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Swap Mott transition in multicomponent fermion systems
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Metal-insulator transitions in an asymmetric three-component Falicov-Kimball model are investigated within
the two-site dynamical mean field theory. The model is obtained from the symmetry breaking of the SU (3)
Hubbard model by imbalanced masses and nonequal local interactions of particle components. The Mott
transitions are classified by the change in the number of distinct kinds of doublons across the transition. We
observe a different Mott transition between partially localized states in which the particle components (flavors),
which form the doublons, are swapped with each other but the number of distinct kinds of doublons is unchanged
across the transition. The swap Mott transition occurs as a result of the competition between the Brinkman-Rice
and the Falicov-Kimball localizations and the mass imbalance of the mobile particles.
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I. INTRODUCTION

The Mott transition is one of the fascinating problems in
condensed matter physics due to its striking manifestation of
many-body correlation effects [1]. A strong repulsive interac-
tion between electrons prevents doublon formation (i.e., a pair
of electrons occupying the same lattice site), and that leads to
electron localization when the electron density is commen-
surate with the number of lattice sites. This is an intuitive
and key feature of the Brinkman-Rice scenario of the Mott
transition [2]. Within the Brinkman-Rice scenario, both the
mass renormalization and the doublons are suppressed in the
Mott insulator. Therefore, one can use mass renormalization
or the doublons to detect the Mott transition. However, in
multicomponent (flavor) fermion systems, where the degen-
eracy (the number of flavors) of the charge carriers is larger
than two, different Mott insulating states can exist [3–9].
For example, in three-component fermion systems, so-called
collective and paired Mott insulators can occur [3–7]. The
collective Mott insulator is characterized by the localization
of particles of any component at each lattice site, and all
doublons are suppressed [3]. In the paired Mott insulator, the
doublons formed by particles of two different components
and the particles of the remaining component are localized
[4]. In both collective and paired Mott insulators, the mass
renormalizations of all particle components vanish, and they
can no longer distinguish these Mott insulating states [3–7].
Therefore, in multicomponent fermion systems, the Mott tran-
sition is more suitably determined by using doublons rather
than using mass renormalization. Experiments have indeed
used doublons to detect the Mott transition in optical lattices
[10,11].

In N-component fermion systems, the number of distinct
kinds of doublons is Nd = N (N − 1)/2. Different Mott insu-
lators may occur when some kinds of doublons are suppressed
while others occur. Such states can be found in the partial
localization of electrons and orbital-selective or paired Mott
insulators [12–18]. One can use the number of distinct kinds

of doublons to classify the Mott insulators in multicomponent
fermion systems. For example, in three-component fermion
systems, N = 3, and there are three distinct kinds of dou-
blons, Nd = 3. The collective Mott insulator is characterized
by Nd = 0 [3]. The paired Mott insulator is characterized
by Nd = 1 [4]. The metallic state can also be classified by
Nd = 3. The Mott transition, therefore, can be classified by
the change in the number of distinct kinds of doublons �Nd ≡
Nd1 − Nd2 across the transition, where Nd1 and Nd2 are the
numbers of distinct kinds of doublons in phase 1 and phase 2
of the phase transition. In electron systems with N = 2, there
is only one kind of doublon, and the Mott transition is char-
acterized by �Nd = 1. The partial localization in 5 f heavy
fermion compounds can also be characterized by �Nd = 1
[12–14]. The orbital-selective Mott transition of degenerate
4d systems can occur with �Nd = 1 [15,16]. In the three-
component Hubbard model, the collective Mott transition is
characterized by �Nd = 3, while the paired one occurs with
�Nd = 2 (for their illustrations see Fig. 1) [3–7]. So far,
all well-known Mott transitions occur with �Nd �= 0; i.e.,
the number of distinct kinds of doublons changes across the
transitions. However, there is still another possibility of the
Mott transition which occurs with �Nd = 0. In that Mott
transition both phases have the same number of distinct kinds
of doublons, but different kinds of doublons occur in each
phase. Across the transition the particle components that form
the doublons are swapped with each other. We call this swap
Mott transition. The swap Mott transition is actually the phase
transition from one partially localized state to another one
with different kinds of doublons while the number of distinct
kinds of doublons remains the same.

