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1 Introduction

The Belle experiment observed a narrow enhancement in the cross section for the process
e+e− → π+π−Υ(nS) (n = 1, 2, 3) [1]. The structure, with a mass and width of M = (10753±
6) MeV/c2 and Γ = (36+18

−12) MeV, respectively, is named Υ(10753) [2]. Several competing
interpretations have been proposed for this structure, including a conventional bottomonium [3–
13], a hybrid [14, 15], or a tetraquark state [16–19], but there is no definitive explanation so
far. The Belle II experiment observed the process e+e− → ωχb1,2(1P ) at center-of-mass (c.m.)
energies (

√
s) near 10.746GeV [20], confirming the existence of the Υ(10753) and identifying

new decay channels of this state. The ratio of the cross section of e+e− → ωχb1(1P ) to
ωχb2(1P ) is 1.3± 0.6 at

√
s = 10.746GeV, which disagrees with the expectation for a pure

D-wave bottomonium state, approximately 15 [21] and deviates from predictions for a S–
D-mixed state, 0.18–0.22 [9]. In particular, previous Belle measurements [1], which uses
Belle data only, are consistent with predictions in the 4S-3D mixing model [10]. Further
measurements of the properties and decay modes of the Υ(10753) are important to advance
our understanding of its nature and test theoretical predictions.

In this paper we present an analysis of Υ(10753) → π+π−Υ(nS) using new, large
samples of electron-positron collision data collected explicitly for this purpose by the Belle II
experiment. We reconstruct decays to π+π−Υ(nS) final states, with the Υ(nS) decaying to
a µ+µ− pair, at

√
s in the 10.6–10.8 GeV range. We measure and fit the Born cross sections

(σB) for these processes as a function of
√
s to obtain the Υ(10753) mass and width. We

search for intermediate states to study the internal decay dynamics (e.g., e+e− → f0(980)[→
π+π−]Υ(nS)) and exotic states (e+e− → π∓Zb(10610, 10650)±[→ π±Υ(nS)]), which may
provide deeper insight into the possibility of an unconventional nature for the Υ(10753).

– 1 –
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2 Belle II detector and simulation

The Belle II detector [22, 23] operates at the SuperKEKB asymmetric-energy electron-positron
collider [24] at KEK. The Belle II detector is a nearly 4π spectrometer consisting of silicon-
based vertexing and drift-chamber tracking systems, Cherenkov-light particle identification
detectors, and an electromagnetic calorimeter, situated within a superconducting solenoid
providing a 1.5 T axial magnetic field. The flux return of the solenoid is instrumented for
K0

L and muon detection. The z axis in the laboratory frame is collinear with the symmetry
axis of the solenoid and nearly aligned with the electron-beam direction.

In addition to regular data taking at the peak of the e+e− → Υ(4S) production cross
section at

√
s = 10.58 GeV, in November 2021 SuperKEKB operated above the Υ(4S)

resonance at
√
s = 10.653, 10.701, 10.746, and 10.805 GeV for studies of the Υ(10753). These

energy points were selected to fill the gaps between previous collision energies studied by the
Belle experiment in order to improve coverage of this region of interest. This analysis uses
3.5, 1.6, 9.8, and 4.7 fb−1 of integrated luminosity at these points, respectively.

Simulated events are used for optimization of event selections, determination of recon-
struction efficiencies, extraction of signal-resolution functions, and devising the fit models
to extract the signals. We generate Υ(10753) events with EvtGen [25]. Initial-state ra-
diation (ISR) at next-to-leading order accuracy in quantum electrodynamics is simulated
with phokhara [26]. Final-state radiation from stable charged particles is simulated using
PHOTOS [27]. The process e+e− → π+π−Υ(nS) is initially simulated assuming a phase-space
model. Detector simulation is performed with Geant4 [28]. Reconstruction of events from
simulated and collision data uses the Belle II analysis software [29, 30]. Additional simulated
samples of low-multiplicity quantum electrodynamic processes, e.g., Bhabha scattering [31–
35]µ+µ−(γ) [31–35], ISR-produced hadron pairs [26], and four-track events with at least one
lepton pair [36, 37], are used to check for contamination from possible backgrounds.

