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We report the result of a search for the rare decay B0 → γγ using a combined dataset of 753× 106

BB̄ pairs collected by the Belle experiment and 387× 106 BB̄ pairs collected by the Belle II exper-
iment from decays of the Υ(4S) resonance produced in e+e− collisions. A simultaneous fit to the
Belle and Belle II data sets yields 11.0+6.5

−5.5 signal events, corresponding to a 2.5σ significance. We

determine the branching fraction B(B0 → γγ) = (3.7+2.2
−1.8(stat) ± 0.5(syst)) × 10−8 and set a 90%

credibility level upper limit of B(B0 → γγ) < 6.4× 10−8.

In the standard model (SM), there is no tree-level in-
teraction between the b quark and the d quark; therefore,
the B0 → γγ proceeds through a flavor changing neutral
current transition involving electroweak loop amplitudes
where a quark emits and reabsorbs a W− gauge boson.
The dominant amplitudes are illustrated in Fig. 1.

FIG. 1. Box (left) and penguin (right) amplitudes contribut-

ing to B
0 → γγ at leading order in the SM. The symbol q

represents a u, c, or t quark.

The charge-conjugation and parity (CP) averaged
branching fraction B(B0 → γγ) is predicted in the SM
to be (1.4+1.4

−0.8)×10−8, including next-to-leading logarith-
mic and next-to-leading power corrections [1]. Although
the long-distance penguin contribution is expected to be
negligible, it can noticeably impact the CP-violating ob-
servables [2]. The decay B0 → γγ is sensitive to physics
beyond the SM since contributions of non-SM particles
in the loop could enhance the branching fraction by an
order of magnitude to a few orders of magnitude above
the SM expectation, depending on specific supersymmet-
ric parameter values [3, 4]. A measurement of B0 → γγ
thus offers an attractive opportunity to test theories be-
yond the SM [3–5].

The most stringent upper limit (UL) on the branching
fraction is B(B0 → γγ) < 3.2 × 10–7 at the 90% confi-
dence level (CL), set by the BABAR experiment [6] using
an e+e− dataset recorded at the Υ(4S) resonance with
an integrated luminosity of 426 fb–1. The Belle experi-
ment obtained the upper limit B(B0 → γγ) < 6.2× 10−7

at the 90% CL with a 104 fb−1 e+e− dataset from the
Υ(4S) [7].

Here, we report a search for the decay B0 → γγ using
a combined e+e− dataset from the Belle and Belle II ex-
periments collected at the Υ(4S) resonance energy. For
Belle, we use a dataset corresponding to 694 fb–1 contain-
ing (753± 10)× 106 BB pairs, while for Belle II we use

362 fb–1 collected between 2019 and 2022, corresponding
to (387± 6)× 106 BB pairs. The number of BB events
from Belle used in this analysis is slightly smaller than
that of the entire Belle dataset (772 ± 11) × 106, as we
only use the data containing calorimeter timing informa-
tion. The analysis does not distinguish between B0 and

B
0
, and throughout this article, charge conjugation is

implied for all decays.

The Belle detector was a cylindrical large-solid-angle
magnetic spectrometer located at the interaction point
of the KEKB asymmetric energy e+e− collider [8]. The
detector consisted of a silicon vertex detector, a central
drift chamber, an array of aerogel threshold Cherenkov
counters, a barrel-like arrangement of time-of-flight scin-
tillation counters, and an electromagnetic calorimeter
(ECL) composed of CsI(Tl) crystals located inside a
super-conducting solenoid coil that provided a 1.5 T ax-
ial magnetic field. An iron flux-return located outside
the coil was instrumented to detect K0

L mesons and to
identify muons. A detailed description of the detector
can be found in Ref. [9].

