angle magnetic spectrometer that consisted
of a silicon vertex detector, a central drift chamber, an array of aerogel threshold Cherenkov
counters, a barrel-like arrangement of time-of-flight scintillation counters, an electromagnetic
calorimeter (ECL) comprised of CsI(T1) crystals located inside a superconducting solenoid
coil that provided a 1.5 T axial magnetic field, and an iron flux return placed outside the
coil, instrumented with resistive-plate chambers to detect Kg mesons and to identify muons.
A detailed description of the detector can be found in refs. [24, 25].

The Belle IT detector [28] is located at the interaction point of the SuperKEKB asymmetric-
energy ete™ collider [29]. Belle II is an upgraded version of the Belle detector and consists of
several new subsystems and substantial upgrades to others. The new vertex detector includes
two inner layers of pixel sensors and four outer layers of double-sided silicon microstrip sensors.
For the data sample used in this analysis, the second pixel layer was incomplete, covering
only one sixth of the azimuthal angle. A new central drift chamber surrounding the vertex
detector is used to measure the momenta and electric charges of charged particles. A time-of-
propagation detector in the barrel and an aerogel ring-imaging Cherenkov detector in the
forward endcap provide information for the identification of charged particles, supplemented
by ionization energy loss measurements in the central drift chamber. To cope with the
higher beam-induced background environment at Belle II, the ECL readout electronics has
been upgraded. The superconducting solenoid coil and the iron flux return for Belle are
reused in Belle II, with some of the resistive-plate chambers in the K9 and muon detector
replaced by plastic scintillator modules.



The z axis of the cylindrical laboratory frame is defined as the central solenoid axis with
the positive direction toward the e~ beam, common to Belle and Belle II.

3 Data sample

This measurement uses data recorded at center-of-mass (c.m.) energies at or near the Y(15),
T(25), Y(3S), Y(4S), and Y (55) resonances by the Belle detector, and at or near the
T(4S) and at 10.75 GeV by the Belle II detector. The data samples correspond to integrated
luminosities of 980 fb~! and 426 fb~! for Belle and Belle II, respectively.

Monte Carlo (MC) samples of simulated events are used to optimize signal selection
criteria, calculate the reconstruction efficiency, and investigate possible background sources.
Signal events are generated using the PYTHIA [30, 31] and EVTGEN [32] software packages
via eTe™ — c¢, where one of the charm quarks is required to hadronize into a Z2 baryon.
Simulated =0 — Z%h%/Z~ 7+ decays are generated with a phase space model. To determine
the efficiency for the branching fraction measurement, the simulated signal samples are
weighted according to eq. (1.1) and the measured values of a. Due to the small sample size,
« is not measured for =Y — Eon(’ ), so the corresponding simulated signal samples are not
weighted. Background samples of T (4S) — BT B~ and BB decays at Belle and Belle II, as
well as T(55) — Bé*’“Bg*)O decays at Belle, are generated using EVTGEN and PYTHIA. The
continuum background from eTe™ — ¢¢ processes, where ¢ indicates a u, d, ¢, or s quark,
is generated by the KKMC [33] software package, with PYTHIA used for hadronization and
EVTGEN for subsequent decays of hadrons. Final state radiation effects are accounted for
using the PHOTOS package [34]. Simulation of the detector response uses the GEANT3 [35]
and GEANT4 [36] software packages for Belle and Belle II, respectively.

4 Selection criteria

We reconstruct the decays 20 — 2070, 20, %/, and ===, followed by the decays Z° — Ax?,

E- s An, A = pr,n = atrn, and 7°/n — vy. The Belle II software [37] is used for
event reconstruction of both samples, taking advantage of software improvements in Belle II.
The Belle data are converted to the Belle II data format [38]. The selection criteria are
nearly identical for Belle and Belle II. A global decay chain vertex fit is applied for each
mode using the TreeFit algorithm [39].