3 Event selection

Events are selected online by a hardware trigger that uses drift-chamber and calorimeter
information with an efficiency greater than 97% for events containing at least three tracks
according to simulation [38]. In the offline analysis, tracks reconstructed in the final state are
required to originate from the vicinity of the interaction point (within 4 cm along the z axis, and
2 cm in the radial direction) to remove beam-related backgrounds and incorrectly reconstructed
tracks. Tracks are required to be within the angular acceptance of the drift chamber, i.e., the
polar angle with respect to the z axis, θ, should satisfy −0.866 < cos θ < 0.9563. We require
that events contain four or five tracks to reduce backgrounds while allowing for increased
efficiency for signal events with an additional track, which may be wrongly reconstructed
from the detector noise.

We reconstruct the Υ(nS) candidate decaying to a pair of oppositely charged particles
each with a momentum in the e+e− c.m. frame in the range 4.2 < p∗(µ) < 5.35GeV/c, where
the asterisk (*) here indicates the e+e− c.m. frame. At least one track is required to have a
muon identification likelihood ratio L(µ)/(L(e) + L(µ) + L(K) + L(π) + L(p) + L(d)) > 0.9,
corresponding to a selection efficiency of about 95% and a π−µ misidentification rate around

– 2 –



J
H
E
P
0
7
(
2
0
2
4
)
1
1
6

5%. Here, the identification likelihood L for each charged particle hypothesis (electron, muon,
kaon, pion, proton, and deutron) combines particle-identification information from all subde-
tectors. We combine the Υ(nS) candidate with a pair of oppositely charged particles assumed
to be pions, individually requiring a minimum transverse momentum of pT > 60MeV/c
in the laboratory frame and a muon identification likelihood ratio smaller than 0.75 to
suppress the background from muon misidentification. To remove potential backgrounds from
photon conversions in the detector material, we require the opening angle between the pion
candidates to satisfy thre requirement cos θπ+π− < 0.9, where θ is calculated in the lab frame.

The µ+µ− pair, π+π− pair, and the overall π+π−µ+µ− candidate are individually fitted
and constrained to originate from the same vertex. We reject poorly reconstructed events
failing the vertex fit. To suppress the background from events with additional particles,
we require the momentum of the signal candidates in the e+e− c.m. frame p∗(π+π−µ+µ−)
to be less than 100MeV/c.

To extract signal yields, we define the difference of the overall candidate invariant mass
and the Υ(nS) candidate invariant mass as ∆M =M(π+π−µ+µ−)−M(µ+µ−), which helps
to improve the mass resolution. The selection criteria are optimized with the figure-of-merit
ϵP /(a +

√
NB), a = 5/2 [39], using the simulated signal efficiency (ϵP ) and the number of

background events (NB) determined from data sidebands to avoid introducing bias. The
sidebands are defined as the region more than 10 standard deviations (σ) in resolution of the
Υ(10753) signal away from the expected signal region in the ∆M dimension. The optimization
of selection criteria is achieved by progressively refining the selection parameters, at each
iteration varying a single parameter while keeping all others constant. The final values
are rounded to the closest whole numbers to ensure consistency among different samples
and to avoid over-tuning the optimization. According to simulation, very few background
events are expected from low multiplicity processes after the final selection and they do
not produce signal-like structures in the data.

4 Signal determination

Figure 1 shows two-dimensional distributions of the dimuon invariant mass M(µ+µ−) as
a function of the mass difference ∆M for data taken at each collision energy with and
without the p∗(π+π−µ+µ−) < 100 MeV momentum requirement. For each Υ(nS) state, we
define our analysis region by requiring (∆Mnom − 100) < ∆M < (∆Mnom + 70) MeV/c2.
The expected peak position ∆Mnom is

√
s − mΥ(nS), where mΥ(nS) is the known Υ(nS)

mass [2]: the three positions are shown as the vertical dashed lines in the right panels of
figure 1. The width of these analysis regions are ten times the signal resolution ( ±10σ),
and are used as the fitting ranges in signal yield determination. Here the resolution is about
10(7) MeV/c2 for the lower-(higher-)∆M side of the signal. The signal region is defined as
(∆Mnom − 30) < ∆M < (∆Mnom + 21) MeV/c2.

