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Abstract It is shown that Birkhoff’s theorem for the gen-
eral theory of relativity is overcome in the f (R)-theory
of gravitation. That means, the f (R)-theory of gravitation,
unlike Einstein’s general theory of relativity, does not forbid
gravitational radiation from a spherically symmetric source
(whether stationary or non-stationary). As a consequence,
in the f (R)-theory a spherically symmetric gravitational
deformation (e.g., collapse/expansion or pulsation) could
emit gravitational waves (of tensor- and scalar polarization
modes), a phenomenon impossible in the general relativity.
A test model is examined and it turns out that the gravita-
tional radiation is strongest when the surface of the deforming
object is in the vicinity of the (modified) event horizon, even
suddenly flares up just outside the latter. In this letter, within
the f (R)-theory of gravitation, a gravitational wave equa-
tion and a formula for the gravitational emission power are
derived. These formulae, along with searching for signals,
can be used for the experimental test of the f (R)-theory.
In general, including the spherically symmetry case, gravita-
tional radiation of both tensor- and scalar polarization modes
are allowed, although under some circumstance the contri-
bution of scalar modes is strongly suppressed.

1 Introduction

As is well-known in the general theory of relativity (GR),
a solution of Einstein’s equation in vacuum for a central
field is always stationary (according to Birkhoff’s theorem)
[1,2] as the corresponding metric can be converted into a
time-independent form [3,4].
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Therefore, in the GR no gravitational waves can be emitted
from any spherically varying gravitational source including
spherically collapsing (or expanding) and pulsating ones.1

This statement, as shown below (see also [5]), however, is
no longer valid for an f (R)-theory of gravitation, or just
an f (R)-gravitation or an f (R)-theory, for short. It has been
shown [6] that Birkhoff’s theorem still holds in the f (R) the-
ory only for specific cases, such as that with time-independent
R, not applicable to the general f (R) theory considered here.

As a result, a spherically symmetric deforming (pul-
sating/contracting/extending) object in a general f (R)-
gravitation, unlike in the GR, may be able to emit gravita-
tional waves detectable from distance if the intensity and the
speed of the deforming process are high enough. Thus, if an
f (R)-gravitation [7–9] replaces the Einstein’s GR as a more
precise theory of gravitation the number of possible sources
of gravitational waves may increase, for example, a star in
evolution (to a black hole or a neutron star, or a supernova,
etc.), keeping even its spherical symmetry, could emit grav-
itational waves. Here we will demonstrate theoretically how
it can happen. In particular, a spherical gravitational collapse
(of a single object), not only gravitational collisions (between
two black holes, or neutron stars, for example) [10], could
be also a source of gravitational waves. This conclusion was
reached thanks to the perturbation approach developed in [5]
for cosmic objects, in [11] for the Universe as a whole and
here for gravitational radiations. The perturbation approach
in the f (R)-theory has been also discussed elsewhere (see,
e.g., [12,13]) but on the background of the perturbation of
the metric as usual (see (2) below), not of the theory itself.

In general, the GR admits tensor polarized gravitational
radiation only, but a generic metric theory may admit more,

1 In practice there is no perfect spherical object but deformation from
the spherical shape may not always be strong and fast enough to emit
detectable gravitational waves.
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until five or six, polarization modes of gravitational waves
[14,15], in particular, the f (R)-theory admits gravitational
waves from scalar modes in addition to those of the tensor
modes (see, for example, [16,17] and references therein). The
presence of gravitational waves of non-tensor modes, includ-
ing the scalar ones, indicates non-GR phenomena. However,
the observations of the Advanced LIGO and the Advanced
Virgo have shown the signal of tensor modes dominates that
of scalar modes. [19–21]. This is somewhat consistent with
the theoretical results [18]. Moreover, gravitational waves
of scalar modes are more related to the massive gravitation
rather than the massless one [18]. In the spherically symme-
try condition, as said above, no gravitational waves can be
radiated within the GR, in contrast, the gravitational radi-
ation is still possible in the f (R) theory under the spheri-
cally symmetry condition. We will show that they can be of
tensor modes. Along with the would-be existence of non-
tensor modes of gravitational waves, the would-be existence
of gravitational waves of a tensor mode from a spherically
symmetric (varying) source would also mean physics beyond
the GR. However, as stated in [18] the scalar modes of the
gravitational waves are sometimes strongly suppressed by
the mass correction.