The Belle II detector [10], located at the SuperKEKB
e+e− collider [11], is an upgraded version of the Belle
detector. Belle II includes a silicon vertex detector con-
sisting of pixel sensors and double-sided strip detectors,
and a central drift chamber. The central drift chamber
is surrounded by two types of Cherenkov light detector
systems: time-of-propagation detectors for the barrel re-
gion and an aerogel ring-imaging Cherenkov detector for
the forward end cap region. The Belle ECL is reused
in Belle II along with the solenoid and the iron flux re-
turn yoke. However, the ECL readout electronics has
been upgraded [10]. The solenoid flux return is instru-
mented with resistive-plate chambers and plastic scin-
tillator modules to detect muons, K0

L mesons, and neu-
trons.

The z axis of the laboratory frame is defined as the
solenoid axis, where the positive direction is approxi-
mately that of the electron beam. This convention ap-
plies both to Belle and Belle II.

Monte Carlo simulated events are used to optimize the
selection criteria, estimate signal selection efficiencies,
train multivariate discriminants, identify various sources
of background, and develop a model to fit data. We ex-
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amine the data after all the requirements are fixed to
avoid experimenter’s bias. To study the signal, we use

105 Υ(4S) → B0B
0
simulated decays in which one B0

meson decays as B0 → γγ and the other decays accord-
ing to known decay modes tabulated by the Particle Data
Group [12]. The simulated signal and e+e– → BB sam-
ples are generated using the EVTGEN [13] and PYTHIA

8.2 [14] software packages, and the detector response is
simulated using GEANT3 [15] and GEANT4 [16] for Belle
and Belle II, respectively. Continuum e+e– → qq back-
ground processes, where q = u, d, s, c are generated by
PYTHIA 6.4 for Belle [17]. In the case of Belle II, the
KKMC [18] generator is used for hard scattering, fol-
lowed by PYTHIA 8.2 [14] for the hadronization process.
In addition, a sample of e+e− → τ+τ− events is gen-
erated with the TAUOLA package [19]. The simulated
samples of the aforementioned background events corre-
sponding to 1 ab–1 or more are used. To validate the
simulations of continuum processes, Belle (Belle II) has
collected 89.5 (42.3) fb−1 of data about 60 MeV below
the Υ(4S) peak. Experimental and simulated Belle data
are converted into Belle II format [20] and processed with
the Belle II software [21, 22].

Candidate B0 → γγ decays are characterized by two
nearly back-to-back highly energetic photons in the e+e−

center-of-mass (c.m.) frame, as B0 mesons are produced
almost at rest. Photons are selected from isolated en-
ergy deposits (clusters) in the ECL that are not associ-
ated with charged particle trajectories (tracks). We se-
lect events containing at least two photons with energies
in the range 1.4 < E∗(γ) < 3.4 GeV, where the asterisk
denotes an observable in the e+e− c.m. frame. Only ECL
clusters with polar angle θ in the 33◦ < θ < 132◦ barrel
region are considered. To reject background from merged
photon clusters and neutral hadrons, we require that
E9/E25(E9/E21) > 0.95 for Belle (Belle II). In Belle,
E9/E25 corresponds to the ratio of energy deposits be-
tween (3× 3) and (5× 5) crystals centered on the crystal
with maximum energy, whereas in Belle II, E21 corre-
sponds to the energy of the (5 × 5) crystals, excluding
the corners. To suppress clusters originating from neu-
tral hadrons, the number of crystals with energy above
20 MeV in the clusters must exceed 15. To distinguish
between photon and K0

L showers, we utilize a boosted
decision tree (BDT) [23] trained using Zernike moments
[24] as inputs. The classifier output must have a value
above 0.75, which is 90% efficient in selecting the signal
while rejecting 74% of the background events. To reject
out-of-time QED processes such as Bhabha scattering or
e+e− → γγ, the ECL cluster hit time is required to be
within a 2 µs window around the beam crossing time.
For Belle II, the photon signal time, calculated from the
fitted time of the highest energy crystal’s recorded wave-
form within the cluster, should not differ from the beam
crossing time by more than 200 ns.