In addition to clusters of events in the signal regions, concentrations of events from
ISR and cascade processes are clearly visible in the left column in figure 1. For example,
e+e− → γISRΥ(2S), Υ(2S) → π+π−Υ(1S), corresponding to the largest event cluster on the
very left in each panel. Before any consideration of the signal regions, we first measure the
cross sections for the e+e− → γISRΥ(3S, 2S) control processes in the full energy-scan datasets

– 3 –
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Figure 1. Distribution of dimuon mass as a function of the mass difference between π+π−µ+µ− and
µ+µ− system for (left) all events and (right) for events with c.m. momentum of the π+π−µ+µ− system
smaller than 100 MeV/c. Dashed lines indicate the positions of the Υ(10753) → π+π−Υ(nS) signals.
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as well as the process Υ(4S) → π+π−Υ(1S, 2S). This offers a thorough consistency-check
of the signal-extraction approach and of dimuon reconstruction efficiency. The results are
consistent with expectations [2].

The projections of the ∆M distributions in the analysis regions for events restricted to the
p∗(π+π−µ+µ−) signal region are shown in figure 2 for all energy points and analysis channels.
Signal for Υ(1S) and Υ(2S) resonant structures are found for e+e− → π+π−Υ(1S, 2S) in
datasets with

√
s = 10.746 and 10.805GeV. Maximum likelihood fits to the unbinned ∆M

distributions in each channel are used to obtain the signal yields. Two components are
included in the fit: signal and background. The probability density functions of the signal
distributions are derived from simulation and are then weighted according to the result of
the amplitude and the resulting Born cross-section lineshape, as explained in detail in section
5. The background in this limited fit range is well-described by a linear function.

Since Belle has previously observed a Zb(10610/10650)± → π±Υ(nS) signal in Υ(5S) →
π+π−Υ(nS) decays [40], we search for intermediate decays in π+π−Υ(1S) and π+π−Υ(2S)
signal candidates at

√
s = 10.746 and 10.805 GeV, where significant Υ(10753) signals are

observed. We examine the dipion invariant mass, M(π+π−), and the mass difference between
the invariant mass of the Z±

b and Υ(nS) candidate, ∆Mπ = M(π±µ+µ−) − M(µ+µ−).
The ∆Mπ variable provides improved resolution for reconstructing Z±

b candidates. Because
there are two pions per event, we choose the larger value of ∆Mπ as the Z±

b candidate. The
distributions for events in the signal regions are shown in figure 3 for M(π+π−) (left) and ∆Mπ

(right), compared with the events from sideband regions. Since the sideband contributions are
small, we neglect them in the studies that follow. No signals for Zb(10610)± or Zb(10650)±

are evident, and the simulated phase-space distribution is consistent with the data.
The dipion invariant mass in π+π−Υ(1S) is also consistent with the simulated phase-space

distribution. This is not the case for π+π−Υ(2S), in which the dipion mass is similar to that
of, e.g., Υ(2S) → π+π−Υ(1S) [41]. To better represent the data, we perform a fit to determine
the amplitude, and weight the phase space simulation accordingly. An extended unbinned
maximum likelihood fit is performed to the four-momenta of the π+ and π− from the samples
at

√
s = 10.746 and 10.805GeV. We use the following formula to describe the amplitude [41],

M ∝ A(q2 − 2m2
π) + BE1E2 + C[(λ′q1)(λq2) + (λ′q2)(λq1)], (4.1)

where q2 is the invariant mass squared of the pion pair, mπ is the pion mass [2], qi and Ei

are the four-momenta and energy of the ith pion in the Υ(10753) rest frame, respectively, λ(′)

is the polarization vector of the parent (final-state) Υ, and A, B are unconstrained complex
parameters. The C term couples the transitions via the chromo-magnetic moment of the
bound-state b quark, and hence requires a spin flip. This term is expected to be highly
suppressed by the large mass of the b quark, as confirmed by CLEO findings [41]; hence, we
assume C to vanish. In the fit, we fix the real and imaginary parts of the parameter A to
be one and zero, respectively, allow B to vary, and fix C to be zero. Here fixing A to the
arbitrary (1,0) values is allowed as only relative differences with regard to B have physical
significance. From the fit, we obtain 1.1± 0.3 and 4.7± 1.5 for the real and imaginary parts
of B. The uncertainties here are statistical only.
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The M(π+π−) projection of the fit results is compared with the data for π+π−Υ(2S)
and is qualitatively satisfactory: the reduced χ2 values are 1.40 and 0.77 for 10.746 and
10.805 GeV, respectively. We reweight the simulated signal sample distributions based on
this amplitude fit result. Note that this weight has negligible effect on the shape of the
projection of ∆Mπ for signal events.