For reconstructed charged particles not originating from long-lived Z~ and A baryon
decays, the impact parameters, which are the distances of closest approach from the re-
constructed trajectory perpendicular to and along the z axis with respect to the nominal
interaction point, are required to be less than 0.1 cm and 2 cm, respectively, to suppress
misreconstructed tracks and beam background. Charged particles are identified using the
likelihood L; for each particle hypothesis ¢ based on the information provided by the relevant
sub-detector systems. For Belle data, the pion, kaon, and proton particle identification
(PID) uses information from the drift chamber, Cherenkov detectors, and the time-of-flight
detector [40]. Information from all subdetectors except the pixel detector is used to determine
PID likelihoods for Belle II data.



The reconstruction and selection of 2~ and Z° candidates are the same as those in
refs. [41-43], except for the kinematic requirement on candidate 7°’s as detailed below. The
A candidates are reconstructed via the A — pn~ decay, where the proton is identified by
a PID requirement £,/(L, + L) > 0.2 and L,/(L, + Lk) > 0.2 for Belle and £,/(L, +
Le+ Ly + Lr+ Lig + Lyg) > 0.01 for Belle II, and no PID requirement is applied to the
pions. The selection efficiency of the PID requirement and the probability of misidentifying a
hadron, depending on the particle species and kinematic properties, are approximately 90%
(94%) and 1% (1%), respectively, at Belle (Belle II) in this case. The invariant mass of the
reconstructed A candidate must be within 3.5 MeV /c?, corresponding to approximately two
times the mass resolution, o, of the known mass [44]. Each 7~ candidate from the 2~ decay is
required to have a transverse momentum greater than 50 MeV/c to remove backgrounds from
low-momentum pions. Candidate 7°’s from Z° decays are reconstructed from pairs of photons
selected from energy deposits in the ECL (clusters). To suppress low-momentum and fake
photons, each photon candidate is required to have energy greater than: 30 MeV in the ECL
barrel region (—0.63 < cosf < 0.85); 50 (80) MeV for Belle (Belle II) in the forward endcap
(0.85 < cosf# < 0.98); and 50 (60) MeV in the backward endcap (—0.91 < cosf < —0.63),
where 6 is the polar angle in the laboratory frame. The reconstructed invariant mass of the

photon pair is required to be within 11.6 MeV /c? (approximately 20) of the known 7°

mass.
The momenta of the 7° candidates in the laboratory frame are required to exceed 0.25 GeV/c.
Candidate 2~ and Z° baryons are formed from A7~ and An® combinations, respectively. A
vertex fit is applied to the entire 2~ decay chain, including subsequent decay products,

with the pr and diphoton masses constrained to match the known A and 7° masses [44].

The reconstructed =~ and = masses are required to be within 6 MeV /c? and 5 MeV /c?
(approximately 30 and 1.50) of their known masses, respectively. These selections are
optimized by maximizing the figure-of-merit Ngig/+\/Nsig + Npkg, Where Ngjg and Ny, are
the numbers of Z¥ signal events and background events in the Z¥ signal region. The =¥ signal
regions are the Z¥ invariant mass ranges of (2.4, 2.54), (2.25, 2.65), (2.3, 2.6), and (2.37, 2.57)
GeV/c? for the 20 — == 7+, 20 — =070 =0 — =0, and 2% — =% decay modes, respectively.
These regions contain more than 95% of the simulated signals. For the normalization mode,
Nig and Ny are obtained via an unbinned extended maximum-likelihood (EML) fit to the
E- 7t invariant mass spectrum in data. For the signal modes, Ny is the number of expected
signal events using the branching fraction predictions in ref. [17] and Ny is the number of
background events from the simulated samples of size similar to our data. The optimized =°
mass requirements do not strongly depend on h? and assumed branching fractions, hence
we use the same mass requirements for all three signal modes.