The B0 → γγ signal candidates are reconstructed by

combining two photon candidates and selected using the
beam-constrained mass Mbc and energy difference ∆E
defined as

Mbc =
√

(E∗
beam/c

2)2 − (p∗B0/c)2, (1)

∆E = E∗
B0 − E∗

beam, (2)

where E∗
beam is the beam energy, E∗

B0 and p∗B0 are the
energy and momentum of theB0 candidate, all calculated
in the e+e− c.m. frame. The signal events peak at the
B0 meson mass in the Mbc distribution and concentrate
near zero in the ∆E distribution. Hence, the B0 meson
candidates are required to be in the range 5.24 < Mbc <
5.29 GeV/c2 and –0.6 < ∆E < 0.2 GeV. The ∆E window
is not centered around zero because of energy leakage
from the ECL. No events with multiple B0 candidates
are found in the experimental or simulated signal data.
To reduce e+e− → qq and τ+τ− events, we require at
least three tracks in the event and the ratio of the second
and zeroth Fox Wolfram moments [25] to be less than 0.7.
This ratio is computed using the momenta of all charged
and neutral particles within the event.

To suppress the background from asymmetric-energy
decays of π0 → γγ and η → γγ decays, a π0/η veto
is implemented. The initial step is to pair each high-
energy photon candidate with low-energy photon candi-
dates having energies above 50 MeV in the event. The
probability of a correctly reconstructed π0/η is then ob-
tained using a BDT (BDTveto) trained on a dedicated
sample dominated by π0 and η events. For training, we
use a set of variables characterizing the photon pairs,
including their invariant mass, the cosine of the angle
in the π0/η rest frame between the momentum of the
high-energy photon and the boost direction of π0/η from
the laboratory frame. Other variables for the low-energy
photon include its energy, its polar angle, the total num-
ber of crystal hits in the ECL, and the cluster variable
E9/E21(25). For Belle II, we use two additional vari-
ables: the distance between the ECL cluster and the
nearest charged particle trajectory extrapolated to the
ECL, and the output of a multivariate classifier based
on Zernike moments for the low-energy photon. All the
selection criteria described above are optimized by max-
imizing εsig/(3/2 +

√
B) [26], where εsig is the efficiency

of the event selection calculated from B0 → γγ simula-
tion, and B is the expected number of background events
in the signal region. The optimized BDTveto selection
in Belle rejects 78% of background photons from π0/η
decays while retaining 85% of the signal. Similarly, the
Belle II selection rejects 75% of this background while
retaining 82% of the signal.

The dominant source of the remaining background is
from the continuum. Since light quarks carry significant
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momenta, continuum events are jetlike and are there-

fore topologically different from isotropic B0B
0
events

in which B0 meson pairs are produced nearly at rest in
the c.m. frame. These differences in event shape topol-
ogy provide most of the discrimination against continuum
background. We separately train a BDTqq̄ classifier using
21 variables for both Belle and Belle II data. The classi-
fication is based on modified Fox-Wolfram moments [25],
the cosine of the angle between the thrust axis of the B0

meson and the z axis, the cosine of the angle between the
thrust axis of the signal B0 candidate and the thrust axis
of the rest of the event (the other B0 in a correctly recon-
structed event) [27], the cosine of the angle between the
B0 flight direction and the z-axis, the number of tracks
in the event, and the flavor tagger output [28], which de-
termines the flavor of the tag (non-signal) side B0 meson.
If the flavor tagger fails to find a tag for a B0 candidate,
which is generally the case for continuum background,
the absence of B0-flavor information is noted and input
to BDTqq̄ .

The BDT output, CBDTqq̄
, ranges from 0 to 1, with

a value near 1(0) being more likely for a signal (back-
ground) event. We use simulated samples to determine
a minimum threshold on the continuum classifier out-
put that minimizes the average expected statistical un-
certainty of the signal yield. This selection requires
CBDTqq̄

> 0.55 (CBDTqq̄
> 0.45), which rejects 93%

(87%) of the qq background and retains 86% (89%) of
the signal when applied to the Belle (Belle II) simula-
tion. After applying all the selection criteria, the overall
signal reconstruction efficiency for Belle and Belle II is
(23.3± 0.1)% and (30.8± 0.1)%, respectively, where the
uncertainties are statistical.