5 Cross section measurement and resonance parameters determination

We use an iterative approach to compute the Born cross sections of the e+e− → π+π−Υ(nS)
process as the true lineshape of the Born cross sections is not known a priori, and the
reconstruction efficiency estimation and signal shapes will be affected by this lineshape. In the
simulation, the default lineshape of the e+e− annihilation cross section is assumed to be that
of e+e− → µ+µ−. In the first iteration, we weight the simulated signal samples according to
the e+e− → π+π−Υ(nS) lineshape reported in the Belle publication [1]. We use the weighted
simulated signal samples to extract the signal shapes and the reconstruction efficiencies.

The number of signal events, NS, is determined by performing an extended unbinned
maximum-likelihood fit to ∆M in each analysis region (figure 2). We allow the number of
signal events to be negative in the fit.

The Born cross sections are calculated using

σB = NS |1−Π|2

L εB (1 + δ) , (5.1)

where L is the integrated luminosity, ε is the reconstruction efficiency weighted by the
intermediate π+π− amplitude and the Born cross section event-by-event, B is the branching
fraction of Υ(nS) → µ+µ−, |1 − Π|2 is the vacuum polarization factor [42], and (1 + δ)
is the radiative correction factor [43, 44] calculated using the Born cross-section lineshape
with the following formula,

(1 + δ) =
∫ xm

0 σB(s(1− x))W (x, s)dx
σB(s)

, (5.2)

where σB(s) is the energy-dependent Born cross-section lineshape; and the parameter x and
the radiator function W (x, s) are as described by eq. (8) in ref. [44]. The upper limit of
the integration is xm = 1− sm/s, where sm is the minimum invariant mass squared of the
final state, i.e. [m(π+) +m(π−) +m(Υ(nS))]2. The numerical results are listed in table 1.
It should be noted that the energy-dependent reconstruction efficiencies are not monotonic
because of the differing beam-induced background conditions during the data-taking period,
as well as the differing ISR reweighting at each energy point.

After including the systematic uncertainties that are discussed in detail later, we fit the
Born cross section as a function of

√
s including values from the previous Belle measure-

ment [1] with three interfering Breit-Wigner functions representing the Υ(10753), Υ(5S),
and Υ(6S) states,

σ ∝
∣∣∣∣∣

3∑
i

√
12πΓiBi

s−Mi + iMiΓi
·
√
f(
√
s)

f(Mi)
eiϕi

∣∣∣∣∣
2

⊗G(0, δE), (5.3)
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Figure 2. Distributions of the difference between the π+π−µ+µ− mass and the dimuon mass with
fit results overlaid. The points with error bars are the data, the solid blue curve is the fit result,
and the dashed magenta curve is the background component. The plots from left to right refer to
π+π−Υ(1S), π+π−Υ(2S), and π+π−Υ(3S) candidates and from top to bottom correspond to data
taken at energies

√
s = 10.653, 10.701, 10.746, and 10.805 GeV, respectively.
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Figure 3. Distributions of dipion mass (left) and maximal difference between the π±µ+µ− mass and
the µ+µ− mass (right). Plots from top to bottom show π+π−Υ(1S) at

√
s = 10.746GeV, π+π−Υ(1S)

at
√
s = 10.805GeV, π+π−Υ(2S) at

√
s = 10.746GeV, and π+π−Υ(2S) at

√
s = 10.805GeV. Points

with error bars show the events in the signal region from data, green shaded histograms show the
events in the sideband region, red histograms are the weighted simulated signal, red dashed histograms
are the phase space signal simulation, and blue dashed histograms are the Zb(10610/10650)± from
simulation. The simulated signal sample is normalized to the number of events in data, while simulated
Zb(10610/10650)± events are normalized arbitrarily.
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Mode NS L (pb−1) ϵ B (%) (1+δ) |1−Π|2 σB (pb)
(10653.30±1.14) MeV
ππΥ(1S) 5.1+2.9