0

ECL clusters are used to reconstruct photons to form 7%, 1, and 7’ candidates from =2

decays. To reduce the background originating from neutral hadrons, we require the energy
deposited in a 3 x 3 matrix of crystals centered on the leading-energy crystal to be 80% or
more of the energy deposited in the surrounding 5 x 5 matrix, in which, different with Belle,
outer corner crystals are not considered in Belle II data. Candidate 7° and 1 mesons are
reconstructed by combining pairs of photons, whose energies are required to be greater than
80, 300, and 150 MeV for 20 — =070, 20 — =% and ZY — =%/, respectively. We reconstruct
1’ candidates by combining an 1 candidate with a pair of oppositely-charged pions, which



must satisfy a PID requirement of L/(Lr 4+ Lx) > 0.2 with identification efficiencies of 99%
and misidentification probabilities of 1% for both Belle and Belle II. Loose mass windows are
then used to select 7, n or 7/ candidates, with ranges of (0.08, 0.18), (0.4, 0.65) and (0.92,
1.0) GeV/c? | respectively. A requirement on the kinematic mass-constrained fit quality is
applied, x? < 5 for the signal h® candidate. The momentum in the c.m. frame obtained
from the mass-constrained fit for the selected k" candidate from the Z¥ is required to exceed
0.8 GeV/c in order to suppress background with low momentum neutral particles.

The =0

Y candidates are reconstructed either by combining a =~ candidate with a 7"
candidate, or by combining a Z° candidate with a 7°, 1, or 7/ candidate. To identify the
7t candidate, we use the selections Lr/(Lr + Lk) > 0.2 and L;/(Lr + L,) > 0.2, with
signal efficiencies of 96% and 94% for =0 selection, and misidentification probabilities of

3% and 2% for Belle and Belle II, respectively. To suppress backgrounds, especially those

from B meson decays, we require the scaled momentum, z, = pﬁoc/ Vs[4 — M2(Z9)ct, of
the Z¥ candidate to be greater than 0.55, where pﬁo is the momentum of = =9 candldate in the
c.m. frame, s is the square of c.m. energy, and M (= ) is the invariant mass of the =¥ candidate.
The selection criteria for photon energies, h® momentum, x?(h°), and x, are optimized by
maximizing the figure-of-merit as indicated above. Optimizing the selection criteria with an

alternative parameterization €/(5/2 + \/Npkg) [45], where € is the reconstruction efficiency

0
c

The fractions of events that have multiple candidate events in signal simulations are
about 2% (3%), 6% (7%), 6% (7%), and 7% (9%) for 20 — =7+, 20 — =079 =0 — =0y
and ZY — =%’ respectively in Belle (Belle II) data. These values are consistent with the

for 20 — 2940, gives consistent results.

multiple candidate rates observed in the data. All 20 — == 7+ candidates are retained after
applying these selections. For =0 — Z9h0 events Wlth a single Z° candidate but multiple
h? candidates, the h? candidate with the minimum mass-constrained fit x? is selected. If
an event has multiple Z° candidates, one is selected at random. This candidate selection
procedure yields simulated signal efficiencies for events with multiple candidates of 53% (46%),
51% (42%, and 54% (44%) for =0 — 2970, =0 — =0, and =0 — =%/, respectively, at Belle
(Belle II). After this selection, the overall purities in signal regions of the simulated samples
increase by 2% (4%), 2% (4%), and 3% (5%) for 20 — =070, =0 — =0 and ZY — =0/,
respectively in Belle (Belle II) data.

5 Branching fractions for E2 — 2°7°, E? — =%, and E? — E%’

Figure 2 shows the A7~, A7°, vv, and 7+ 77 invariant mass distributions, along with the fit
results, for =0 candidates in the signal region using Belle and Belle IT data. All event selection
criteria described in section 4 are applied, except for the candidate selection procedure and
the selection on the corresponding invariant mass region or mass-constrained fit y2. To
illustrate the distributions of the intermediate states, we perform binned EML fits to the
invariant mass distributions of the intermediate = and h states, where the signal probability
density functions (PDFs) are parameterized using a double-Gaussian function with a common
mean for the 2=, 2% and 1’ candidates, and a Crystal Ball function [46] for the ¥ and n
candidates. The smooth combinatorial backgrounds are described with a straight line for the
vy, nrt ™ and Ar~ distributions, and a second-order polynomial for the AzY distributions.



All the parameters are allowed to float in the fits, except those for the 1’ signal shape, which
are fixed to the values determined from simulation due to the limited size of the samples.
The solid and dashed arrows indicate the signal and sideband regions, respectively, for =~
and Z° candidates. We use candidates in the =~ or Z° signal regions for further analysis of
signal extraction and events in the sideband regions as a rough estimation of background.

