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Abstract. The existing notion of the shared entangled state-assisted remote preparation of unitary operator
(equivalently the existing notion of quantum remote control) using local operation and classical communi-
cation is generalized to a scenario where under the control of a supervisor two users can jointly implement
arbitrary unitaries (one unknown unitary operation by each or equivalently a single unitary decomposed
into two unitaries of the same dimension and given to two users) on an unknown quantum state available
with a geographically separated user. It is explicitly shown that the task can be performed using a four-
qubit hyperentangled state, which is entangled simultaneously in both spatial and polarization degrees
of freedom of photons. The proposed protocol which can be viewed as primitive for distributed photonic
quantum computing is further generalized to the case that drops the restrictions on the number of con-
trollers and the number of parties performing unitaries and allows both the numbers to be arbitrary. It
is also shown that all the existing variants of quantum remote control schemes can be obtained as special
cases of the present scheme.

1 Introduction

Entanglement is known to be an important resource for
quantum computing and communication. The impor-
tance of the entangled state underlies in the fact that
it (along with a slightly stronger version of it called
nonlocal states) can be used to perform various tasks
that cannot be done in the classical world. For example,
restricting us to the context of the present work, we may
mention that entanglement can be used as a resource
to realize the so-called quantum teleportation—an idea
introduced by Bennett et al. in 1993 [1]. In a conven-
tional teleportation scheme, an unknown single-qubit
quantum state is transferred from one place to another
faraway place without physically sending the qubit
itself with the help of a shared bipartite entangled state,
local operations and 2 bits of classical communication.
Later, Pati et al. [2] showed that a known quantum
states can be teleported to a receiver using an entangled
state and a classical bit only. Such a scheme for tele-
portation of a known quantum state is known as quan-
tum remote state preparation (RSP). Subsequently, the
introduction of the concept of RSP in 2000 led to two
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different kinds of research interests. On the one hand,
several variants of RSP (e.g., controlled remote state
preparation, joint remote state preparation, controlled-
joint remote state preparation, bidirectional remote
state preparation) have been proposed (see [3] and ref-
erences therein); on the other hand, a dedicated effort
has been made to address the question: In analogy to
RSP can we remotely prepare a quantum operation?
The question was answered in the affirmative by Huelga
et al. in 2001 [4], and it was shown that quantum oper-
ation can be prepared remotely using shared entangle-
ment along with local operation and classical commu-
nication (LOCC). Such a remote realization of quan-
tum operations using shared entanglement is referred
to as the quantum remote control (some authors have
referred to it as the remote implementation of an oper-
ator (RIO), too.) Before we proceed further it would
be apt to note that any scheme for bidirectional quan-
tum state teleportation [5,6] can be trivially used for
implementing a scheme for RIO. This can be visual-
ized easily if we consider that Bob wishes to implement
an arbitrary operator UB remotely on a quantum state
|ψ〉 available with Alice. Now, Alice may teleport the
state |ψ〉 to Bob and he may apply his operation on the
state received to yield |ψ′〉 = UB|ψ〉 and teleport the
state |ψ′〉 to Alice. This trivial scheme would require
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at least two copies of Bell states and 4 bits of clas-
sical communication. This sets a kind of upper limit
on the resource requirement as the intentional use of a
higher amount of resource will make no sense. Now, a
scheme of efficient RIO would require a lesser amount
of resources, and in Ref. [7], it is shown that RIO can
be implemented using two copies of Bell states and 4
bits of classical communication, and the same is a min-
imal requirement. In [7], it was also shown that if UB

mentioned above belongs to certain classes of unitary
operators, then the task (i.e., RIO) can be implemented
using 1 Bell state and 2 bits of classical communication
only. In 2006, one of the present authors came up with
an idea of remote implementation of a hidden operator
[8]: The necessary operator is hidden in a lump oper-
ator given to the implementer who can locally manip-
ulate the lump operator as a whole only. Several vari-
ants of such remote implementation of hidden opera-
tor have also been proposed such as controlled remote
implementation of partially unknown quantum opera-
tion [9], cyclic controlled remote implementation of par-
tially unknown quantum operations [10] and double-
direction cyclic controlled remote implementation of
partially known quantum operations [11]. It is inter-
esting to note that a specific version of RIO is exper-
imentally realized. Specifically, remote implementation
of a rotation angle was experimentally demonstrated in
[12].

Since the introduction of the concept of quantum
remote control, several variants of it have been pro-
posed that are analogous to the variants of RSP. For
example, controlled remote implementation of operator
(CRIO)1 [13] and joint remote implementation of oper-
ator (JRIO) [14] have been proposed. The proposed
schemes utilize different types of quantum resources.
For example, in [13–15] hyperentanglement is used for
RIO, CRIO and JRIO and in [16] graph state is used
for CRIO. Thus, the schemes for RIO, CRIO and JRIO
have already been studied with reasonable rigor, but
no scheme for controlled-joint remote implementation
of operator (CJRIO) has yet been proposed. This has
motivated us to look into the possibility of designing
such a protocol. Also, there is an additional motiva-
tion, and the scheme for CJRIO can be easily reduced
to the schemes for JRIO, RIO and CRIO. Further, such
a scheme can be of use in distributed quantum comput-
ing requiring nonlocal operation (see [17] and references
therein) as well as in the quantum networks in general
and quantum internet in particular. For example, in
Ref. [18] a device architecture for distributed quantum
computing is proposed which is very apt for the present
situation where only noisy intermediate quantum com-
puters are available. As the available quantum comput-

1 Note that if we use particle order permutation technique
as described and utilized in [5] and the scheme of [7], a
scheme of CRIO of an arbitrary operator would require 2
Bell states and 4 bits of classical communication, whereas a
trivial scheme for CRIO obtained by modifying an efficient
scheme for controlled bidirectional quantum teleportation
[5] would require one more classical bit.