In the present paper, we will show the possibility of the
swap Mott transition in minimal multicomponent fermion
models. With the achievement of the ultracold technique,
experiments can establish optical lattices of neutral atoms
and simulate quantum fermion lattice models [19,20]. Optical
lattices allow us to flexibly control and tune the model pa-
rameters. In particular, the particle degeneracy can be large
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FIG. 1. Schematic illustration of Mott transitions in three-
component fermion systems. Circles, squares, and triangles schemat-
ically represent fermions with different components (flavors). There
are only three possible distinct kinds of doublons: circle-square,
square-triangle, and triangle-circle (Nd = 3). The first row illustrates
the Mott transition from (a) a metallic state with Nd = 3 to (b) a
collective Mott insulator with Nd = 0 at one third filling. In (b), the
local Coulomb interaction prevents the occupancy of two particles
at the same site; thus, the particles cannot move in the lattice and
form the Mott insulating state. The second row illustrates the Mott
transition from (c) a metallic state with Nd = 3 to (d) a paired Mott
insulator with Nd = 1 at half filling. In (d), the doublons of the
“circle” and “square” components and the particles of “triangle”
component are localized and form the paired Mott insulator. The
third row illustrates the swap Mott transition from (e) a partially
localized state with Nd = 2 to (f) another partially localized state
with Nd = 2. In (e), two kinds of doublons, circle-square and circle-
triangle, are localized, while in (f), two other kinds of doublons,
square-circle and square-triangle, are localized. Across the transition,
the circle component and the square component are swapped with
each other in the doublon formation.

and odd, which does not have an obvious counterpart in
crystalline lattices. Correlated two-component models, i.e.,
the standard Hubbard model and its variations, exhibit the
Mott transition, which always occurs with �Nd = 1. The
Mott transition also occurs in the three-component Hubbard
model [3–9]. However, the three-component Hubbard model
with SU (3) symmetry exhibits only the collective Mott tran-
sition with �Nd = 3 at commensurate fillings [3,4]. When
SU (3) symmetry is broken by either the local interactions
or the hopping, the three-component Hubbard model also
additionally realizes the Mott transitions with �Nd = 1, 2
at half filling [4–6]. We will show with further symmetry
breaking by both hopping and local interactions that the three-
component Hubbard model additionally exhibits a swap Mott
transition with �Nd = 0. This Mott transition has not previ-
ously been discussed. The simplest version of the symmetry
breaking by both hopping and local interactions is an asym-
metric three-component Falicov-Kimball model (FKM) with
nonequal local interactions. Actually, the three-component
FKM is a version of the SU (2) × U (1) symmetry of the
three-component Hubbard model [5,6]. In this model, two
components are identical and mobile, whereas the hopping
term of the third component vanishes. The three-component
FKM exhibits the Mott transition with �Nd = 3 at commen-
surate fillings and partial localization Mott transitions with
�Nd = 1, 2 at half filling [5,6]. Its asymmetric version is

realized by allowing component dependence of the hopping
term. This leads to a mass imbalance of the mobile compo-
nents. We will apply the dynamical mean field theory (DMFT)
to study the Mott transitions in the asymmetric FKM [21,22].
For simplicity, we will use the two-site version of the impurity
solver in the DMFT [23]. This simplification usually loses the
fine structure of the self-energy at intermediate energy scales,
but it reduces the numerical calculations and still correctly
captures the low- and high-frequency asymptotic behaviors
of the self-energy and correctly describes the Mott transition
within the Brinkman-Rice scenario [23]. In addition to the
previously known Mott transitions [5,6], we find another Mott
transition with �Nd = 0 which is absent in the SU (2) × U (1)
symmetry version of the three-component Hubbard model and
the three-component FKM.

The structure of this paper is as follows. In Sec. II we
present the asymmetric three-component FKM and the two-
site DMFT for solving the proposed model. The numerical
results and a discussion of the observed Mott transitions are
presented in Sec. III. Finally, Sec. IV gives the conclusions.

II. ASYMMETRIC THREE-COMPONENT
FALICOV-KIMBALL MODEL

In this section, we construct a lattice model of ultracold
multicomponent atoms loaded into an optical lattice. Our pur-
pose is to find a minimal model that exhibits a swap Mott
transition. Since the correlated two-component fermion model
does not exhibit any partial localization, we will start with
a correlated three-component fermion system. Its minimal
Hamiltonian reads

H =
∑

α

∫
dr�†

α (r)

(
− ∇2

2mα

+ Vα (r) + Tα (r)

)
�α (r)

+ 1

2

∑
α �=β

gαβ

∫
dr�†

α (r)�α (r)�†
β (r)�β (r), (1)

where �†
α (r) [�α (r)] is the creation (annihilation) field op-

erator for the α-component particle. α takes three different
values, for instance, 1,2,3. mα is the mass of the α compo-
nent of the particles. In general, each component can have a
different mass. Vα (r) is the lattice potential formed by two
counterpropagating laser beams for each space direction, and
Tα (r) is the external trapping potential for α-component par-
ticles. gαβ denotes the local interaction between the α and β

components. The lattice potential is periodic with the wave
vector kL of the laser beam, for example,

Vα (r) = V0α[sin2(kLx) + sin2(kLy) + sin2(kLz)], (2)

where V0α is the amplitude of the lattice potential. It will
form an optical lattice with the lattice constant a = π/kL. The
key feature of the lattice potentials is the component depen-
dence of their amplitudes. These amplitudes are separately
tunable for each particle component. Indeed, they depend on
the dipole matrix and laser detuning from atomic resonance,
which can be different for different atom components. For
a sufficiently deep lattice V0α > Eα = k2