The Z- 7+ mass distributions for =0 candidates selected as described in section 4 after
imposing the =~ signal-mass window requirements are shown in figure 3, together with the
results of an unbinned EML fit. In the fit, the signal shape for Z0 candidates is parameterized
by a double-Gaussian function with a common mean and the background shape is described by
a straight line. All signal and background parameters are floating in the fit. The distributions
of pulls, (Ngata — Nat)/0data, are also displayed in figure 3, where Ngat, is the number of
entries in each bin from data, Ng is the fit result in each bin, and oqat, is the uncertainty
on Ngata- The fitted signal yields are summarized in table 2.

Distributions of Z°h° masses of =0 candidates reconstructed in data and selected as
described in section 4 are shown in figure 4 with the results of an unbinned EML fit
overlaid. The fit PDF includes terms for the signal (Fsg), broken-signal (Fproken) and smooth
background (Fpkg) contributions:

F= nsigfsig + NprokenFbroken nbkgfbkg’ (51)

where ngig, Nbroken, and npkg are the numbers of =Y signal events, broken-signal events, and
smooth background events, respectively. Here the broken-signal events are those for which at
least one of the final state particles, primarily a photon, is not associated with the signal
decay. The broken-signal events are considered as peaking backgrounds. The values of ngig
and npig are allowed to float in the fit, while the ratios of nproken to ngig are fixed to the
fractions from signal MC simulation and are 11.6% (16.0%), 13.3% (18.4%), and 13.3%
(21.0%) for =0 — 2970, =0 — =0 and =¥ — =%’ decay modes, respectively, at Belle (Belle
IT). Studies based on associating MC simulation generator information to events reconstructed
from simulation [47] and M (Z°h) distributions from the Z° and h° data sidebands show no
evidence of peaking backgrounds. The mass sidebands for h° are 0.08 < M,, <0.10GeV/ c? or
0.16 < My, < 0.18 GeV /c? for 7, 0.42 < My, < 0.44 GeV /c? or 0.62 < M, < 0.64 GeV /c?
for n, and 0.92 < M, +,- < 0.94GeV/c? or 0.98 < M, +.- < 1.00GeV/c? for 1/, respectively.
The signal PDF in the Z0 — Z%7° mode is described by two Crystal Ball functions [46] with
a common mean, convolved with a Gaussian function to take into account the difference
in mass resolution from the simulated events. For the =0 — =% and ZY — =% modes,
the signal PDF is modeled using double-Gaussian functions with a common mean. All the
signal PDF parameters are fixed to the values obtained from signal simulation, except for the
mean value of the signal PDF and the width of the Gaussian resolution function, which are
determined in the fit to data. The width is found to be 11.142.0 (8.7 +2.7) MeV/c? in Belle
(Belle II), where the uncertainty is statistical only. The Fpioken term is a non-parameteric
kernel estimation PDF [48] obtained from simulations. The Fx, PDF is parameterized by
a third-order polynomial for the =0 — Z%7° mode and by a straight line for the Z — =%
and 2 — 2% modes. All of the parameters for Fikg are allowed to vary in the fit. Further
validation of the fit using simulation confirms that the fit results are unbiased and have
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Figure 2. Invariant mass distributions of (a) A7~ for =~ candidates, (b) An® for Z° candidates,
(c) vy for ¥ candidates, (d) vv for n candidates, and (e) 7+7~n for 1’ candidates in the Z0 signal
regions. For each distribution, the left plot shows the result for the Belle sample and the right plot
shows that for the Belle II data. The markers with error bars represent the data, the solid curves
show the total fit, and the dashed curves show the smooth background component of the fit. The
solid and dashed arrows show the signal and sideband regions for = (9) candidates, respectively.
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Figure 3. Invariant mass distributions of 27" from (a) Belle and (b) Belle IT data. The markers
with error bars represent the data, the solid blue curves show the fit results, and the dashed blue
curves show the background component of the fit. The cyan histograms are the data from =~ mass
sidebands.