ers are small in size, RIO will be essential in all such sit-
uations where the number of qubits required to perform
a specific computational task exceeds the number of
qubits that can be stored and compiled in a single quan-
tum computer [18]. Now, as the task can be distributed
over a large number of small quantum computers, JRIO
is a requirement. Further, a master–slave architecture is
often used in traditional distributed computing, where
a master node (user) acts as the central control unit
that receives tasks from clients and distributes the task
among slave nodes. In our situation, slave nodes are
located at different quantum computers and the mas-
ter node is referred to as the controller, leading to an
analogous situation in the quantum world leading to
the requirement of CJRIO. Now, in the classical world,
remote operations mentioned here are usually referred
to as teleoperations and there exist schemes for teleop-
erations that involve multiple masers (i.e., controllers
in our case) [19]. A quantum analog of such a scheme
would be a generalized version of CJRIO allowing mul-
tiple controllers (master nodes). Interestingly, this need
and the fact that no scheme for CJRIO (independent
of the number of controllers) exists, motivated us to
design a scheme for CJRIO with a single controller first
and then to generalize that to a multiple controller sit-
uation.

In this paper, we have first proposed a scheme for
CJRIO using an entangled state and LOCC. It is explic-
itly shown that CJRIO can be realized using a four-
qubit hyperentangled state, which is entangled in spa-
tial and polarization degree of freedom of photons. The
preparation of such a hyperentangled state can be found
in references [20–23]. The proposed protocol is also gen-
eralized to the case that allows an arbitrary number
of controllers and an arbitrary number of parties to
perform unitaries. This is not only the most general-
ized version of quantum remote control, it can also be
reduced to all the existing variants of quantum remote
control schemes. Specifically, schemes for RIO, CRIO,
JRIO, etc., can be obtained as special cases of the
CJRIO schemes proposed here.

The rest of the paper is organized as follows. In
Sect. 2, we briefly describe the task that we wish to per-
form here. Thereafter, in Sect. 3, we propose a scheme
for CJRIO using a four-qubit hyperentangled state,
which is entangled at the same time in double degrees
of freedom—the spatial and the polarization ones. Sub-
sequently, in Sect. 4 we have generalized our protocol
to the case where any number of parties can jointly
prepare the quantum unitary in the supervision of an
arbitrary number of controllers. The process for reduc-
ing our proposed scheme for CJRIO into the existing
variants of RIO is described in Sect. 5 with specific
attention to the efficiency of the CJRIO scheme and
the schemes that can be obtained as special cases of
CJRIO. Finally, in Sect. 6 the relevance of the proposed
protocols is discussed and the paper is concluded.
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2 The task of interest

The idea of CJRIO is to jointly and controllably operate
an unknown quantum operation on an unknown quan-
tum state at different nodes. The task can be visualized
as one involving four spatially separated parties named
Alice, Bob1, Bob2 and Charlie. Here, we consider that
an arbitrary unitary U which can be decomposed as
U = U1

B.U2
B is implemented by Bob1 and Bob2 jointly

on an arbitrary quantum state |ψ〉X available with Alice
under supervision of a controller Charlie. For a gener-
alized view, we consider that the operators which Bob1

and Bob2 wish to operate are U1
B and U2

B, respectively,
the form of which can be given as follows:

U1
B =

(
u1

B v1
B

−v1∗
B u1∗

B

)
, (1)

U2
B =

(
u2

B v2
B

−v2∗
B u2∗

B

)
. (2)

Note that the above operators are the most general in
the sense that they describe all possible rotations of the
qubit (the state in possession of Alice on which Bob’s
operator is to be implemented remotely). This is so as
the arbitrary rotation of a qubit can be represented

by an unimodular matrix of the form U =
(

u v
−v∗ u∗

)

such that |u|2 + |v|2 = 1, u, v ∈ C. A set of all such
unitaries forms the SU(2) group, and in the present
work unitary operations of the same form are used. As
mentioned above, Alice who is spatially separated from
Bob1 and Bob2 has an unknown quantum state |ψ〉X

of the following form:

|ψ〉X = (α|x0〉 + β|x1〉)X |V〉X (3)

where α and β are unknown coefficients which satisfies
the normalization condition |α|2 + |β|2 = 1, and |V 〉X

describing the polarization state of photon. Physically,
it can be viewed as if Alice has photon indexed by X
which is vertically polarized and is in spatial superpo-
sition state of |x0〉 and |x1〉.

The action of unitary operator U1
B on |ψ〉X can be

described as |ψB1〉 = U1
B|ψ〉X = αB1 |x0〉+βB1 |x1〉 with

αB1 = αu1
B+βv1

B and βB1 = −αv∗1
B +βu∗1

B . Further, the
action of unitary operator U2

B on |ψ〉X can be described
as |ψB2〉 = U2

B|ψ〉X = αB2 |x0〉 + βB2 |x1〉 with αB2 =
αu2

B + βv2
B and βB2 = −αv∗2

B + βu∗2
B .

The task of concern is that Bob1 and Bob2 should
remotely apply their operators on Alice’s state, which
can be mathematically represented as

|ψB1B2〉 = U1
BU2

B|ψ〉X

= (αB1B2 |x0〉 + βB1B2 |x1〉)|V〉X
(4)

where αB1B2=αB2u1
B +βB2v1

B and βB1B2=−αB2v∗1
B +

βB2u∗1
B .