L/2mα , the particle
motion is frozen in the minima of the lattice potential, except
for a small tunneling to neighboring minima. The particles are
effectively confined and move in the lowest band of the lattice.
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Using the basis of the Wannier functions of the lowest Bloch
band, we expand the field operators of each component as

�α (r) =
∑

i

wα (r − Ri )ciα, (3)

where wα (r − Ri ) is the Wannier function located around the
well minimum i of the lattice potential and ciα is the anni-
hilation operator for α-component particles at the Wannier
wave function state wα (r − Ri ). After the expansion, within
the tight-binding approximation we obtain

H = −
∑
i, j,α

Ji, j,αc†
iαc jα + 1

2

∑
α �=β

Uαβc†
iαciαc†

iβciβ, (4)

where

Ji, j,α = −
∫

drw∗
α (r − Ri )

(
− ∇2

r

2mα

+ Vα (r)

)
wα (r − R j ),

Uαβ = gαβ

∫
dr|wα (r − Ri )|2|wβ (r − Ri )|2.

When i = j, Ji,i,α ≡ εα is the energy level of the α component.
It controls the filling of the α component and can be absorbed
into the chemical potential of the α component μα ≡ μ + εα ,
where μ is the common chemical potential of the system.
In the tight-binding approximation we also keep the tunnel-
ing of particles between the nearest-neighbor minima of the
lattice potential Jα ≡ J〈i, j〉,α , where 〈i, j〉 denotes the nearest-
neighbor minima i and j. The amplitude Jα is largest in the
particle tunneling between the lattice potential minima. We
also keep only the local interaction between different com-
ponents of particles. In Eq. (4) we have also neglected the
trapping potential. In general, it generates the site-dependent
chemical potential that leads to an inhomogeneity of the
ground state. We restrict ourselves here to considering only
homogeneous phases. Both the tunneling amplitude Jα and the
local interaction strength Uαβ are component dependent. They
can be tuned by the depth of the lattice and the recoil energy
[19,20,24,25]. In addition, by using the Feshbach resonance,
the scattering length can be varied by adjusting external pa-
rameters such as the magnetic field [19,20]. As a consequence,
the local interaction strength can also be tuned from weak to
strong regimes separately from the tunneling rates. In general,
we can consider tunneling rate Jα and the local interaction
strength Uαβ to be independent model parameters. When all
components and lattice potentials are identical, i.e., Jα = J
and Uαβ = U , the model described by the Hamiltonian in
Eq. (4) is essentially the SU (3) symmetry Hubbard model.
With a sufficiently large value U/J , the model exhibits the
collective Mott transition at commensurate fillings [3]. This
Mott transition is characterized by �Nd = 3 [3]. The SU (3)
symmetry can be broken either by the local interaction [4]
or by the tunneling rate [5–7]. Simple symmetry breaking re-
duces the SU (3) symmetry to SU (2) × U (1) symmetry [4–7].
In this case, two particle components and their lattice poten-
tials are identical, with the third component being different.
In addition to the Mott transition at commensurate fillings,
the SU (2) × U (1) symmetry Hubbard model also exhibits
other Mott transitions such as the orbital-selective one at half
filling [4–6]. In the orbital-selective Mott insulator, realized
in the SU (2) × U (1) symmetry Hubbard model, there are

two localized components and one delocalized component.
It has Nd = 2 distinct kinds of doublons, and its transition is
characterized by �Nd = 1 [4,6]. The other partial localization
is the so-called paired Mott insulator, which also occurs at
half filling and exhibits localizations of a pair of different
components and of the remaining component [4]. Its transi-
tion is characterized by �Nd = 2. These Mott transitions are
always accompanied by �Nd �= 0. The SU (2) symmetry can
further be broken by either the tunneling rate or the local inter-
action. The SU (2) symmetry breaking caused by interaction
also induces the Mott transitions at the incommensurate half
filling; however, they are still accompanied by �Nd = 1 or
�Nd = 2 [4]. We will show that, in contrast to the symmetry
breaking caused by interaction, the SU (2) symmetry breaking
caused by the tunneling rate can additionally induce a Mott
transition with �Nd = 0. Simple symmetry breaking caused
by the tunneling rate is realized by allowing one tunneling
rate to vanish. This can be achieved by a sufficiently deep lat-
tice potential V0α � Eα . For instance, J1 = J2 �= 0 and J3 = 0
cause SU (2) × U (1) symmetry breaking, and the obtained
Hamiltonian is essentially the three-component FKM [5,6]. In
this case, one particle component is immobile while the other
two are mobile. The SU (2) symmetry can further be broken
by allowing J1 �= J2. When J1 �= J2, the mobile components
can tunnel between the nearest-neighbor sites with different
tunneling rates. It is also equivalent to the case where the mo-
bile components have different bare masses. This asymmetry
or mass imbalance can be parameterized by r = J2/J1. The
ratio r is tunable by varying the depth of the lattice potentials
for the first two components. In this paper we consider the
SU (2) × U (1) symmetry broken Hubbard model with J1 �=
J2, J3 = 0, and U12 �= U13 = U23. This model can be referred
to as an asymmetric three-component FKM.