−2.8 (1.7σ) 3521 0.339 2.48 0.926 0.929 0.17+0.10
−0.10±0.05

ππΥ(2S) −1.0+0.8
−0.7 (-) 3521 0.476 1.93 0.672 0.929 −0.04+0.03

−0.03±0.02
(10700.90±0.63) MeV
ππΥ(1S) −1.0+0.8

−0.7 (-) 1632 0.406 2.48 0.628 0.928 −0.09+0.07
−0.06±0.16

ππΥ(2S) −0.3+0.8
−0.5 (-) 1632 0.468 1.93 0.641 0.928 −0.03+0.08

−0.05±0.01
ππΥ(3S) 1.9+2.2

−1.5 (0.9σ) 1632 0.161 2.18 0.578 0.928 0.53+0.62
−0.42±0.54

(10746.30±0.48) MeV
ππΥ(1S) 41.2+7.9

−7.3 (5.8σ) 9818 0.421 2.48 0.588 0.930 0.64+0.12
−0.11±0.03

ππΥ(2S) 84.8+10.4
−10.1 (10.0σ) 9818 0.489 1.93 0.597 0.930 1.43+0.17

−0.17±0.17
ππΥ(3S) 3.7+4.0

−3.3 (0.8σ) 9818 0.264 2.18 0.578 0.930 0.11+0.11
−0.09±0.08

(10804.50±0.70) MeV
ππΥ(1S) 20.7+6.6

−5.5 (3.9σ) 4690 0.445 2.48 0.784 0.931 0.48+0.15
−0.13±0.04

ππΥ(2S) 47.4+8.3
−7.6 (6.3σ) 4690 0.533 1.93 0.814 0.931 1.12+0.20

−0.18±0.11
ππΥ(3S) 1.3+2.2

−1.5 (0.6σ) 4690 0.314 2.18 0.721 0.931 0.05+0.09
−0.06±0.01

Table 1. Summary of the c.m. energies, signal yields and their significance, luminosity, weighted
efficiencies, branching fractions of the Υ(nS) decays, ISR correction factors, vacuum polarization
factors, and calculation of Born cross sections from the fit results to data. The values in brackets are
the statistical significances, and the dash “-” denotes that the significance is not available. Uncertainty
in the signal yields is statistical only. The first uncertainty in the Born cross section is statistical and
the second systematic. The uncertainties in the c.m. energy shown here are uncorrelated point-to-point;
the correlated uncertainty is 0.5 MeV.

where Mi, Γi, Bi, and ϕi are the mass, width, relative branching fraction to π+π−Υ(nS),
and relative phase of the ith resonance, respectively. The parameter f is the integral of the
three-body phase space at the relevant energy, and ⊗G(0, δE) represents convolution with a
Gaussian function used to model the collision energy spread, δE ≡ 5.6 MeV. All parameters
of the Breit-Wigner functions are free in the fit.

We weight the simulated signal samples according to the fitted cross-section lineshape to
make the simulated data better describe real data. The weight of the jth event generated
at the ith energy is calculated by the following formula:

wi,j =
σnew(

√
s =Mgen

i,j (Υ(10753)))
σini(

√
s =Mgen

i,j (Υ(10753))) , (5.4)

where σnew(
√
s) is the Born cross section calculated with the fitted cross-section lineshape,

while σini(
√
s) is the initial cross-section lineshape. The value of Mgen

i,j (Υ(10753)) is the
generator-level invariant mass of the parent particle Υ(10753) for the jth event generated
at the ith energy in the initial simulated sample before any selection.
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After obtaining the weighted simulation samples, the weighted efficiency ϵ is calculated
by the following formula:

ϵwtd
i =

∑Nrec
k=0 wik∑Ngen
j=0 wij

, (5.5)

where Nrec is the number of events remaining after the event selection at the ith energy
point, and Ngen is the generated number of the simulated signal events. The simulated
signal lineshapes used in the fit are also updated with the resulting weights. The Born cross
sections are then re-calculated and re-fitted, and this process is repeated. Stable results
for the correction factors and Born cross sections are obtained within five iterations. The
final results are summarized in table 1. We determine the statistical significance of the
Υ(nS) signals using their likelihood ratios relative to the background-only hypothesis. The
c.m. energies are calibrated using the e+e− → B(∗)B̄(∗) processes [45]; corresponding values
are also shown in table 1.

The Born cross sections and the fit to their energy dependence are displayed in figure 4.
Clear signals of the Υ(10753) state are seen in the ππΥ(1S) and ππΥ(2S) channels. We
first fit the Born cross sections from the three channels individually. The Υ(10753) mass
from the individual ππΥ(1S) and ππΥ(2S) fits are found to be (10758.1± 5.3) MeV/c2 and
(10756.3± 3.6) MeV/c2, with widths of (25± 20) MeV and (34± 15) MeV, respectively. The
consistency of the mass and width values suggests that the structure found in ππΥ(1S) and
ππΥ(2S) is the same. The significances of the Υ(10753) from the π+π−Υ(1S) and π+π−Υ(2S)
channels individually are 4.1σ and 7.5σ, respectively. In contrast, no decays of the Υ(10753)
to ππΥ(3S) final states are evident. We fit the Born cross sections from ππΥ(3S) data with
the Υ(10753) parameters fixed to the expected values, and the significance is only 0.2σ.