The quantum channel used here to perform the task
of concern is a four-qubit hyperentangled state given

as

|Q〉AB1B2C = |QS〉AB1B2C |QP 〉AB1B2C (5)

where

|QS〉AB1B2C = |a0〉A|b10〉B1 |b20〉B2 |c0〉C

+|a1〉A|b11〉B1 |b21〉B2 |c1〉C (6)

|QP 〉AB1B2C = |H〉A|H〉B1 |H〉B2 |H〉C

+|V〉A|V〉B1 |V〉B2 |V〉C (7)

with aj , b1j , b2j , cj (j = 0, 1) the spatial paths, while
H and V the horizontal and vertical polarization. The
superscript S denotes the spatial degree of freedom (S-
DOF), and P denotes the polarization degree of free-
dom (P-DOF). It is to be noted that in Eqs. (6) and (7)
the factor of normalization 1/

√
2 is omitted. The label-

ing A, B1, B2 and C in the subscript denotes photon
state with Alice, Bob1, Bob2, and Charlie, respectively.
Bob1 and Bob2 try to implement an arbitrary unitary
operation on an unknown state at Alice’s node with all
the participants physically far apart from each other.

3 Protocols for controlled-joint remote
implementation of operators

The combined state of Alice’s state and quantum chan-
nel can be written as

|ψ〉X |QSP 〉AB1B2C = |φS〉XAB1B2C |V〉X |QP 〉AB1B2C

(8)

where

|φS〉 = (α|x0〉 + β|x1〉)X ⊗ (|a0〉A|b10〉B1 |b20〉B2 |c0〉C

+|a1〉A|b11〉B1 |b21〉B2 |c1〉C) (9)

We will now only consider S-DOF of the combined state
and will come back to P-DOF in Sect. 3.2.

3.1 Utilizing S-DOF

Step 1 The first step is to entangle photon X with
the remaining photons of the quantum channel.
To do so, Alice prepares an auxiliary coherent
state (CS) |z〉 and lets it interact with one of
the path of photon X (here |x0〉) and photon
A (here |a0〉) via cross-Kerr nonlinear interac-
tion2 [24,25] with interaction parameters θ and

2 The cross-Kerr nonlinear interaction between an auxiliary
coherent state |z〉 (|z〉 = exp(−|z|2/2)

∑∞
n=0(z

n/
√

n!|n〉)
where |n〉 is a Fock state containing n photons) and a pho-
ton path lets say |b〉 with interaction parameters θ and −θ
is mathematically represented as Kb(±θ)|z〉|b〉 = |ze±iθ〉|b〉.
The X-quadrature homodyne detection technique is used to
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−θ (Kx0(θ) and Ka0(−θ)), respectively. This
transformation can be shown with the follow-
ing equation.

|ξ〉 = (α|x0〉X |a0〉A|b10〉B1 |b20〉B2 |c0〉C

+ β|x1〉X |a1〉A|b11〉B1 |b21〉B2 |c1〉C)|z〉
+ (α|x0〉X |a1〉A|b11〉B1 |b21〉B2 |c1〉C

+ β|x1〉X |a0〉A|b10〉B1 |b20〉B2 |c0〉C)|ze±iθ〉

(10)

Now, the measurement of the coherent state
gives two possible outcomes k = 0 (1) corre-
sponding to |z〉 (|ze±iθ〉). Alice’s measurement
outcome changes the state in Eq. (9) to the fol-
lowing:

|ξk〉 = α|x0〉X |ak〉A|b1k〉B1 |b2k〉B2 |ck〉C

+β|x1〉X |ak⊕1〉A|b1k⊕1〉B1 |b2k⊕1〉B2 |ck⊕1〉C

(11)

with ⊕ denoting an addition mod 2. Now, one
can see from Eq. (11) that the photon X is
entangled with the remaining photons in the
quantum channel.
This step can be visualized in pictorial form as
shown in Fig. 1 as Step 1. Photons are labeled
as X, A, B1, B2 and C. Photons X and A are
with Alice, and photons B1, B2 and C are with
Bob1, Bob2 and Charlie, respectively.

Step 2 Then, Alice tries to disentangle her photons X
and A from the remaining photons in S-DOF.
To do so, Alice mixes the two spatial paths |ak〉
and |x1〉 (|ak〉 and |ak⊕1〉) of her photon X (A)
on a balanced beam splitter (BBS) (for more
details, see Sect. 2 of [26] or that of [13].) The
BBS transformation rule is (up to a normaliza-
tion factor) |σj〉 → |σj〉 + (−1)j |σj⊕1〉. After
mixing the photons on the BBS, the state in
Eq. (11) reduces to:

|ξ′
k〉 = (|x0〉|ak〉 + (−1)k|x1〉|ak+1〉) ⊗ (α|b1k〉||b2k〉|ck〉

+ (−1)kβ|b1k+1〉|b2k+1〉|ck+1〉)
+ (|x0〉|ak+1〉 + (−1)k|x1〉|ak〉)
⊗ (α|b1k〉||b2k〉|ck〉
− (−1)kβ|b1k+1〉|b2k+1〉|ck+1〉)

(12)

It can be seen from Eq. (12) that photons X
and A are still not separated from the remain-
ing photons in the channel. To get them sep-
arated, Alice again uses an auxiliary CS |z〉
and turns on the cross-Kerr nonlinear interac-
tion with photon X on path |x0〉 and photon
A on path |ak〉 with interaction parameters θ

measure whether the coherent state is in |z〉 or |ze±iθ〉. It
is to be noted that |zeiθ〉 and |ze−iθ〉 are indistinguishable
with this kind of measurement.

and 2θ, respectively. Alice then measures the X-
quadrature of the CS whose measurement out-
comes are mn = 00, 01, 10 and 11 corresponding
to |z〉, |zeiθ〉, |zei2θ〉 and |zei3θ〉, respectively.
After the measurement, the state becomes:

|ξkmn〉 = |xn⊕1〉|ak⊕m⊕1〉(α|b1k〉|b2k〉|ck〉
+(−1)k⊕m⊕nβ|b1k⊕1〉|b2k⊕1〉|ck⊕1〉)

(13)

The photons X and A are now separated in S-
DOF from the remaining photons in the chan-
nel, which can be seen from Eq. (13). To
avoid complexity, we may forget photon X and
Eq. (13) can be written as:

|Ξkmn〉 = |ak⊕m⊕1〉(α|b1k〉|b2k〉|ck〉
+(−1)k⊕m⊕nβ|b1k⊕1〉|b2k⊕1〉|ck⊕1〉)

(14)

This step can be visualized in pictorial form as
shown in Fig. 1 as Step 2.