The asymmetric three-component FKM has various well-
known limiting cases. When U12 = 0, the model is equivalent
to two independent spinless Falicov-Kimball models [26]. At
half filling, it exhibits the Mott transition, but always with
�Nd = 1 [26]. When U13 = U23 = 0, the mobile components
are decoupled from the immobile one. The mobile part de-
scribes fermion mixtures of mass-imbalanced components
[27,28]. It can be modeled by the asymmetric Hubbard model,
which exhibits only the Mott transition with �Nd = 1 [29].
When J1 = J2, the model is the three-component FKM, in
which Mott transitions with �Nd = 1, 2, 3 may occur, de-
pending on the filling and interactions [5,6].

The asymmetric three-component FKM can be realized
by loading three-component fermion atoms or fermion mix-
tures into optical lattices. Such mixtures can be realized by
the atomic isotopes 6Li - 40K [30–32], 40K - 161Dy [33,34],
6Li - 173Yb [35,36], and 6Li - 167Er [37]. One component can
be changed to an impurity by allowing the corresponding
lattice potential to be deep enough. Experiments have already
achieved this impurity state [38].

III. MOTT TRANSITIONS

We study the Mott transitions which possibly occur in
the asymmetric three-component Falicov-Kimball model with
J1 �= J2, J3 = 0, and U12 ≡ U �= U13 = U23 ≡ U ′. In this
model, the first and second components are mobile, while
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the third one is immobile. In contrast to the symmetry case
with r = J2/J1 = 1 [5,6], the first and second components are
not equivalent. When r < 1, the mass of the first component
is lighter than that of the second one. The mass asymmetry
r �= 1, as we will show later, will induce a swap Mott transi-
tion which is not present in the symmetric case. The principal
feature of the DMFT is the momentum independence of the
self-energy. It is exact in the limit of infinite space dimensions.
The Green’s function of the mobile components reads

Gα (k, z) = 1

z − εα (k) + μα − 	α (z)
, (5)

where α = 1, 2, εα (k) = −2Jα

∑
a cos(kara), and 	α (z) is

the self-energy of the α component. One can see that the
third particle component is immobile, and within the DMFT
its dynamics can be excluded from the dynamics of mobile
components [26,39]. However, its pair occupancy with other
components can be finite and trackable within the DMFT
[22,26]. The self-energy 	α (z) is determined from a sin-
gle impurity embedded in a dynamical mean field medium.
Within the two-site DMFT, the dynamical mean field is rep-
resented by the bath of a single site coupled to the single
impurity [23]. The impurity dynamics can be described by the
following Anderson-like Hamiltonian:

Himp = −
∑

α=1,2

μαnα − μ3n3 + Un1n2 + U ′ ∑
α=1,2

nαn3

+
∑

α=1,2

Vαc†
αaα + H.c. +

∑
α=1,2

Eαa†
αaα, (6)

where nα = c†
αcα is the number operator of the α component.

a†
α (aα) is the creation (annihilation) operator, which repre-

sents a single-site two-component bath of the dynamical mean
field. Eα is the energy level of the single-site bath, and Vα

is the hybridization of the single-site bath with the impurity.
The bath energy level is determined by the self-consistent
conditions of the component filling, i.e.,

〈nα〉 = 〈
nimp

α

〉
, (7)

where 〈nα〉 is the filling of the α component of the original
lattice and 〈nimp

α 〉 is the one determined from the impurity
Hamiltonian in Eq. (6). The hybridization Vα is determined
by [23]

|Vα|2 = ZαM (2)
α , (8)

where Zα = [1 − ∂Re	α (ω)/∂ω|ω=0]
−1

is the mass renor-
malization and M (2)

α is the bare second-order moment of the
α component. We also calculate the pair occupancy of the
particle components, i.e., Dαβ = 〈nαnβ〉. Dαβ �= 0 indicates
the formation of the doublon of the α and β components. The
number of distinct kinds of doublons Nd equals the number
of nonvanishing pair occupancies. The two-site DMFT is a
simplified impurity solver in which the dynamical mean field
of the α component is simplified to be the single-orbital hy-
bridization function |Vα|2/(ω − Eα ). As a consequence of the
simplification, the dynamical self-consistent equations of the
DMFT are simplified to the self-consistent conditions of static
quantities in Eqs. (7) and (8). The static quantities, such as
the component filling, the mass renormalization, and the pair

occupancy, are well reproduced by the two-site DMFT [23].
However, the dynamics of the system is not fully recovered
within the two-site DMFT because the local Green’s function
and the self-energy are not self-consistently determined in the
full energy scale [23]. We use the semicircle function for the
bare density of states (DOS) of the mobile components