Mode Belle yield EBelle (%0) Belle IT yield EBelle 11 ()
20 5 =77t (363+£3) x 102 13.92+£0.05 (137+£2) x 102 13.384+0.03
=0 — =070 1315 + 66 1.09 4+ 0.01 869 =+ 46 1.7140.01
=0 — =% 81+ 15 0.80 + 0.01 60 + 11 1.1240.01
=9 — =0/ 23+ 6 0.46 + 0.01 8+4 0.81 +0.01

Table 2. Observed =0 signal yields and reconstruction efficiencies for various modes, where uncer-
tainties are statistical only.

Gaussian uncertainties. The reconstruction efficiencies and fit results are listed in table 2.

0
c

— =070, 20 — =%, and ZY — =% in Belle II are

The reconstruction efficiencies for = c

larger than those in Belle due to improved photon reconstruction stemming from the timing
improvements in the ECL readout electronics. The statistical significances for 2 — Z979,
20 — E%, and ZY — =%’ are greater than 100 (100), 6.20 (6.70), and 5.90 (2.40) in
Belle (Belle II), respectively, calculated using \/—21In(Lo/Lmax), where Ly and Lpax are the

maximized likelihoods without and with the signal component, respectively.

The ratios of branching fractions to the normalization mode =0 — Z~ 7T are calculated via
B(Eg — Eoﬂ'o) . N=o 06— 1+ v B(E_ — A7T_)
B(EQ - E-7t)  ezoo0Nz—+  B(EY = An0)B(70 — y7)B(70 — vv)’
B(E¢ = 2%) _ Naoyeza+ B(E~ — An™)
B(EY —Z777)  ezoyNz—rt B(E? = AnO)B(70 = v7)B(n — vv)’
B(ZY — =09 _ Nzogpez—+ o B(E™ = An™)
BEY = =Z-7t)  ezoyNz—n+  B(EY = AnO)B(70 — vy)B() — ntmn—n)B(n — YY)

(5.2)

Here, Nzo0, N=o,, N=o,/, and Nz- .+ are the =Y yields resulting from the fit; e=o,0, E=0p,

=0y, and eg— .+ are the corresponding reconstruction efficiencies; and the branching fractions

are taken from ref. [44]. We combine the Belle and Belle II branching fraction ratios and
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Figure 4. Invariant mass distributions of Z0 candidates from (a) 2 —

uncertainties using the formulas in ref. [49],

7“10% + 7“20%

’]":
ot + 03 + (11 —r2)%e}’ (5.3)
0303 + (r}o} + rio})e2 '

02 + a5+ (r) —ro)2e2”’

where 7;, 0; and €, are the branching fraction ratio, uncorrelated uncertainty, and relative
correlated systematic uncertainty from each data sample, respectively. The branching fraction
ratios are summarized in table 3, where the first and second uncertainties are statistical and
systematic, respectively. The systematic uncertainties are discussed in detail below.
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Mode Belle Belle 11 Combined

B(E% — =079 /B(Z% — == 7t) 0.4740.0240.03 0.51+£0.03+£0.05 0.48 +0.02 4 0.03
— E%)/B(EY - E-x+)  0.10+£0.02+0.01 0.14+0.02+0.02 0.11+0.01 = 0.01
—Z%)/B(E2 - ="7t)  0.12+0.03+£0.01 0.06 +0.034+0.01 0.08 +0.02 +0.01

Table 3. Branching fraction ratios of 2% — Z°h° decays, where the first and second uncertainties are
statistical and systematic, respectively.

cosfzo  (—1.0,—0.6) (—0.6,—-0.2) (—0.2,0.2) (0.2,0.6) (0.6,1.0)

Belle 26025 206£26 266£27 265427 224424
1.40 1.29 1.14 0.99 0.71

176418 167418 194420 151417 17617
Belle IT 2.37 2.08 1.96 1.60 1.18

Table 4. Values of the signal yield divided by reconstruction efficiency (%) in cosfzo bins for
=0 — =070 in the Belle and Belle IT datasets.