Step 3 Now, let us understand the role of controller
Charlie. If Charlie wants to stop the joint oper-
ation, then she does nothing; otherwise, she
mixes her photon path states |ck〉 and |ck⊕1〉
on a BBS. It is to be noted that until Charlie
mixes her photon paths, the joint parties are
unable to apply the correct unitary operation.
After mixing photon paths, Eq. (14) transforms
into the following:

|Ξ′
kmn〉 = |ak⊕m⊕1〉[(α|b1k〉|b2k〉

+ (−1)m⊕nβ|b1k⊕1〉|b2k⊕1〉)|ck〉
+ (−1)k(α|b1k〉|b2k〉
− (−1)m⊕nβ|b1k⊕1〉|b2k⊕1〉)|ck⊕1〉]

(15)

She will then take an arbitrary CS |z〉 and let it
interact with one of her photon path states |ck〉
via cross-Kerr nonlinear interaction with inter-
action parameter θ and then measure it. Let the
measurement outcome be s = 0 (1) correspond-
ing to |z〉 (|zeiθ〉). After the measurement, the
state in Eq. (15) transforms into the following:

|Ξkmns〉 = |ak⊕m⊕1〉(α|b1k〉|b2k〉
−(−1)m⊕n⊕sβ|b1k⊕1〉|b2k⊕1〉)|ck⊕s⊕1〉

(16)

Charlie’s photon path is now separated from the
remaining photon paths. By doing so, Charlie
is allowing the joint parties Bob1 and Bob2 to
perform the joint operations.
This step can be visualized in pictorial form as
shown in Fig. 2 as Step 3
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Step 4 At this stage, Bob1 and Bob2 jointly decide who
will implement the operation first. Let Bob2

will implement the operation first. Bob2 is able
to implement his operation U2

B if Bob1 mixes
the spatial states |b1k〉 and |b1k⊕1〉 of his pho-
ton B1 and lets one of the path (say |b1k〉) to
interact with an arbitrary CS |z〉 via cross-Kerr
nonlinear interaction with interaction parame-
ter θ and measures it. Consider the measure-
ment outcome be l = 0 (1) corresponding to |z〉
(|zeiθ〉). The new state after the measurement
of Bob1 is given as follows:

|Ξkmnsl〉 = |ak⊕m⊕1〉|b1k⊕l⊕1〉(α|b2k〉
+(−1)k⊕m⊕n⊕s⊕lβ|b2k⊕1〉)|ck⊕s⊕1〉

(17)

It can be clearly seen from Eq. (17) that
the coefficient α and β which was initially
with photon X has shifted toward photon B2.
Bob2 will now recover the state α|b20〉 + β|b21〉
by applying the appropriate unitary operation
Zk⊕m⊕n⊕s⊕l

S Xk
S , where XS = |b20〉〈b21| + |b21〉〈b20|

and ZS = |b20〉〈b20|−|b21〉〈b21|. Once Bob2 recovers
the state, then he will implement the operation
U2
B on it, which will transform the state into the

following:

|Λkmsl〉 = |ak⊕m⊕1〉|b1k⊕l⊕1〉(αB2 |b20〉
+βB2 |b21)|ck⊕s⊕1〉 (18)

This step can be visualized in pictorial form as
shown in Fig. 2 as Step 4.

Step 5 The path of photon B1 got separated in the pre-
vious step which we need to bring back into the
spatial superposition by passing through a BBS.
When |b1k⊕l⊕1〉 passes through a BBS, it triggers
a new path |b1k⊕l〉. Behind the BBS, Bob1 picks
one path (say |b1k⊕l⊕1〉) and lets it interact with
an auxiliary CS |z〉 via cross-Kerr interaction
with interaction parameter θ and forwards the
CS to Bob2, which interacts with path |b20〉 via
cross-Kerr interaction with interaction parame-
ter −θ. After the interaction, Bob2 measures the
CS, whose measurement outcome is r = 0 (1)
corresponding to |z〉 (|ze±iθ). The measurement
of Bob2 here transforms the state in Eq. (18)
into a new state |Λkmslr〉 which can be written
as follows:

|Λkmslr〉 = |ak⊕m⊕1〉(αB2 |b1k⊕l⊕r⊕1〉|b20〉
+(−1)k⊕l⊕1βB2 |b1k⊕l⊕r〉|b21)|ck⊕s⊕1〉

(19)

This step can be visualized in pictorial form as
shown in Fig. 3 as Step 5.

Step 6 In Step 4, Bob1 cooperates with Bob2 to imple-
ment his operation U2

B. Now, its time for Bob2

to cooperate with Bob1 by mixing his photon
path states |b20〉 and |b21〉 on a BBS and turning
on the cross-Kerr interaction between |b21〉 and
an auxiliary CS |z〉 with interaction parameter
θ. After the interaction, Bob2 measures the CS
whose measurement outcomes are g = 0 (1) cor-
responding to |z〉 (|zeiθ〉). The measurement of
Bob2 transforms the state |Λkmslr〉 to |Λkmslrg〉
which is given as follows:

|Λkmslrg〉 = |ak⊕m⊕1〉(αB2 |b1k⊕l⊕r⊕1〉
+(−1)k⊕l⊕g⊕1βB2 |b1k⊕l⊕r〉)|b2g〉|ck⊕s⊕1〉

(20)

The coefficient αB2 and βB2 , which was initially
with Bob2, has now shifted to Bob1. To recover
the original path of photon B1, Bob1 will apply
an appropriate unitary Zk⊕l⊕g⊕1