We then fit the Born cross sections from ππΥ(1S), ππΥ(2S), and ππΥ(3S) channels
simultaneously with common resonance mass and width parameters. The simultaneous fit
is shown as the solid curve in figure 4. The goodness of fit is χ2/n.d.f. = 89.3/70 = 1.28,
where n.d.f. is the number of degrees of freedom. The mass and width of the Υ(10753) state
are found to be (10756.6± 2.7)MeV/c2 and (29.0± 8.8)MeV, respectively. In addition, the
parameters of the Υ(5S) are measured to be (10884.5± 1.2)MeV/c2, and (38.5± 3.6)MeV,
and Υ(6S) are (10995.8± 4.2)MeV/c2, and (33.5± 8.6)MeV. The parameters of the Υ(5S)
and Υ(6S) resonances are consistent with the world average values [2].

We determine the ratios between π+π−Υ(1S) and π+π−Υ(2S) cross sections, and between
π+π−Υ(3S) and π+π−Υ(2S) cross sections at three different energies corresponding to the
Υ(10753), Υ(5S), and Υ(6S) resonance peaks based on the simultaneous fit result and
the covariance matrix. The results are given in table 2. The ratios between π+π−Υ(1S)
and π+π−Υ(2S) channels are consistent among the three resonance peaks, while the ratio
of the π+π−Υ(3S) and π+π−Υ(2S) channels from Υ(10753) peak is significantly smaller
than other two.

In addition, we set limits on the Born cross sections for the production of Zb(10610)±

and Zb(10650)±. Assuming these signals originate from Υ(10753) decay, with the latter state
forbidden by phase-space at

√
s = 10.746GeV, signal yields are extracted from an extended

maximum likelihood fit to ∆Mπ. As shown in figure 3, we fit the ∆Mπ distributions with
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RΥ(10753)
σ(1S/2S) RΥ(10753)

σ(3S/2S) RΥ(5S)
σ(1S/2S) RΥ(5S)

σ(3S/2S) RΥ(6S)
σ(1S/2S) RΥ(6S)

σ(3S/2S)

Ratio 0.46+0.15
−0.12 0.10+0.05

−0.04 0.45+0.04
−0.04 0.32+0.04

−0.03 0.64+0.23
−0.13 0.41+0.16

−0.12

Table 2. Cross-section ratios at resonance peaks above the Υ(4S). Uncertainty in this table combines
statistical and systematic uncertainties.

Mode NZb1 NUL
Zb1

σZb1 (pb) σUL
Zb1

(pb) NUL
Zb2

NZb2 σZb2 (pb) σUL
Zb2

(pb)
10.746GeV
πΥ(1S) 0.0+1.6

−0.0 <4.9 0.00+0.04
−0.00 <0.13 − − −

πΥ(2S) 5.8+5.9
−4.6 <13.8 0.06+0.06

−0.05 <0.14 − − −
10.805GeV
πΥ(1S) 2.5+2.4

−1.6 <5.2 0.21+0.20
−0.13 <0.43 0.0+0.7

−0.0 <5.8 0.00+0.03
−0.00 <0.28

πΥ(2S) 5.2+3.8
−3.0 <12.3 0.15+0.11

−0.09 <0.35 0.0+0.8
−0.0 <6.0 0.00+0.04

−0.00 <0.30

Table 3. Signal yields and upper limits at 90% credibility for e+e− → πZb(10610, 10650),
Zb(10610, 10650) → πΥ(1S, 2S) processes and corresponding Born cross-section measurement limits.
Uncertainties for the numbers of signal events are statistical only. Here we use Zb1 and Zb2 as
shorthand for Zb(10610) and Zb(10650), respectively.