Let us outline the paper. In the next section we recall some
key points from the derivation of the gravitational radiation
in the GR and in Sect. 3 we consider this phenomenon for
the f (R) theory in a central field. In Sect. 4 we apply our
approach to several test models and analyze the results with
some illustrations.

The conventions used throughout this paper are the same
as those used in our previous works [5,11].

2 Gravitational radiation in the general relativity in
brief

The GR is governed by Einstein equation

Rμν − 1

2
gμνR = −8πG

c4 Tμν (1)

corresponding to Einstein–Hilbert Lagrangian LGR = R,
where R is the scalar curvature, Rμν is the Ricci tensor
and Tμν is energy–momentum tensor. The gravitational wave
propagation, in essence, distorts the space-time. Usually, this
distortion is very weak, therefore, we can develop the general
metric gμν peturbatively around the flat (Minkowski) metric
ημν ,

gμν = ημν + hμν, (2)

with |hμν | � 1. Thus, hμν satisfies the equation

�
(
hμν − 1

2
ημνη

αβhαβ

)
= 2kTμν, k = 8πG

c4 (3)

which in vacuum becomes

�hμν = 0. (4)

It is the equation of gravitational waves propagating outside
the source. They are linear combinations of two modes of
(tensor) polarizations: the plus (+) and the cross (×) ones
[22]. In the GR [3] the power of gravitational radiation is
given by

P = − c5

8πG

∫
S
∂ j Q

j0i dSi = − c5

8πG

∫
V

∂ j∂i Q
j0i dV,

(5)

where i, j = 1, 2, 3 and dSi = nir2dΩ with dΩ =
sin θdθdϕ, ni = xi

r
, while

Q j0i = 1

2

(
δi j∂0gkk − δi j∂kg0k + ∂ j gi0 − ∂0gi j

)
. (6)

With the metric perturbation (2) the formula (6) becomes

Q j0i = 1

2

(
δi j∂0hkk − δi j∂kh0k + ∂ j hi0 − ∂0hi j

)
. (7)

It will be shown below, in Sect. 4, that Q j0i is related to
the moment of inertia. In a central field (no matter stationary
or not) P always vanishes, hence, no gravitational wave can
be emitted. The situation is different in the f (R)-gravitation
because there the metric perturbation hμν is no longer sta-
tionary under the spherically symmetry condition as in the
GR. Let us consider this in more details.

3 Gravitational radiation in the f (R)-theory of
gravitation

The f (R)-modified gravitation theory is based on the
Lagrangian L = f (R), where f (R) in general is an arbi-
trary (but well-defined) function of the scalar curvature R.
The gravitational equation extending (1) and corresponding
to this Lagrangian has the form [7–9]

f ′(R)Rμν−gμν� f ′(R)+∇μ∇ν f
′(R)−1

2
f (R)gμν= − kTμν.