S Xk⊕l⊕r⊕1
S on

his photon. After the recovery, the state will
become

|Λ′
kmslrg〉 = |ak⊕m⊕1〉(αB2 |b10〉

+βB2 |b11〉)|b2g〉|ck⊕s⊕1〉 (21)

Bob1 can now implement his unitary operation
U1
B on his photon B1 that transforms the state

to |Λ′′
kmslrg〉 which is given as

|Λ′′
kmslrg〉 = |ak⊕m⊕1〉(αB1B2 |b10〉

+βB1B2 |b11〉)|b2g〉|ck⊕s⊕1〉 (22)

It is noted that αB1B2 |b10〉 + βB1B2 |b11〉 =
U1
BU2

B(α|b10 + β|b11). But the task is not com-
pleted yet, the coefficients αB1B2 and βB1B2

need to be transferred to Alice’s node. To do so,
the communicating parties will now use their P-
DOF which is described in Sect. 3.2.
This step can be visualized in pictorial form as
shown in Fig. 3 as Step 6.

3.2 Utilizing P-DOF

Taking into account the P-DOF, the combined state
after Step 6 can now be written as follows:

|φP 〉 = |Λ′′
kmslrg〉|QP 〉 (23)

The expanded form of Eq. (23) can be written as

|φP 〉 = |ak⊕m⊕1〉[αB1B2 |H〉A|H, b10〉B1 |H, b2g〉B2 |H〉C

+ αB1B2 |V〉A|V, b10〉B1 |V, b2g〉B2 |V〉C

+ βB1B2 |H〉A|H, b11〉B1 |H, b2g〉B2 |H〉C

+ βB1B2 |V〉A|V, b11〉B1 |V, b2g〉B2 |V〉C ]|ck⊕s⊕1〉

(24)
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Fig. 1 A schematic which represents first two steps of the CJRIO protocol. A circle with V, H represents photon simul-
taneously in vertical and horizontal polarization, and circle with V only represents photon in vertical polarization. The
two (one) lines attached with circles represent photons having two spatial paths simultaneously (photons having one path
only). The cross-Kerr nonlinear interaction between a photon path and the coherent state is attached by a line with a bold
dot on the photon path. The dimensionless parameter θ determines the change of phase of the CS brought about by the
cross-Kerr interaction. The double arrow from the coherent state represents measurement outcomes. Vertical solid (dashed)
line represents entanglement in P-DOF (S-DOF). BBS here is a balanced beam splitter. Here, the photon X first gets
entangled with remaining photons by allowing nonlinear interaction Kx0(θ)|z〉|x0〉 and Ka0(−θ)|z〉|a0〉. The measurement
of the CS gives outcome k. Once photon X gets entangled, then Alice tries to pass the coefficient of |ψ〉X to joint parties
by mixing her photon paths on BBSs and allowing the interaction Kx0(θ)|z〉|x0〉 and Kak(2θ)|z〉|a0〉 and then measures the
CSs, whose measurement outcomes are m and n

Here, |H, b10〉 denotes state of horizontally polarized
photon propagating along path b10 and similarly for
|H, b2g〉, |V, b10〉, |V, b2g〉, |H, b11〉, |H, b2g〉, |V, b11〉 and |V, b2g〉.

The initial goal was to implement an operator jointly
at Alice’s node. To achieve the goal, the coefficients
αB1B2 and βB1B2 have to be shifted toward Alice. For
that, the joint parties (Bob1, Bob2) and the controller
(Charlie) will have to measure their photons in appro-
priate bases.

Step 7 First, the joint parties Bob1 and Bob2 measure
their photons in an appropriate bases. Before
the measurement, Bob1 puts a half-wave plate
(HWF) on path b11 to exchange the photon polar-
ization |H, b11〉 � |V, b11〉 and then mixes the two
paths |b10〉 and |b11〉 of his photon on a BBS, which
transforms the state to the following:

|Ω〉 = |ak⊕m⊕1〉[αB1B2 |H〉A|H, b10〉B1 |H, b2g〉B2 |H〉C

+αB1B2 |H〉A|H, b11〉B1 |H, b2g〉B2 |H〉C

+αB1B2 |V〉A|V, b10〉B1 |V, b2g〉B2 |V〉C

+αB1B2 |V〉A|V, b11〉B1 |V, b2g〉B2 |V〉C

+βB1B2 |H〉A|V, b10〉B1 |H, b2g〉B2 |H〉C

−βB1B2 |H〉A|V, b11〉B1 |H, b2g〉B2 |H〉C

+βB1B2 |V〉A|H, b10〉B1 |V, b2g〉B2 |V〉C

−βB1B2 |V〉A|H, b11〉B1 |V, b2g〉B2 |V〉C ]|ck⊕s⊕1〉
(25)

and Bob2 now puts a quarter wave plate (QWP)
on path |b2g〉 to, up to the normalization fac-
tor, transform |H, b2g〉 to (|H, b2g〉 + |V, b2g〉) and
|V, b2g〉 to |H, b2g〉−|V, b2g〉. The transformed state
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Fig. 2 A schematic which represents Step 3 and Step 4 of the CJRIO protocol. Here, controller Charlie first mixes her
photon paths on a BBS and allows the interaction Kck (θ)|z〉|ck〉 and measures the CS, whose measurement outcome is s,
which disentangles photon C from remaining photons in S-DOF. After that Bob1 mixes his photon paths on a BBS and
allows the interaction Kb1

k
(θ)|z〉|b1k〉 and measures the CS, whose measurement outcome is l, which allows Bob2 to apply

appropriate unitaries to get αB2 |b20〉 + βB2 |b21〉

V
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H
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V
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V
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V
H