In addition, we evaluate the impact of B0 → π0π0,
B0 → ηη, B0 → ηπ0, and B0 → ωγ background events.
The largest contribution, from B0 → π0π0 decay, consti-
tutes 0.03 events. Therefore, we conclude these rare B
decay backgrounds are negligible.

To extract the signal yield, we perform a three-
dimensional extended unbinned maximum likelihood fit
to Mbc, ∆E, and C ′

BDT, where C
′
BDT is the output of the

BDT (CBDTqq̄
) transformed using the probability integral

transformation [29]. The C ′
BDT distribution for the sim-

ulated signal is uniform between zero and one, whereas
the background distribution exhibits a peak at zero, sim-
plifying modeling. The likelihood function is defined as

Lfit = e
−

∑
j

nj
N∏
i

(
∑
j

njPj((Mbc)
i, (∆E)i, (C ′

BDT)
i)),

(3)
where Pj (Mbc,∆E,C ′

BDT) is the probability density
function (PDF) of the signal or background component
(specified by index j), nj is the yield of this component,
i represents the event index, and N is the total number
of events in the sample. The PDFs for the signal and

background are based on simulation. To model the Mbc

and ∆E signal distribution, a two-dimensional kernel-
density [30] shape is employed to account for the cor-
relation between Mbc and ∆E, which is 26% and 17%
for Belle and Belle II, respectively. The distribution of
C ′

BDT for the signal is modeled by a constant function.
The background is characterized by an ARGUS function
[31] for theMbc distribution, while the ∆E distribution is
modeled using a first-order Chebychev polynomial. The
C ′

BDT distribution is modeled by a sum of two exponen-
tial functions. All the signal parameters, C ′

BDT back-
ground parameters, and the ARGUS endpoint are fixed
to the best-fit values obtained from one-dimensional fits
to simulated events. All other background shape param-
eters and the signal and background yields are allowed
to vary in the fit.

To test for bias in the fitted signal yield, we perform
ensemble tests for Belle and Belle II for different signal
yields. Signal events are randomly selected from simu-
lation, while the expected number of background events
are generated from the nominal PDFs. Statistical fluctu-
ations in the number of signal and background events are
included, assuming that the events follow Poisson statis-
tics. Each simulated experiment is repeated 1000 times
for signal yield ranging from 2 to 20 events and fitted
with the nominal model as defined in Eq. (3). The av-
erage deviation between the fitted and generated signal
yields is treated as a source of systematic uncertainty.
Additionally, we include the linearity of fit results rela-
tive to signal yield as an additional source of systematic
uncertainty. Combined in quadrature, this yields a +0.14
(+0.10) uncertainty on the fit bias for Belle (Belle II).

The systematic uncertainty associated with fixing the
parameter values of the PDFs is assessed by varying the
best-fit parameter values within ±1σ of their statisti-
cal uncertainties. The resulting deviations in the signal
yields in data are measured and used to quantify this
uncertainty. A systematic uncertainty of +0.56

−0.48 (+0.28
−0.32)

events is assigned to the fit model for Belle (Belle II). To
evaluate the accuracy of the simulation in describing data
distributions, we compare its predictions to data from a
B0 → K∗(892)0γ control sample. The K∗(892)0 mesons
are reconstructed using K∗(892)0 → K+π– decays, in
which the charged kaon is required to have RK/π =
LK/(LK + Lπ) > 0.6, where LK(π) is the likelihood for
the kaon(pion) hypothesis, which combines information
from various subdetectors of Belle or Belle II. The pho-
ton selection criteria are the same as in the signal recon-
struction. In addition, the invariant mass of the K+π−

meson pair should be in the range 0.817 < MK∗ < 0.968
GeV/c2. The deviations from unity in the data/MC ra-
tio for the distributions of Mbc and ∆E are considered
as a source of systematic uncertainty. By adding them in
quadrature, we assign a systematic uncertainty of +0.06
(+0.04) events for Belle (Belle II) as the signal shape un-
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FIG. 2. Signal enhanced projections of Mbc (left), ∆E (middle), and C′
BDT (right) for the B0 → γγ analysis using the Belle