ρ0α (ε) = 2

πJ2
α

√
J2
α − ε2. (9)

We study the half-filling case 〈n1〉 = 〈n2〉 = 〈n3〉 = 1/2,
where a rich phase diagram of different Mott transitions oc-
curs [4–7]. At half filling μ1 = μ2 = (U + U ′)/2, and μ3 =
U ′. In numerical calculations we take the total tunneling
rate J1 + J2≡ J as the energy unit. Within this energy unit
J1/J = 1/(r + 1), and J2/J = r/(r + 1). All interactions are
measured in units of J . Without loss of generality, we consider
the mass asymmetry parameter 0 � r = J2/J1 � 1.

First of all, we consider the limiting cases in which one lo-
cal interaction vanishes. When U = 0 and U ′ > 0, the model
is reduced to two independent spinless FKMs with different
hopping parameters. Each model exhibits a metal-insulator
transition at the critical value U ′

cα = 2Jα [40]. The two-site
DMFT also exactly gives these critical values U ′

cα of the
DMFT. This is a benchmark of the two-site DMFT. These
metal-insulator transitions are similar to the Mott transition
since they are driven by correlations. Although both the mass
renormalization and the pair occupancy also vanish in the
Mott insulating phase and are formally similar to the ones in
the Brinkman-Rice scenario, these metal-insulator transitions
are distinct from the standard Mott transition because the
metallic phase is a non-Fermi liquid [41,42]. These metal-
insulator transitions are similar to the Mott transition in the
Hubbard III approximation, in which the local interaction
simply separates and repels two Hubbard subbands [43].
However, in contrast to the non-Fermi-liquid artifact of the
Hubbard III approximation, the non-Fermi liquid is the nature
of the ground state of the FKM. The immobile component ap-
pears like a disorder scatterer, and it products a finite lifetime
at the Fermi surface [41,42]. This Falicov-Kimball scenario
of the Mott-like transition is distinct from the DMFT sce-
nario of the Mott transition in the Hubbard model and its
simplified version, the Brinkman-Rice scenario. Within the
Brinkman-Rice scenario, Im	(ω) at ω = 0 vanishes, while
in the Falicov-Kimball scenario it is finite. However, the
dynamics features of the Falicov-Kimball scenario are not
well reproduced by the two-site DMFT. In Fig. 2 we plot
the spectral density of the mobile components when U = 0.
Because we use the semicircle bare DOS in Eq. (9), the
spectral density exhibits the renormalized energy bands only
along the high-symmetry line with the value εk. Within the
two-site DMFT, the Falicov-Kimball interaction U ′ produces
an isolated subband near the Fermi energy in the gap between
two Hubbard-like subbands. This isolated subband is clearly
displayed at the Fermi energy and is suppressed away from
the Fermi energy. With increasing U ′, the isolated subband
shrinks and disappears at the metal-insulator transition. How-
ever, the exact solution of the DMFT for the Falicov-Kimball
model shows a pseudogap instead of the isolated subband
[26].
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FIG. 2. The spectral density of the mobile components in the
color density plot. The first (second) row presents the spectral density
of the first (second) component for various values of U ′ (U = 0).

In Fig. 3 we plot the pair occupancies and the mass renor-
malizations as a function of U ′, when U = 0. Because the
first and second components are independent, at half filling
their pair occupancy D12 never vanishes. However, their pair
occupancies for the third component (D13, D23) may vanish,
depending on the value of the local interaction U ′, as shown
in Fig. 3. For sufficiently large local interaction U ′, all particle
components are localized; however, only the pair occupancies
D13 and D23 vanish because U = 0 allows the first two com-
ponents to occupy at the same lattice site, although they are
localized. This insulating state is characterized by Nd = 1 and
is distinguishable from the collective Mott insulator, where
all pair occupancies are suppressed. For intermediate values

0.5 1.0 1.5 2.0
U’

0.0

0.2

0.4

0.6

0.8

1.0

Z1
Z2
D12
D13
D23

U  = 0

FIG. 3. The pair occupancies Dαβ and the mass renormalization
Zα as a function of U ′ (U = 0). The mass asymmetry parameter
r = 0.4.

FIG. 4. The spectral density of the mobile components in the
color density plot. The first (second) row presents the spectral density
of the first (second) component for various values of U (U ′ = 0).

U ′
c2 < U ′ < U ′

c1, the previously suppressed pair occupancy,
D13, becomes finite. This state is partially localized because
the lighter component (i.e., the component with the larger
hopping parameter) can be mobile in this regime. It reflects the
finite mass renormalization of the lighter component. In the
intermediate regime of the local interaction, the Mott insulator
is characterized by Nd = 2. When the local interactions are
weak, U ′ < U ′

c2, both heavier and lighter components become
delocalized. The ground state is a metal, which is character-
ized by Nd = 3. However, this metallic state is a non-Fermi
liquid. In the limiting case U = 0, the Mott transitions always
occur with �Nd = 1.