Zb(10610)± and Zb(10650)± signal components and a phase-space contribution. Here we
restrict the signal yield to be non-negative. No significant signal is found either for the
Zb(10610)± or Zb(10650)±. Upper limits are estimated with the following method. By fixing
the signal yields over a range of values and allowing the other parameters to vary in the fit, the
likelihood value is extracted as a function of the number of Zb(10610) or Zb(10650) signal events.
A Gaussian function is convolved with the profile likelihood distribution to approximate
the impact of systematic uncertainties, which are described below. The upper limit on the
number of signal events at the 90% credibility level is the position where the integral area
of the distribution equals 90% of the entire area which integrated starting from zero. Upper
limits on the Born cross sections of Zb(10610)± and Zb(10650)± are calculated using eq. (5.1)
and the corresponding radiative and polarization factors. The results are listed in table 3.

6 Systematic uncertainties

Sources of systematic uncertainties on the cross sections include tracking and muon-
identification efficiency, integrated luminosity, choice of simulated-event generators, trigger
efficiency, Υ(nS) branching fractions, the π+π− amplitude, ISR factor, and the fit procedure.
A momentum-dependent tracking uncertainty is obtained from B̄0 → D∗+(→ D0π+)π− and
e+e− → τ+τ− control samples in data, resulting in uncertainties ranging between 1.5% to
8.4% per track with lower momentum. For the tracking with relatively high momentum, i.e.,
greater than 200 MeV/c, the efficiency uncertainty substantially improves to as low as 0.3%.
The muon identification uncertainty, obtained from J/ψ decays, dimuon, and two-photon
processes, ranges from 0.5% to 5.3%. The uncertainty in the integrated luminosity is 0.7%
while the uncertainty from the choice of generator is about 1.5% [43]. From studies using
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dimuon and e+e− → π+π−π+π−π0π0 processes, we assign a systematic uncertainty of 1%
due to the trigger modeling. The uncertainty in the branching fraction of Υ(nS) → µ+µ− is
taken from ref. [2]. We enlarge the ∆M fit range and change the background parameterization
from a linear function to a uniform or a quadratic function, taking the small differences in
the signal yields between the nominal fit and the alternative fit as the systematic uncertainty
on fit modeling. To estimate the uncertainty related to the signal probability density function
parameterization, we use two alternative fit functions: a Gaussian and a Crystal Ball. The
parameters are determined from fits to the simulated signal sample. We find these alternatives
lead to negligible change in the signal yield compared to that from the nominal fit.

We consider possible bias introduced in weighting the simulated signal sample with the
M(π+π−) distribution from the fit result. For the e+e− → π+π−Υ(1S) mode, since we cannot
separate the uniform M(π+π−) distribution and other hypotheses in the fit, the differences
between the efficiencies from the default simulation and weighted efficiencies according to the
fit are taken as systematic uncertainties. For the e+e− → π+π−Υ(2S) mode, we vary the
weights by their one standard deviation uncertainties from the fit, and take the largest changes
as systematic uncertainties. To test for any dependence of the iterative process on initial
conditions, we also try the dimuon cross-section lineshape as a starting alternative; the final
cross sections and numerical results are unchanged. We vary the Υ(10753) parameters that
we are using in the calculation of the ISR factors, the changes of the final Born cross-sections
are taken as the systematic uncertainties. The numerical results are summarized in table 4.

For the measurement of the Υ(10753) mass and width, we consider various systematic
effects of the lineshape parameterization. We adopt a procedure similar to that described in
the Belle analysis [1], multiplying the width of Υ(10860) by an energy-dependent factor,

1− x− y + x
(
p1/p

(0)
1

)3
+ y

(2
3p2/p

(0)
2 + 1

3p3/p
(0)
3

)
, (6.1)

where p1, p2, and p3 are momenta of the child particles in the B∗
s B̄

∗
s , Zb(10610)π, and

Zb(10650)π systems, respectively, and the superscript (0) denotes a momentum calculated for
the nominal Υ(10860) mass. The factors 2