(8)

This theory is one of the simplest generations of the GR
and takes the latter as a special case at f (R) = R when
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Eq. (8) becomes Einstein equation (1). As is well known,
to solve Einstein equation is always problematic because of
its high non-linearity, but the Eq. (8) is even more compli-
cated. To simply the problem, the perturbation method for
solving highly nonlinear equations is often used. Choosing
this method is based on the following logical argument. Since
Einstein’s GR has already been tested as a very accurate the-
ory (see in this context, for example, recent results [23,24]),
any theory extending the GR should deviate slightly from
the latter, at least in the tested domains in the present epoch.
That means L = f (R) should differ from Einstein–Hilbert
Lagrangian LGR = R just slightly,

f (R) = R + λh(R), (9)

where λ and function h(R) must satisfy the condition
|λh(R)| � R.2 With this assumption, we can obtain a per-
turbative vacuum solution of Eq. (8) for a central field (in a
Schwarzschild-type metric) [5]

ds2 =
[

1 − 2GM f (t)

c2r

]
dx02 − dr2

1 − 2GM f (t)
c2r

− r2(dθ2 + sin2 θdϕ2). (10)

Note that the “event horizon” happens at the modified
Schwarzschild radius

RS = 2GM f

c2 (11)

corresponding to something like an “effective” mass,

M f (t) := M − λM1(t) − λM2(t), (12)

and thus an “effective” black hole, with G and M being the
gravitational constant and the (ordinary) mass of the gravi-
tational source, respectively, while

M1(t) = 2π [R0(t)]3

3kc2

[
h(kT 0

0) + kT 0
0h

′(kT 0
0)

]
, (13)

M2(t) = 4π

kc2 h
′′(kT 0

0)

[
∂

∂t

M

[R0(t)]3

]2

α(t), (14)

T 0
0 = Mc2

4
3π [R0(t)]3

, (15)

where R0(t) is the radius of the gravitational source in the
moment t (the subscript “0” prevents the radius R0 from
being confused with the Ricci scalar R), and

α(t) = 3k2c2R0(t)

256π2[ξ(t)]4

{
3

ξ(t)R0(t)
arcsin[ξ(t)R0(t)]

2 Note that here we change the notation h(R) used in previous works
[5,11] to h(R) to avoid confusion with the trace of hμν .

−
(

3 + 2[ξ(t)R0(t)]2
)√

1 − [ξ(t)R0(t)]2
}

×
(

1 − [ξ(t)R0(t)]2
)−3/2

, (16)

with

ξ2(t) = 2GM

c2[R0(t)]3 . (17)

As seen in (10), under the spherically symmetry condition,
the metric perturbation hμν , in particular, the components
h+ and h×, generally do not vanish and are functions of the
spacetime (in the GR with the spherical symmetry, they are
stationary), where, h+ = (h11−h22)/2 and h× = h12 ≡ h21

are amplitudes of the plus- and the cross tensor polariza-
tions, respectively. Furthermore, the quantity (6), i.e., (7),
and the radiation power (5) in general do not vanish either.
Apart from its magnitude satisfying the perturbation con-
dition |λh(R)| � R, a general perturbation h(R) (of the
theory itself, not the metric) does not generate h+ and h×
(or any element of hμν) vanishing. Consequently, the gen-
eral f (R) theory, unlike the GR, allows gravitational waves
of tensor modes, even under the spherically symmetry con-
dition. Gravitational waves of scalar modes are also allowed,
but in some circumstance they are strongly suppressed [18–
21], therefore, in such a case they contribute little to the total
radiation power. In the moment, we have not yet known the
exact fraction of each mode’s contribution to the total radia-
tion. It could be subject to further investigation.

4 Testing models

Let us see explicit expressions of M1(t) and M2(t) in some
specific models considered in [5,11]. In the model

f (R) = R + λRb; b > 0, (18)

M1(t) and M2(t) have the form

M1(t) = 4π

kc2

(b + 1)c2b(kM)b

31−b 22b+1 πb[R0(t)]3b−3 , (19)

M2(t) = 4π

kc2

b(b − 1)c2b−4(3kM)b−2
[

∂
∂t

M
[R0(t)]3

]2
α(t)

(4π)b−2[R0(t)]3b−6 ,

(20)

while in the model

f (R) = R1+ε (21)
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(with |ε| � 1), they are given as follows

λM1(t) = −M + 4π

kc2

(ε + 2)6ε(kc2M)ε+1

(8π)(ε+1)[R0(t)]3ε
, (22)

λM2(t) = 4π

kc2

ε(ε + 1)(3kc2M)ε−1
[

∂
∂t

M
[R0(t)]3

]2
α(t)

(4π)ε−1[R0(t)]3ε−3 .