The other limiting case is U ′ = 0, U > 0. The consid-
ered model is reduced to the standard asymmetric Hubbard
model, which is well studied [29]. Within the DMFT the Mott
transition occurs at the critical value Uc = J1 + J2 + (J2

1 +
J2

2 + 14J1J2)1/2 [29]. The two-site DMFT also reproduces
well this critical value. In contrast to the Falicov-Kimball
scenario, in this limiting case, the Mott transition can sim-
ply be described by the Brinkman-Rice scenario. In Fig. 4
we plot the spectral density of the mobile components for
various values of U at fixed U ′ = 0. The local interaction
between the mobile components U also produces a subband
in the gap between the two Hubbard subbands. However, in
contrast to the limiting case U = 0, the inside-gap subband
is extended to the band edges, especially when the system is
close to the metal-insulator transition, and completely disap-
pears in the insulating phase. This subband mimics the one
generated by the Kondo resonance, which also appears before
the metal-insulator transition and completely disappears in
the insulating phase [22]. This behavior of the subband also
distinguishes between the Falicov-Kimball and Brinkman-
Rice scenarios, although the full dynamics of the subband is
displayed only in the full DMFT. However, the static quan-
tities, such as the filling and the mass renormalization, are
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0.5 1.0 1.5 2.0 2.5 3.0U
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FIG. 5. The pair occupancies Dαβ and the mass renormalization
Zα as a function of U at fixed U ′ = 0.5 and r = 0.4.

self-consistently determined in the two-site DMFT, and we
can also use them to monitor the Mott transition. The mass
renormalizations Z1 and Z2 and the pair occupancy D12 clearly
vanish at the Mott transition [29] (see similar behavior in
Fig. 5). In contrast to the asymmetric two-component Hub-
bard model [29], U ′ = 0 allows the third component to occupy
the lattice sites which are already occupied by the first or
second component. Therefore, the pair occupancies D13 and
D23 never vanish. One may naively expect the heavier compo-
nent to be more affected by the local interaction, and it would
be more strongly renormalized by correlations. However, the
DMFT result reveals the opposite [29]. The effective mass of
the lighter component is more strongly reduced by the local
interaction Z2 < Z1. However, as we will see later, weak local
interaction U ′ will remove this anomalous behavior near the
transition point. In the strong interaction regime with U > Uc,
the pair occupancy D12 vanishes, and the Mott insulator is
characterized by Nd = 2. In the opposite regime with U <

Uc, all pair occupancies are finite, and this metallic state is
characterized by Nd = 3. The Mott transition, therefore, is
characterized by �Nd = 1.

When both local interactions U and U ′ are finite, one
may expect competition between the Brinkman-Rice and the
Falicov-Kimball scenarios of the Mott transition. We analyze
the Mott transition driven by the local interaction between the
mobile components U at a different fixed local interaction U ′
and mass asymmetry r < 1. From the impurity Hamiltonian
in Eq. (6), we can see that n3 is a good quantum number. It
can take two values: 0 or 1. The local Green’s function of the
α component, therefore, reads [5]

Gα (ω) = 1 − 〈n3〉
G−1

α (ω) − �
(0)
α (ω)

+ 〈n3〉
G−1

α (ω) − �
(1)
α (ω) − U ′ ,

(10)

where Gα (ω) is a Green’s function which represents the effec-
tive mean field medium surrounding the single α-component
site and �(n3 )

α (ω) is the self-energy of the α component due
to the local interaction U in the Fock space sectors with
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FIG. 6. The pair occupancies Dαβ and the mass renormalization
Zα as a function of U at fixed U ′ = 1.0 and r = 0.4.

n3 = 0, 1. When U is large, the self-energy �(n3 )
α (ω) is dom-

inant over the U ′ term, and the Mott transition belongs to
the Brinkman-Rice scenario. In contrast, when U ′ is large,
the U ′ term is dominant over the self-energy �(n3 )

α (ω), and
the Falicov-Kimball scenario of the Mott-like transition is
realized. As a consequence of that competition, for finite in-
teractions, there are four distinct regions of U ′ where different
scenarios of the Mott transitions are realized. However, within
the two-site DMFT, both Gα (ω) and �(n3 )

α (ω) are simplified
and not self-consistently determined. Therefore, we mainly
analyze the scenario of the metal-insulator transition through
the static quantities.

(1) U ′ < U ′
c2. In this value range of U ′, we observe only

one Mott transition driven by U , as shown in Fig. 5. This
Mott transition is similar to the one in the limiting case U ′ = 0
and is also characterized by �Nd = 1. However, in contrast to
the limiting case, close to the transition point, the anomalous
behavior of the mass renormalizations Z2 < Z1 stops, and the
lighter component is more renormalized than the heavier one.
The finite value of U ′ also increases the critical value of
U , where the Mott transition occurs. This indicates that in
the presence of the third component, the weak local interac-
tions of the third component with the other components try
to prevent the Mott transition until the local interaction U
suppresses the mobility of the mobile components. Note that
due to the mass asymmetry r < 1, D13 �= D23.