6 Asymmetry parameter of 52 — E°7°

Given the small sample sizes for the other modes, the asymmetry parameter is measured
only for 2% — Z%70. We divide the cos f=zo distribution into five equal sized non-overlapping
contiguous intervals (bins). The ZY signal yield in each bin is obtained by fitting to the
M (Z°7Y) distribution where the signal shape in each bin is fixed to the corresponding MC
simulation and convolved with the Gaussian resolution function, whose width is fixed to the
result of a fit to the full sample, due to the limited sample size. The fits to M (Z°7°) spectra
in cosf=zo bins are shown in appendix A. Table 4 lists the signal yields and reconstruction
efficiencies in each cos f=zo bin. The final efficiency-corrected Z¥ signal yields in bins of cos f=o
for 20 — 2979 are shown in figure 5, together with the simultaneous fit result using eq. (1.1)
with a common value of the product a(Z2 — Z°h%)a(Z° — Ax?) for the Belle and Belle II data
samples. Using simplified simulated experiments generated with different o values, we test the
a extraction procedure and find that it is unbiased. The product of asymmetry parameters
is found to be (20 — Z97%)a(Z2Y — A7Y) = 0.32 4 0.05(stat). Taking a(Z° — Ar?) =
—0.349 + 0.009 [44], we find a(Z? — Z07Y) = —0.90 4 0.15(stat) + 0.23(syst), where the
first uncertainty is statistical and the second is systematic. The values of a(Z2 — =Z%70)
extracted via individual fits to the Belle and Belle II data samples are —0.84 + 0.21 and
—0.98 £ 0.22, where the uncertainties are statistical only, in good agreement with the result

from the simultaneous fit.

7 Systematic uncertainties

7.1 Branching fraction ratios

The sources of systematic uncertainties for the branching fraction ratio measurements include
those related to the efficiency, the intermediate branching fractions, and the fit procedure.
Table 5 summarizes the systematic uncertainties, where the total uncertainty is determined
from a quadratic sum of the uncertainties from each source.
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Figure 5. Efficiency-corrected =0 signal yields in bins of cosfzo from the (a) Belle and (b) Belle 1T
datasets. The lines show linear regression results.

B(EL—~E7) B(=2—~E%)) B(E2—~E%)

Source B o= ) BEI =) BEl =)
Belle Belle I Belle Belle I Belle Belle I1

Tracking 0.7 0.8 0.7 0.7 1.0 1.5
7+ PID 0.4 0.2 0.4 0.2 1.4 0.2
70 reconstruction 4.4 8.8 2.3 4.3 2.3 4.2
Photon reconstruction - - 4.0 2.0 4.0 1.9
Simulation sample size 0.8 0.7 0.9 0.9 1.2 1.0
« uncertainty 1.1 1.2 3.0 3.4 1.0 3.5
=0 signal mass window 0.5 2.0 0.5 2.0 0.5 2.0
Normalization mode sample size 1.0 1.3 1.0 1.3 1.0 1.3
Broken-signal ratio (nbroken/Msig) 2.1 1.5 3.5 3.6 3.6 5.7
Broken-signal PDF 0.2 0.1 7.3 7.5 2.0 1.1
Mass resolution - - 7.2 7.0 2.4 14
Intermediate states B - - 0.5 0.5 1.3 1.3
Background shape 4.9 4.9 9.2 9.2 6.8 6.8
Total 7.2 10.6 15.3 15.6 9.9 11.2

Table 5. Fractional systematic uncertainties (%) on the relative branching-fraction results. The
uncertainties in the last two rows, due to intermediate branching fractions and background shape, are
common to Belle and Belle II; the other uncertainties are independent. Since the A — pr~ decay
is reconstructed in each decay mode, the B(A — p7m~) uncertainty and the uncertainty due to the
A — pr~ reconstruction efficiency cancel in the ratio to the reference mode Z0 — =~ 7.
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The systematic uncertainty due to the efficiency includes effects due to the detection
efficiency, simulation sample size, o uncertainty, and the mass window for the Z° signal.
The detection efficiencies determined in simulations are corrected by multiplicative data-
to-simulation ratios determined from control data samples. The correction factors and
uncertainties include those from track-finding efficiency, obtained from the control samples
of D** — D%(— K2rT 7~ )nt at Belle and B’ - D**(— D°n)r~ and ete” — 77~ at
Belle II; charged pion identification, obtained from the D** — D% — K~—n+)r* control