(top) and Belle II (bottom) dataset. For each plot, we apply the signal region selection criteria on the variables other than the
plotted variable. The signal regions for the first two variables are as follows, 5.27 < Mbc < 5.29 GeV/c2 and –0.19 < ∆E < 0.14
GeV for Belle and 5.27 < Mbc < 5.29 GeV/c2 and –0.19 GeV < ∆E < 0.15 GeV for Belle II. The cyan(dashed), red(dotted),
and blue(solid) color distributions represent the signal, continuum background, and total fit function, respectively. Points with
error bars represent data.

TABLE I. Summary of additive systematic uncertainties.

Source Belle
(events)

Belle II
(events)

Combined
(events)

Fit bias +0.14 +0.10 +0.12

PDF parametrization +0.56
−0.48

+0.28
−0.32

+0.52
−0.44

Shape modeling +0.06 +0.04 +0.05

Total (sum in quadrature) +0.58
−0.48

+0.30
−0.32

+0.54
−0.44

certainty. These uncertainties are combined in quadra-
ture, resulting in a systematic uncertainty of +0.58

−0.48 (
+0.30
−0.32)

events, as presented in Table I. These uncertainties are
treated as additive systematic uncertainties that affect
the significance of the observed signal yield. Table II
includes uncertainties in the photon detection efficiency,
the signal reconstruction efficiency, the number of pro-
duced BB pairs, and the branching fraction of Υ(4S)
to neutral BB pairs, f00 [32]. These uncertainties are
multiplicative, which are proportional to the signal yield
and affect the signal efficiency in the denominator of Eq.
(4). The systematic uncertainty arising from the photon
detection efficiency is determined to be 4.0% for Belle
using the recoil technique in e+e– → e+e–γ radiative
Bhabha events. For Belle II data, it is measured to be
2.7% utilizing a e+e– → µ+µ−γ initial-state radiation
data sample. The uncertainty in signal reconstruction
efficiency is due to the limited size of the signal simu-
lated sample, and is determined to be 0.4% (0.3%) for
Belle (Belle II). The uncertainties on the number of BB

TABLE II. Summary of multiplicative systematic uncertain-
ties.

Source Belle
(%)

Belle II
(%)

Combined
(%)

Photon detection efficiency 4.0 2.7 3.5

Simulation sample size 0.4 0.3 0.3

Number of BB̄ 1.3 1.5 1.0

f00 2.5 2.5 2.5

CBDT requirement 0.4 0.9 0.6

π0/η veto 0.4 0.6 0.4

Timing requirement efficiency 2.8 − 2.7

Total (sum in quadrature) 5.7 4.1 5.2

pairs recorded in Belle and Belle II are also considered.
A systematic uncertainty from the efficiency of the re-
quirement on CBDT and the π0/η veto is estimated using
the B0 → K∗(892)0γ control sample. The efficiency ratio
between the data and simulation of those requirements
is used as correction, and its uncertainty as the associ-
ated systematic error. Since there are two photons in
the final state for signal candidates and only one in the
control mode, the correction and systematic uncertainty
are doubled. The efficiency ratio between the data and
simulation due to the CBDT and the π0/η veto require-
ments for Belle (Belle II) are 1.026±0.004 (1.006±0.009)
and 1.004±0.004 (1.002±0.006), respectively. An uncer-
tainty of 2.8% is assigned due to the timing criteria for
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Belle, while for Belle II, the uncertainty is incorporated
into the photon detection efficiency.