(2) U ′
c2 < U ′ < U ′

c1. In this value region of U ′, there are
two Mott transitions driven by U at critical values Uc1 and Uc2,
as shown in Fig. 6. In the weak interaction regime, U < Uc1,
the heavier component is localized, while the lighter compo-
nent is still mobile. This regime is similar to the limiting case
U = 0. The pair occupancy D23 vanishes due to the prevention
of the local interaction U ′ at small values of J2. However, the
local interaction U ′ still cannot suppress the pair occupancy
D13 because J1 > J2. This Mott insulator is characterized by
Nd = 2. With a further increase in the local interaction, Uc1 <

U < Uc2, the pair occupancy D23 becomes finite. In this range
of the local interaction U , it only renormalizes the masses of
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FIG. 7. The pair occupancies Dαβ and the mass renormalization
Zα as a function of U at fixed U ′ = 1.5 and r = 0.4.

the mobile components. The ground state is metallic. When
the local interaction increases, U > Uc2, it is strong enough
to suppress the mobility of mobile components. The pair
occupancy D12 vanishes like in the two-component Hubbard
model [23,40]. This Mott transition is still characterized by
�Nd = 1. One can see that two Mott transitions have different
origins. In the first one, the pair occupancy D23 vanishes due
to the Falicov-Kimball mechanism, while in the second one
D12 vanishes by the Brinkman-Rice scenario.

(3) U ′
c2 < U ′ < U ′

t . Here we have introduced a certain
value U ′

t of the local interaction U ′ which separates distinct
phases of the system. As we will see later, U ′

t is the value of
the local interaction U ′ at a tricritical point where the metal,
Mott insulator, and partial localization coexist. In Fig. 7 we
plot the pair occupancies Dαβ and the mass renormalization
Zα as function of U in this regime. Since U ′ > U ′

c2, even
at U = 0 the ground state is the Mott insulator. This Mott
insulator occurs for weak interactions U because the local
interaction U ′ prevents the pair occupancies of the mobile
and immobile components like in the FKM [26]. However,
the weak interaction U still allows the mobile components to
occupy the same lattice sites. Therefore, the Mott insulator
is characterized by Nd = 1. With a further increase in U ,
the localization of the lighter component stops, while the
heavier component is still localized. In this regime, the local
interaction U takes its effect over U ′. As a consequence, the
lighter component recovers its Fermi-liquid behaviors due to
its mobility, while the heavier component cannot do that due
to its localization. The partial localization is characterized by
Nd = 2. When the local interaction U becomes stronger, the
heavier component recovers its Fermi-liquid behaviors too,
and it becomes mobile, as shown in Fig. 7. The ground state
is metallic, and it is characterized by Nd = 3. However, when
the local interaction U12 is strong enough, it suppresses the
pair occupancy of the mobile components, like in the standard
two-component Hubbard model. The ground state is fully
Mott insulating state, which is characterized by Nd = 2. So
far, in this regime, all Mott transitions driven by the local
interaction U are characterized by �Nd = 1.
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FIG. 8. The pair occupancies Dαβ and the mass renormalization
Zα as a function of U at fixed U ′ = 2.5 and r = 0.4.

(4) U ′ > U ′
t . In contrast to the previous regime, when the

local interaction U ′ is strong enough, the local interaction U
between the mobile components cannot recover the mobility
of the heavier component. As a consequence, the heavier
component is always localized, and its mass renormalization
vanishes, independent of the value of U , as shown in Fig. 8.
However, the local interaction U can recover the metallic
behaviors of the lighter component when U is dominant over
U ′. In Fig. 8, we can see that the lighter component is mobile
in the intermediate regime of U . This partial localization is
characterized by Nd = 2. In the weak regime of U , the effect
of U ′ dominates over U , and this leads to the localization of
the lighter component. The ground state of the system has
Nd = 1. However, in the strong regime of U , both lighter and
heavier components become localized, like in the standard
two-component Hubbard model [29]. In this regime, since U
is dominant over U ′, the pair occupancies D13 and D23 are not
suppressed. Therefore, the localized state is also characterized
by Nd = 2. As a consequence, the transition from the inter-
mediate to strong regimes has the same Nd = 2. Across this
transition, the lighter and immobile components are swapped
with each other. The transition is characterized by �Nd = 0.
This is the swap Mott transition and is absent in the symmetric
case with r = 1 [5,6]. In the symmetric case with r = 1,
D13 = D23, and the partial localization is absent. These phase
transitions can also be seen in the spectral density behaviors.
Figure 9 shows the spectral density of the mobile components
for various values of U with fixed U ′ > U ′

t . In this regime,
the spectral density of the heavier (second) component always
exhibits a gap at half filling. This property is consistent with
the localization of the heavier component. The weak and inter-
mediate interactions U cannot recover the localization of the
heavier component due to the strong interaction U ′. However,
the intermediate interactions U induce a subband near the
Fermi energy and recover the metallic behavior of the lighter
(first) component. In this regime, the doublon may be formed
by the lighter component with the heavier component and
with the immobile component. Thus, the number of distinct
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FIG. 9. The spectral density of the mobile components in the
color density plot. The first (second) row presents the spectral density
of the first (second) component for various values of U at fixed
U ′ = 2.5.