(23)

The fact that R0(t) is a function of time while the star
deforming (pulsating, expanding or contracting), leads to an
explicit time dependence of the metric (unlike the GR, where,
a spherically symmetric solution is always stationary) and,
thus, gravitational radiations are possible. We will see below
how it happens.

Let us consider the f (R)-theory in (9),

f (R) = R + λh(R), (9)

then the Eq. (8) becomes

Rμ
ν − 1

2
δμ

νR + λh′(R)Rμ
ν − λ

2
δμ

νh(R) − λδμ
ν�h′(R)

+ λ∇μ∇νh
′(R) = −kTμ

ν . (24)

Inserting the solution of Einstein equation

R = kT, Rμ
ν = −k

(
Tμ

ν − 1

2
δμ

νT

)
,

in perturbative terms of Eq. (24), we get a perturbation equa-
tion of first order

Rμ
ν − 1

2
δμ

νR = −kTμ
f ν, (25)

with

Tμ
f ν = Tμ

ν − λh′(kT )

(
Tμ

ν − 1

2
δμ

νT

)
− λ

2k
δμ

νh(kT )

− λ

k
δμ

ν�Eh′(kT ) + λ

k
∇μ∇E

ν h′(kT )

= Tμ
ν + δTμ

ν (26)

treated as an “effective” (or modified) energy–momentum

tensor, where, h′(kT ) = ∂h(kT )

∂(kT )
and the superscript E in

the covariant derivatives indicates that the metric tensor gμν

is taken in the Einstein equation solutions.
To solve (25) let us use the metric gμν split as in (2) into

flat and curved parts:

gμν = ημν + hμν, (2)

The curved part hμν in turn is split into two parts,

hμν = h(E)
μν + h( f )

μν , (27)

of h(E)
μν – deviations within Einstein GR, and h( f )

μν – (pertur-
bative) corrections by the f (R)-theory. Next, following the
approach of [4], we obtain at the first order of perturbation

Rμν = 1

2

(
g(0)αβ∂α∂βhμν − ∂μ∂σ h

σ
ν − ∂ν∂σ h

σ
μ + ∂μ∂νh

)
,

(28)

where h = hμ
μ. Then, we can always choose a coordinate

frame to satisfy

∂μχμ
ν = 0, (29)

where χ
μ
ν = hμ

ν − 1
2δ

μ
ν h. Using (29) we rewrite (28) as

Rμν = 1

2
�hμν, (30)

or

Rμ
ν − 1

2
δμ
ν R = �Υ μ

ν . (31)

with � = ημν∂μ∂ν , and

Υ μ
ν = 1

2

(
hμ

ν − 1

2
δμ
ν h

)
. (32)

Taking (25) into account we re-write Eq. (31) as a wave equa-
tion

�Υ μ
ν = −kTμ

f ν . (33)

with the source being the modified energy–momentum Tμ
f ν .

It is clear that at λh(R) = 0, the Eq. (33) reduces to that
in (3). The radiation power is calculated by formula (48) or
(49) derived below. With the standard procedure for solving
the wave function (33) we obtain the retarded solution

Υ μν(x, t) = − k

2π

∫ Tμν
f (x′, r − ct)

|x − x′| d3x′, (34)

where we use the notations xμ ≡ (x0, xi ) = (ct, x) and r =
|x| for the observer’s coordinates and x ′

μ for the coordinates
of points within the source. In the case of the GR, the solution
(34) becomes