We obtain 9.1+5.6
−4.4 (1.9+4.2

−2.8) signal events and 615±25
(317±18) background events for Belle (Belle II) from the
fits to the two independent datasets. The branching frac-
tion is calculated using the equation

B(B0 → γγ) =
Nfit

sig

2×NBB × ϵrec × f00
, (4)

where Nfit
sig represents the signal yield obtained from the

fit, NBB = (753 ± 10) × 106 and (387 ± 6) × 106 is
the number of BB pairs at the Υ(4S) resonance for
Belle and Belle II, ϵrec = 23.3% and 30.8% are the sig-
nal reconstruction efficiencies for Belle and Belle II, re-
spectively, and f00 = (48.4 ± 1.2)%. Therefore, the
branching fractions for the Belle and Belle II datasets
are (5.4+3.3

−2.6 ± 0.5)× 10−8 and (1.7+3.7
−2.4 ± 0.3)× 10−8, re-

spectively. The first uncertainty is statistical, while the
second is systematic.

In addition, we perform an extended unbinned maxi-
mum likelihood fit to the Mbc, ∆E, and C ′

BDT distribu-
tions simultaneously in the Belle and Belle II datasets,
which is shown in Fig. 2. The branching fraction is de-
termined to be (3.7+2.2

−1.8 ± 0.5)× 10−8 with a total signal

(background) yield of 11.0+6.5
−5.5 (931±31) events, where

the uncertainties are statistical only. The combined sys-
tematic uncertainty is calculated as the maximum devi-
ation between the fitted values and the best-fit values
with the inclusion of systematic uncertainty in the si-
multaneous fit. The signal significance is calculated as√

−2 ln(L0/Lmax), where L0 is the maximum value of
the likelihood when signal yield is fixed to zero, and Lmax

is the maximum value of the likelihood of the nominal
fit. The resulting significance is 2.5σ, which includes the
systematic uncertainties. To include systematic uncer-
tainties in the significance, we convolve the likelihood
distribution with a Gaussian function whose width is set
to the total systematic uncertainty.

As the significance of the signal yield is low, we cal-
culate an upper limit (UL) on the B using a Bayesian
approach, with a flat prior. The UL on the branching
fraction is determined by integrating the likelihood func-
tion including the systematic uncertainty from zero to
90% of the area under the curve. The upper limit on the
branching fraction obtained from the combined dataset
is 6.4× 10−8, at 90% credibility level [33]. The expected
upper limit from the simulation is 4.4 × 10−8 at 90%
credibility level. The measured branching fractions and
the resulting upper limits on B(B0 → γγ) at 90% cred-
ibility level, including the systematic uncertainties, are
summarized in Table III.

In summary, we have searched for the decay B0 → γγ
using a 1.1 ab−1 data sample collected at the Υ(4S)
resonance by the Belle and Belle II experiments. No
statistically significant signal is observed, leading us

TABLE III. Summary of B(B0 → γγ) measurements and
UL’s at 90% credibility level.

B(B0 → γγ) UL on B(B0 → γγ)

Belle (5.4+3.3
−2.6 ± 0.5)× 10−8 < 9.9× 10−8

Belle II (1.7+3.7
−2.4 ± 0.3)× 10−8 < 7.4× 10−8

Combined (3.7+2.2
−1.8 ± 0.5)× 10−8 < 6.4× 10−8

to set an upper limit of 6.4 × 10−8 on the branching
fraction at 90% credibility level. This result supersedes
the previous Belle measurement [7] and represents a
significant improvement over the previous searches
by the BABAR and Belle collaborations. The use of
advanced analysis techniques such as BDTs results in
a factor of two background reduction compared to the
BABAR results and a gain of a factor of two in the signal
reconstruction efficiency compared to the previous Belle
measurements. These improvements, combined with the
larger Belle + Belle II dataset, lead to an UL that is five
times more restrictive than the previous best limit from
BABAR [6].
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