V
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V
H

BBS
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Step 5 Step 6

Fig. 3 A schematic which represents Step 5 and Step 6 of the CJRIO protocol. Here, Bob1 first triggers a new path using
a BBS and allows the nonlinear interaction Kb1

k⊕l⊕1
(θ)|z〉|b1k⊕l⊕1〉 and forwards it to Bob2 which allows the interaction

Kb20
(−θ)|z〉|b20〉 and measures the CS, whose measurement outcome is r. Bob2 then mixes two spatial paths of his photon

and turns on proper cross-Kerr interaction between a CS and one path of his photon followed by measuring the CS with
outcome g as shown in the figure that allows Bob1 to implement an appropriate unitaries to get αB1B2 |b10〉 + βB1B2 |b11〉

is given as follows:

|Ω′〉 = |ak⊕m⊕1〉[|H, b10〉B1 |H, b2g〉B2

(αB1B2 |H〉A|H〉C + βB1B2 |V〉A|V〉C)
+|H, b10〉B1 |V, b2g〉B2

(αB1B2 |H〉A|H〉C − βB1B2V〉A|V〉C)
+|H, b11〉B1 |H, b2g〉B2

(αB1B2 |H〉A|H〉C − βB1B2 |V〉A|V〉C)

+|H, b11〉B1 |V, b2g〉B2

(αB1B2 |H〉A|H〉C + βB1B2 |V〉A|V〉C)
+|V, b10〉B1 |H, b2g〉B2

(αB1B2 |V〉A|V〉C + βB1B2 |H〉A|H〉C)
−|V, b10〉B1 |V, b2g〉B2

(αB1B2 |V〉A|V〉C − βB1B2 |H〉A|H〉C)
+|V, b11〉B1 |H, b2g〉B2

(αB1B2 |V〉A|V〉C − βB1B2 |H〉A|H〉C)
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−|V, b11〉B1 |V, b2g〉B2

(αB1B2 |V〉A|V〉C + βB1B2 |H〉A|H〉C)]|ck⊕s⊕1〉
(26)

Now, Bob1 and Bob2 will measure their pho-
tons in an appropriate basis. Bob1 (Bob2)
measures his photon B1 (B2) in the basis
{|H, b10〉, |H, b11〉, |V, b10〉, |V, b11〉} ({|H, b2g〉, |V, b2g〉}),
whose corresponding measurement results are
pq = 00, 01, 10, 11 (w = 0, 1). The collapsed
state after the measurement is given as follows:

|Ωkmpqw〉 = |ak⊕m⊕1〉

⎧⎪⎨
⎪⎩

(αB1B2 |H〉A|H〉C + βB1B2 |V〉A|V〉C)|ck⊕s⊕1〉 for pqw = 000, 011
(αB1B2 |H〉A|H〉C − βB1B2 |V〉A|V〉C)|ck⊕s⊕1〉 for pqw = 010, 001
(αB1B2 |V〉A|V〉C + βB1B2 |H〉A|H〉C)|ck⊕s⊕1〉 for pqw = 100, 111
(αB1B2 |V〉A|V〉C − βB1B2 |H〉A|H〉C)|ck⊕s⊕1〉 for pqw = 110, 101

(27)

This step can be visualized in pictorial form as
shown in Fig. 4 as Step 7.

Step 8 The controller Charlie once again uses her
power. If she wants to stop the protocol, she does
nothing otherwise she places a QWP on her pho-
ton path ck⊕s⊕1 to rotate the polarization state
of her photon state from |H〉C → |H〉C + |V 〉C

and |V 〉C → |H〉C−|V 〉C (normalization is omit-
ted). After that, Charlie lets her photon pass
through a polarizing beam splitter (PBS), which
transmits photon of horizontal polarization but
reflects that of vertical one and measures it in
the basis {|H, ck⊕s⊕1〉, |V, ck⊕s⊕1〉, whose corre-
sponding measurement outcome is v = 0, 1. The
collapsed state after Charlie’s measurement is
given as follows:

|Ωkmpqwv〉 = |ak⊕m⊕1〉

⎧⎪⎨
⎪⎩

(αB1B2 |H〉 + βB1B2 |V〉) for pqwv = 0000, 0101, 0011, 0110
(αB1B2 |H〉 − βB1B2 |V〉) for pqwv = 0001, 0100, 0010, 0111
(αB1B2 |V〉 + βB1B2 |H〉) for pqwv = 1000, 1101, 1011, 1110
(αB1B2 |V〉 − βB1B2 |H〉) for pqwv = 1001, 1100, 1010, 1111

(28)

It can be seen that the coefficients αB1B2 and
βB1B2 are finally shifted to Alice. Now, Alice
applies Zq⊕w⊕v

P Xp
P on her photon, where XP =

|H〉〈V |+ |V 〉〈H| and ZP = |H〉〈H| − |V 〉〈V |, to
obtain a new state given as follows:

|Ωkm〉 = (αB1B2 |H〉 + βB1B2 |V 〉)|ak⊕m⊕1〉
(29)

This step can be visualized in pictorial form as
shown in Fig. 4 as Step 8.
Now, the next step is to transform Alice’s pho-
ton state from P-DOF to the photon’s state in
S-DOF.

Step 9 In this step, Alice first applies PBS on the state
|Ωkm〉, which triggers a new path and turns the

state into (αB1B2 |H, ak⊕m⊕1〉+βB1B2 |V, ak⊕m〉).
Further, a HWP is placed in one of the path
(say ak⊕m⊕1) which generates a new state
(αB1B2 |ak⊕m⊕1〉+βB1B2 |ak⊕m〉)|V 〉. Alice finally
applies an operator Xk⊕m⊕1

S , which recovers
the required state (αB1B2 |a0〉 + βB1B2 |a1〉) =
U1
BU2

B|ψ〉A. The task of CJRIO has been suc-
cessfully achieved now.
This step can be visualized in pictorial form as
shown in Fig. 4 as Step 9.