3 and 1
3 roughly correspond to the ratio of the BB̄∗π

and B∗B̄∗π cross sections in the molecular interpretation of Zb(10610) and Zb(10650). We
experimentally set the weights x and y to the values 0.0, 0.2, 0.4 and 0.6 with the restriction
x+ y ≤ 0.8. The largest changes of Υ(10753) parameters, ±0.4MeV/c2 and ±1.0MeV for the
mass and width, respectively, are taken as systematic uncertainties. Since the Dalitz plot of
Υ(10753) is different from Υ(5S), we vary the coherent fraction of the Υ(10860) from 100%
to 80% according to the non-Zb fractions in ref. [46], and the largest change of Υ(10753)
parameters are ±0.5MeV/c2 and ±0.4MeV. To consider the contribution from the tails of
Υ(2S) and Υ(3S), we add a coherent constant amplitude in the fit function, and the change
of the Υ(10753) mass and width are 0.5 MeV/c2 and 0.5 MeV, respectively. In the mass
measurement, we include the correlated systematic uncertainty in c.m. energy of 0.5 MeV.
Adding the systematic contributions in quadrature, we obtain systematic uncertainties of
±0.9MeV/c2 and ±1.2MeV for the mass and width, respectively.
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Mode B L Tracking µ-ID Trigger Generator M(π+π−) Fit ISR Sum
10.653GeV
ππΥ(1S) 1.6 0.7 1.5 0.6 1.0 1.4 1.3 29.4 6.0 30.1
ππΥ(2S) 8.8 0.7 3.1 2.0 1.0 1.4 — 40.0 2.1 41.2
10.701GeV
ππΥ(1S) 1.6 0.7 1.4 0.5 1.0 1.4 6.7 180.0 1.0 180.1
ππΥ(2S) 8.8 0.7 2.9 1.5 1.0 1.4 — 30.0 1.0 31.5
ππΥ(3S) 9.6 0.7 8.4 4.5 1.0 1.4 — 100.0 2.3 100.5
10.746GeV
ππΥ(1S) 1.6 0.7 1.4 0.8 1.0 1.4 1.4 0.5 4.0 5.0
ππΥ(2S) 8.8 0.7 2.6 1.9 1.0 1.4 — 6.3 2.8 11.7
ππΥ(3S) 9.6 0.7 7.7 4.9 1.0 1.4 — 73.0 18.7 76.5
10.805GeV
ππΥ(1S) 1.6 0.7 1.4 0.8 1.0 1.4 3.2 8.2 1.0 9.2
ππΥ(2S) 8.8 0.7 2.3 2.4 1.0 1.4 — 0.6 4.0 10.3
ππΥ(3S) 9.6 0.7 6.0 5.3 1.0 1.4 — 7.7 1.0 14.8

Table 4. Summary of the systematic uncertainties for the cross section measurement of e+e− →
π+π−Υ(nS) process. The symbol “-” denotes the uncertainties which is negligible. The unit is % in
this table.

7 Summary

In conclusion, we report a measurement of the Born cross sections for the e+e− → π+π−Υ(nS)
processes using a 19.6 fb−1 data sample in the energy region near 10753 MeV from Belle
II. Signals for the Υ(10753) are observed in the cross section as a function of energy for
the e+e− → π+π−Υ(1S) and π+π−Υ(2S) channels with greater than 8 standard deviation
significance, while no evidence is found in π+π−Υ(3S) events.

Combining these results with the Belle measurement [1], the cross-section ratios
σ(π+π−Υ(1S, 3S))/σ(π+π−Υ(2S)) at the Υ(10753) resonance peak are determined for the
first time. The results are 0.46+0.15

−0.12 and 0.10+0.05
−0.04 for the π+π−Υ(1S) and π+π−Υ(3S)

channels, respectively. The ratio for π+π−Υ(1S) channel is compatible with the ratios at
the Υ(5S) and Υ(6S) resonance peaks. However, the relative ratio of π+π−Υ(3S) channel
at the Υ(10753) peak is about three-to-four times smaller than those at the Υ(5S) and
Υ(6S) peaks. Comparing the ratios with the predictions [10], the observed cross section for
Υ(10753) → π+π−Υ(3S) is lower than expectation.

No evidence is found that these transitions occur via intermediate Zb(10610/10650)±

states. The dipion mass distribution in π+π−Υ(2S) production is similar to that observed in
the Υ(2S) → π+π−Υ(1S) process and can be described accurately by the Υ(nS) transition
amplitude. These distributions can provide an input for theoretical calculations regarding
dipion transitions and their relation to the physical nature of the parent Υ(10753) state.

The mass and width of Υ(10753) are measured to be (10756.6± 2.7± 0.9)MeV/c2 and
(29.0±8.8±1.2)MeV, respectively, which is consistent with previous measurements [1]. These
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results supersede the previous Belle result [1]. This improvement in accuracy provides a
more precise basis for theoretical calculations related to the Υ(10753) and resonances in
the e+e− → π+π−Υ(nS) process.
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