Op. control

sample at Belle and Belle II; 7° reconstruction, obtained from the 7 — 7~
sample at Belle and the D — K~ 70 control sample at Belle II; and photon reconstruction,
obtained from control samples of radiative Bhabhas at Belle and radiative muon-pairs at
Belle II. We use the control samples to obtain the ratio of data-to-simulation efficiencies as a
function of momentum and polar angle and re-weight these ratios according to the kinematic
distributions of signal modes from simulation [40, 50]. Correction factors are determined
based on the weighted ratios and the uncertainties on the correction factors are taken as
systematic uncertainties. The uncertainty due to photon reconstruction is included in the
uncertainty due to 7¥ reconstruction. The relative systematic uncertainty due to the size
of the simulated sample is calculated using a binomial uncertainty estimate. For the Z%7°
channel, we use the largest change in efficiency due to variations of the measured value of
a by one standard deviation as a systematic uncertainty; for the other channels we use the
largest difference in efficiencies observed when assuming the extreme values o = +1 or —1.
The uncertainty due to the Z° signal region choice is calculated from the difference between
the selected signal fractions in simulation and data. Since the y?(h°) distributions from
sideband-substracted data and simulations are consistent, the efficiency differences on the
x? < 5 requirement between data and simulations are less than 1%, and thus the uncertainty
due to the y? criterion is neglected here.

The systematic uncertainties due to the intermediate branching fractions are taken to
be the uncertainties on the world-average values and treated as correlated uncertainties,
which are common to Belle and Belle II. Only the uncertainties for B(n — vv) (0.5%) and
B — mta n)B(n — vy) (1.3%) contribute for 20 — =% and =Y — =%, respectively.
The uncertainties for other intermediate branching fractions are smaller than 0.1% and are
neglected. The 22.4% uncertainty on B(Z0 — Z~71) is treated as an independent systematic
uncertainty in the measurement of the absolute branching fractions.

The uncertainties due to the fit procedure are determined by taking the difference
between the Z¥ — Z94° signal yield in the nominal fit and the signal yields in fits with the
following modifications: (1) changing the order of polynomial for the smooth background, (2)
floating the ratio of nproken tO Msig, (3) convolving the signal shapes of 20— 5077(’ ) with a
Gaussian function with a floating width, and (4) changing the broken-signal PDF smoothed
by ‘rookeyspdf’ to ‘roohistpdf’ [48, 51], corresponding to two algorithms for PDF estimation
from simulated samples. The order of the polynomial for the background shape is common
to the two experiments, and the corresponding uncertainty is extracted from a simultaneous
fit for Z¥ signal yield in Belle and Belle II data. Facing the worst signal-background ratio,
the fitting uncertainties for the =0 — =% channel are larger than for the =0 — =70 and
20 — =% channels. The total systematic uncertainty is obtained by adding the contributions
from each source in quadrature.
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7.2 Asymmetry parameter

The sources of the systematic uncertainty on the asymmetry parameter measurement include
the uncertainty on a(Z° — An?), the number of cosf=zo bins, and the uncertainties due to
the fit procedure. The relative uncertainty on a(Z° — An?)=-0.349 4 0.009 [44] is 2.6%.
We change the number of cosf=o0 bins from 5 to 4 and 6, and the largest difference in the
extracted asymmetry parameter, 0.14, is taken as the associated systematic uncertainty. The
uncertainty from the fit procedure, 0.18, is determined using a similar procedure as for those
in the branching fraction ratio measurements, where the width of the convolved Gaussian
function is varied by +1c to obtain the uncertainty from reconstruction resolution. We find
that the systematic uncertainty due to the efficiency can be neglected since the efficiency is a
multiplicative scale factor for the efficiency-corrected Z0 signal yield in each cosf=o bin and
does not change the a value. As noted in section 3, the simulated signal sample is weighted
to match the observed value of a. When the weights are changed by the corresponding
uncertainties (£10), the a measurement changes by less than 0.01: this effect is neglected.
We consider the migrations between adjacent cos f=o bins in data due to the resolution effect
by correcting signal yields with the matrix of migration rates obtained from MC simulations
and find the difference in the extracted asymmetry parameter is smaller than 0.01 and can
be neglected. The measurement is insensitive to the Z polarization, and no systematic
uncertainty is included from this source [2, 22]. The systematic uncertainties from all sources
are added in quadrature to obtain a value of 0.23.