4 A possible generalization for CJRIO

The proposed scheme for CJRIO can be generalized to
M -joint parties (say Bob1, Bob2,. . . , BobM ) and N -
controllers (say Charlie1, Charlie2,. . . ,CharlieN ). The
operator of the respective (say ith) joint party is U i

B
which is given as follows:

U i
B =

(
ui

B vi
B

−v∗i
B u∗i

B

)
(30)

The task here is to jointly prepare an arbitrary opera-
tion on Alice’s photon by all M parties which is math-
ematically represented as

|ψB1B2...BM 〉 = U1
BU2

B ...UM
B |ψ〉X

= (αB1B2...BM |x0〉 + βB1B2...BM |x1〉)
(31)

The quantum channel used to complete the task of
CJRIO for M -joint parties and N -controllers can be
given as:

|Q〉AB1B2...BMC1C2...CN = |QS〉AB1B2...BMC1C2...CN

|QP 〉AB1B2...BMC1C2...CN (32)

where (up to the normalization factor)

|QS〉AB1B2...BMC1C2...CN
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Fig. 4 A schematic which represents Step 7 to Step 9 of the CJRIO protocol. Here, the joint parties Bob1 and Bob2

and the controller Charlie measure their photons in an appropriate basis using HWP, QWP, BBS and PBS. After the
measurement photons B1, B2 and C collapsed and we are only left with photon A. Alice then applies appropriate unitary
followed by PBS and HWP in one path to obtain the desired state αB1B2 |a0〉 + βB1B2 |a1〉

= |a0〉A|b10〉B1 |b20〉B2 ...|bM
0 〉BM |c10〉C1 |c20〉C2 ...|cN

0 〉CN

+|a1〉A|b11〉B1 |b21〉B2 ...|bM
1 〉BM |c11〉C1 |c21〉C2 ...|cN

1 〉CN

(33)

|QP 〉AB1B2...BMC1C2...CN

= |H〉A|H〉B1 |H〉B2 ...|H〉BM |H〉C1 |H〉C2 ...|H〉CN

+|V 〉A|V 〉B1 |V 〉B2 ...|V 〉BM |V 〉C1 |V 〉C2 ...|V 〉CN

(34)

The steps involved to achieve the task of CJRIO for M -
joint parties and N -controllers are described as follows.

Step 1 This step is same as Step 1 of Sect. 3.1 where
Alice’s unknown state |ψ〉X gets entangled with
the quantum channel |QS〉AB1B2...BMC1C2...CN

in S-DOF. The entangled state can be shown as
follows:

|Φk〉 = α|x0〉|ak〉
M⊗
i=1

|bi
k〉

N⊗
j=1

|cj
k〉

+β|x1〉|ak⊕1〉
M⊗
i=1

|bi
k⊕1〉

N⊗
j=1

|cj
k⊕1〉

(35)

Step 2 In this step, Alice tries to disentangle her pho-
tons from the remaining photons in the quan-
tum channel in a similar manner as Step 2 of
Sect. 3.1. The collapsed state is given as follows:

|Φkmn〉 = |ak⊕m⊕1〉(α
M⊗
i=1

|bi
k〉

N⊗
j=1

|cj
k〉

+β

M⊗
i=1

|bi
k⊕1〉

N⊗
j=1

|cj
k⊕1〉) (36)

Step 3 Each controller mixes her photon paths on a
BBS and then lets one path of photon inter-
act with a CS via cross-Kerr interaction with
interaction parameter θ and measures it, whose
measurement outcomes are sj = 0 (1) corre-
sponding to |z〉 (|zeiθ〉). After the measurement
of each controller, the state turns into the fol-
lowing:

|Φkmns〉 = |ak⊕m⊕1〉
(

α
M⊗
i=1

|bi
k〉

−(−1)m⊕n⊕s1⊕s2⊕...⊕sN

β

M⊗
i=1

|bi
k⊕1〉

)
N⊗

j=1

|ck⊕sj⊕1〉 (37)

Step 4 In the previous step, controllers allow joint par-
ties to complete the task. Here comes the role
of joint parties to implement their respective
operation U i

B, where (i = 1, 2, . . . ,M). The
joint parties decide among themselves who will
implement the operation first. Let them decide
that BobM will implement his operation first,
then each of the remaining joint parties follows
the Step 4 of Sect. 3.1, which gives the measure-
ment outcomes li = 0 (1). BobM then applies
an appropriate unitary to get α|bM

0 〉 + β|bM
1 〉.

123



   90 Page 10 of 12 Eur. Phys. J. D           (2024) 78:90 

BobM is now ready to implement his operator
UM

B to get αBM |bM
0 〉 + βBM |bM

1 〉.
Step 5 In this step, the coefficient αBM and βBM ,

which are with BobM , are gradually shifted
toward BobM−1, BobM−2,...and so on. The
two alternate joint parties work together at
once here. First, suppose BobM and BobM−1

work together. BobM−1 places a BBS on his
photon path which triggers a new path and
then allows one of the paths to interact with
an auxiliary CS |z〉 via cross-Kerr nonlinear
interaction of parameter θ and forwards it to
BobM , which he allows to interact with his
one of photon path and measures it, whose
measurement outcome is rM = 0 (1). BobM

now mixes two paths of his photon on a BBS
and allows one path to interact with an aux-
iliary CS via cross-Kerr nonlinear interaction
with interaction parameter θ and measures
it, whose measurement outcome is gM = 0
(1). Depending on the measurement outcomes,
BobM−1 will apply an appropriate unitary to
get αBM |bM−1

0 〉 + βBM |bM−1
1 〉, on which he

will operate UM−1
B to get αBM−1BM |bM−1

0 〉 +
βBM−1BM |bM−1

1 〉. This process is repeated now
for BobM−1 and BobM−2, and so on till Bob1

and Bob2. The final state will now become

|Φkmnsj lirigi
〉 = |ak⊕m⊕1〉(αB1B2...BM |b10〉

+βB1B2...BM |b11〉)
M⊗
i=2

|bi
gi

〉
N⊗

j=1

|ck⊕sj⊕1〉 (38)

Step 6 The joint parties take part in this step. They
measure their photons in an appropriate bases
and hand over the task to the sender and con-
trollers. As we know from the previous step only
Bob1’s photon is in spatial superposition and
the rest joint parties’ photons are spatially sep-
arated. So, Bob1 places a HWF on path b10 and
mixes the superimposed path on a BBS, rest
of the joint parties put a QWP on their pho-
tons path. All the joint parties now measure
their photons in an appropriate basis. The role
of joint parties ended here.