kinds of doublons Nd = 2. When the interaction U is strong, it
again suppresses the mobility of the lighter component. It also
suppresses the doublon formation of the lighter and heavier
components. As a consequence, Nd = 2.

We summarize the phase transitions we found in the phase
diagram in Fig. 10. The insulating phase labeled (A) is es-
tablished by the Brinkman-Rice scenario, in which the local
interaction U is dominant over the local interaction U ′ and
suppresses the pair occupancy of the two mobile components.
As a consequence, in this phase two distinct kinds of doublons
are formed by the third component with mobile components,

0.5 1.0 1.5 2.0 2.5 3.0
U’

0.0

1.0

2.0

3.0

4.0

5.0

U

r = 0.4

Insulator

Insulator

Partial localizationMetal

(A)

(D) (C)

(B)

FIG. 10. Phase diagram at half filling 〈n1〉 = 〈n2〉 = 〈n3〉 = 1/2.
In the insulator labeled (A) Nd = 2, in the insulator labeled (B)
Nd = 1, in the partial localization labeled (C) Nd = 2, and in the
metal labeled (D) Nd = 3.

and Nd = 2. In contrast, the insulating phase labeled (B)
occurs within the Falicov-Kimball scenario, where the local
interaction U ′ is dominant over the local interaction U and
suppresses the pair occupancies between the third component
and mobile components. Therefore, in this phase Nd = 1.
Between these two insulating phases, a metallic phase with
Nd = 3 and a partially localized phase with Nd = 2 occur. The
metallic phase must terminate at a tricritical point, where the
Mott insulator, partial localization, and metal coexist. It can-
not naturally exist when both interactions U and U ′ are strong.
The metallic phase may be a mixture of Fermi and non-Fermi
liquids because in one limit, U ′ = 0, it is a Fermi liquid but in
the other limit, U = 0, it is a non-Fermi liquid. It is similar
to the weakly Anderson localization, which was found in
the two-component FKM [42]. However, the two-site DMFT
cannot detect the mixture, and we leave the nature of the
metallic phase for further study. The partially localized phase
labeled (C) is characterized by the localization of the heavy
mobile component, but it still allows the mobility of the light
component. As a consequence, two distinct kinds of doublons
are formed by the light components and the other components.
The competition between the Brinkman-Rice scenario and the
Falicov-Kimball scenario, together with the asymmetry of the
two mobile components, gives rise to the partially localized
phase. This phase is absent in the symmetric case with r = 1.
There are two ways for the phase transition from the partial
localization (phase C) to the Mott insulator (phase A) to occur.
One transition occurs via the metallic phase, and the other is
the direct phase transition from the partial localization to the
Mott insulator. The latter phase transition is a swap Mott tran-
sition with �Nd = 0. The asymmetric three-component FKM
may be realized by loading ultracold atoms into an optical
lattice. It is a challenge to detect the swap Mott transition by
monitoring the doublon formation.

IV. CONCLUSION

We studied Mott transitions in the asymmetric three-
component FKM by applying the two-site DMFT. The
asymmetric three-component FKM was obtained from the
symmetry breaking of the SU (3) Hubbard model by both
hopping and local interactions. The Mott transitions are char-
acterized by the change in the number of distinct kinds of
doublons. At half filling, we found different Mott insulating
phases. In addition to the insulating phases established by
the Brinkman-Rice and the Falicov-Kimball scenarios, we
found a partially localized phase in which the heavy mobile
component becomes localized, while the light component is
still able to move in the lattice. A swap Mott transition, in
which both phases have the same number of distinct kinds
of doublons, was observed. Across the swap Mott transition,
the light and immobile components are swapped with each
other. Our results may shed some light on the localization
in multicomponent correlated systems, in which different
localization mechanisms may take action. In particular, the
exotic fractionalized state may be relevant to the localization
[8,9]. Our results are also relevant to studies of localization
in ultracold atomic mixtures [30–37]. The proposed model
may serve as a prototype for the implementation of the mass
imbalance in optical lattices. It would be interesting to see an
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experimental confirmation of the swap Mott transition. How-
ever, the dynamical properties of the system are not fully taken
into account by the two-site DMFT. We leave the dynamical
problem for further study.
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