8 Summary and discussion

We report the first measurements on Z — Zh0 decays, using the combined Belle and Belle 11
data samples corresponding to a total integrated luminosity of about 1.4 ab™!. The branching
fractions of ZY — =AY relative to B(Z? — Z~7t) are measured to be

B(E% - 2%72%)/B(2% — =77 T) = 0.48 + 0.02(stat) 4 0.03(syst), (8.1)
B(E2 — =%)/B(E% — =77") = 0.11 4 0.01(stat) £ 0.01(syst), (8.2)

and
B(E2 — 2%)/B(E2 — =7 7") = 0.08 4 0.02(stat) & 0.01(syst), (8.3)

where the first uncertainties are statistical and the second are systematic. Taking B(Z? —
E-7rt) = (1.43 £0.27)% [44], the absolute branching fractions are measured to be

B(E% — 2%70%) = (6.9 & 0.3(stat) & 0.5(syst) = 1.3(norm)) x 1073, (8.4)
B(E% — 2%) = (1.6 £ 0.2(stat) = 0.2(syst) #+ 0.3(norm)) x 1073, (8.5)

and
B(2% — =%) = (1.2 4 0.3(stat) 4 0.1(syst) = 0.2(norm)) x 1073, (8.6)

where the third uncertainty is from B(Z? — Z~7F). We measure the asymmetry parameter

a(ZY — Z%%) = —0.90 4 0.15(stat) £ 0.23(syst) (8.7)

c
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Figure 6. The comparisons of the measured (a) B(Z? — Z%70), (b) B(Z2 — =), (c¢) B(Z? — =%)/),
and (d) a(ZY — Z°7%) with theoretical predictions [5-20], corresponding to the values in table 1. The
dots and error bars show the center values and uncertainties, respectively, where the dots without

error bars mean that no theoretical uncertainty is available.

for the first time. Due to the limited data sample size, the asymmetry parameters for
=0 =

=0 — 2% and 2% — =% are not measured, but will become accessible with the larger data
samples to be collected by Belle II in the future.

Figure 6 shows the comparisons of our measurements with theoretical predictions from
table 1. A recent result [17] based on the SU(3)p-breaking model is consistent with each
measured B(Z0 — Z°h°). The measured value of a(Z — =°7Y) is consistent with predictions
based on the pole model [8, 10], CA [11], and SU(3)r flavor symmetry [13] approaches.
The central values of our measurements of the absolute branching fractions and asymmetry
parameter of Z — Z970 indicate that the covariant confined quark model [5, 6] is mildly
disfavored for each result, and disagree with the predictions by more than 20 for the following;:
(1) B(E2 — =) in refs. [8, 10, 15, 18]; (2) B(E? — =%) in refs. [9, 10, 13, 19, 20]; (3)
B(Z? — Z%) in refs. [14, 19, 20]; and (4) «(Z2 — Z°7Y) in refs. [7, 9, 17-20]. The results

for the ratios, (8.1), (8.2), and (8.3), are independent of the =0 absolute branching fraction
scale and may also be compared to theoretical models.
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A M (E°R?) spectra in cos Oz bins

Distributions of M (Z°7%) in bins of cosf=zo are shown in figure 7 with fit results overlaid.
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Figure 7. Invariant mass distributions of Z0 — 2979 candidates from (left) Belle and (right) Belle IT
data samples in cos fzo bins of (a) (—1.0,—0.6), (b) (—0.6,—0.2), (c) (—0.2,0.2), (d) (0.2,0.6) and (e)
(0.6,1.0). The markers with error bars represent the data. The solid blue curves, solid red curves,
dashed red curves, and dashed blue curves show the total fit, signal shape, broken-signal shape, and
smooth backgrounds, respectively. The cyan histograms show the data from the Z° mass sidebands.
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