Step 7 All the controllers now put a QWP in their pho-
tons path and pass it through PBS and measure
it in an appropriate bases. The controllers roles
are ended here. Now, Alice will apply an appro-
priate Pauli operations to get (αB1B2...BM |H〉+
βB1B2...BM |V〉)|ak⊕m⊕1〉, which is same as Eq. (29).

Step 8 This step is same as Step 9 of Sect. 3.2.

5 Existing variants of RIO as a special case
of CJRIO

The proposed scheme for CJRIO can be seen as a
generalized scheme, and all existing variants of RIO
scheme can be obtained as a special case of the proposed
scheme, e.g., if one removes Charlie and the correspond-
ing steps from our proposed scheme, then our scheme
reduces to the existing scheme for JRIO reported in
reference [14]. Removing Charlie will first reduce the
quantum channel in Eq. (5) to three-qubit hyperentan-
gled state and then remove the corresponding steps that
involve Charlie, which are Step 3 and Step 8 of Sect. 3.1.
Similarly, if one removes either of the joint parties Bob1

or Bob2 from our proposed scheme, then our scheme
reduces to the existing scheme for CRIO reported in ref-
erence [13]. Let’s remove Bob2, this changes the quan-
tum channel in Eq. (5) and the corresponding Steps
which are Step 4, Step 5, Step 6 and Step 7. Step
4 is removed which retains the spatial superposition
of photon B1 from the previous step, on which Bob1

applies an appropriate unitary and his operation to get
αB1 |b10〉+βB1 |b11〉. Now, there is no need for Step 5 and
Step 6 and the role of Bob2 is removed from Step 7,
which ended up with a scheme for CRIO.

As for the task efficiency, to the best of our knowledge
there has not yet been available a fully satisfactory for-
mula for computing the efficiency of a quantum scheme.
However, any definition of efficiency will be a function
of the resources used and the amount of tasks done. As
the task is the remote implementation of an operator,
we may quantify the efficiency as follows:

η =
c

b + e
(39)

where c is the number of 2 × 2 unitary operations
done (it can be easily generalized for the case of multi-
qubit operations, but the multi-qubit operations are
not of concern to this manuscript), and b represents
the amount of classical communication in the unit of
bits required to achieve the task (this automatically
captures the effect of the number of cross-Kerr inter-
action as the announcement of classical bit(s) happens
only after each cross-Kerr interaction), whereas e repre-
sents the number of e-bits required to achieve the task.
This is analogous to the efficiency quantifier introduced
by Cabello [27] and frequently used in the context of
secure quantum communication (e.g., see [28] and [29]).
Now in the most general case CJRIO involving M Bobs
(implementing M operators jointly) under the supervi-
sion of N controllers (Charlies), we will have 1+M +N
parties including Alice and a bit of calculation would
reveal that in this case, c = M , b = 4M + 2N + 1 and
e = M + N + 1. This will imply that

ηCJRIO =
M

5M + 3N + 2
. (40)
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Now, the impact of the increase in the number of the
preparers and the controllers can be better understood
by considering the special cases of the above general for-
mula. For example, if we consider a special case, where
there is no controller (i.e., N = 0), then we will obtain
ηJRIO = M

5M+2 . Clearly, for large values of M (i.e., for
M >> 2

5 = 0.4), ηJRIO would approach the value 1
5

(implying 20% efficiency) which is independent of M .
Similarly, if we consider the case where there is only
one Bob (the operator is not implemented jointly), but
there are N controllers, we will obtain the efficiency
of the corresponding CRIO scheme as ηCRIO = 1

7N+3 ,
which will imply that for moderate values of N , ηCRIO

will be inversely proportional to N with highest effi-
ciency of 1

10 for the simplest case when N = 1. Further,
we can see that ηCRIO will vanish asymptotically (for
large values of N). The same will be the case (i.e., the
vanishing of efficiency) for fixed values of M << N .
However, such cases involving very large number of
users are not practical. In all practical situations, the
efficiency of the proposed protocol will be computed
through ηCJRIO = M

5M+3N+2 . Finally, it is worth noting
that, for whatever efficiency, our schemes prove to be
effective in the sense that they always succeed with unit
probability.

6 Discussion and conclusion

In this work, we provide 2 interesting schemes for
CJRIO which can be viewed as the basic building
blocks for distributed photonic quantum computing
and deserves particular use in the noisy intermediate-
scale quantum era when scalable quantum computers
have not yet been available. Specifically, here we first
propose a scheme for CJRIO that allows two users to
jointly prepare an arbitrary unitary operation on an
unknown state at a remote node in the presence of
a controller. The proposed scheme is completed using
a four-qubit hyperentangled state, which is entangled
in both S-DOF and P-DOF of photons. Finally, the
idea is generalized to propose a scheme that allows an
arbitrary number of joint parties as well as controllers
to perform the CJRIO task. As all these schemes are
designed considering their realization using photonic
quantum states and as it is described in the introduc-
tion that the distributed computing requires CJRIO
in the implementations involving master–slave architec-
ture, the present work seems to be very useful in dis-
tributed photonic quantum computing. Further, before
we conclude this paper, it may be apt to note that the
proposed schemes are the first set of schemes for CJRIO
and seem to be experimentally realizable with the exist-
ing technology. Keeping the above in mind, we conclude
this paper with the hope that the work will be experi-
mentally realized and found applications in distributed
photonic quantum computing in the near future.
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