Υ μν(x, t) = − k

2π

∫
Tμν(x′, r − ct)

|x − x′| d3x′, (35)
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with Tμν
f replaced by Tμν . Far from the source (that is |x| �

|x′| or |x − x′| ≈ |x| := r ) and if the conservation law

∂μT
μν = 0 (36)

is applied, we get (see [4], and also [18])

Υ i j (x, t) = − k

2πr
∂0∂0

∫
T 00(x′, r − ct)x ′i x ′ j d3x′,

= − k

2πc2r

d2I i j

d2t
, (37)

where I i j is the moment of inertia. The radiation power is
given by [4]

P = − G

45c5

(
∂3

∂t3Qi j

)2

, (38)

where

Qi j =
∫
V

ρ(x′)(3x ′
i x

′
j − |x′|2δi j )d3x ′. (39)

Here Qi j is the quadrupole moment and the integration is
done over the volume (denoted by V ) of the source. It is easy
to show that with the spherical symmetry present, Qi j van-
ishes, hence, there is no gravitational radiation for a central
field. In the case of the f (R)-theory, however, the situation
is different.

Indeed, in the latter theory, we cannot impose the equation
(36) on Tμν

f , as, in general,

∂μT
μν
f = ∂μT

μν + ∂μ(δTμν) = ∂μ(δTμν) �= 0, (40)

that is, the effective energy–momentum tensor Tμν
f (in par-

ticular, the effective mass M f ), unlike the real energy–
momentum tensor Tμν (in particular, the real mass M , resp.),
is not necessarily conserved. It is so because the formulas (38)
and (39) get corrections beyond the quadrupole terms, hence,
neither the corrected Q f

i j nor the corrected P f vanish for a
central field. These results, along with the non-vanishing h+
and h× derived from the spherically symmetric time-varying
metric (10), show that gravitational radiation of tensor mode
is possible in the condition of spherical symmetry. This is
the subject of the wave equation (33) solved by the solution
(34). What about the angular momentum conservation for the
tensor (spin 2) mode radiation, we always have it because the
radiation is spherically symmetric, i.e., same in all directions,
in particular, in two opposite directions. This situation is sim-
ilar to, for example, the two-photon production in a head-on
collision between a particle and its antiparticle, such as a
head-on electron-positron collision, observed in a center-of-
mass frame of reference, as depicted in Fig. 1.

Fig. 1 Two-gamma production of an electron-positron collision

As dr =
−→r d−→r

r
= − xidxi

r
, thus, dr2 = xi x j dxi dx j

r2 ,

at a location far from the gravitational source the metric (10)
in a Cartesian coordinate frame takes the form

ds2 =
[

1 − 2GM f (t)

c2r

]
dx02

−
[
δi j + 2GM f (t)

c2

xi x j
r3

]
dxidx j . (41)

In this perturbative f (R)-theory the formula for radiation has
a similar form (5) and (6) as in the GR with the difference that
the metric gμν is stationary in the GR but time-dependent in
the f (R)-theory. Thus, the tensor polarization is reflected by

h+ = GM f (t)

c2r3 [(x1)
2 − (x2)

2]
and

h× = 2GM f (t)

c2r3 x1x2,

while Q j0i in (6) becomes

Q j0i = −GṀ f (t)

c3

(
δi j

r
− xi x j

r3

)

= −4πGρ̇ f (t)

3c3

(
r2δi j − xi x j

)
, (42)

where,

Ṁ f (t) ≡ ∂M f (t)

∂t
= Ṁ(t) − λṀ1(t) − λṀ2(t), (43)

according to (12) and

ρ f (t) = 3M f (t)

4πr3 (44)

is the effective density of the matter inside the sphere with
radius r . We see from (42) that Q j0i is proportional to the
time derivative of the (effective) density of the moment of
inertia. If we calculate the density only within the source
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with radius R0 the formula (42) is replaced by

Q j0i = −4πGρ̇
(s)
f (t)R3

0

3c3r3

(
r2δi j − xi x j

)
, (45)

where

ρ
(s)
f (t) = 3M f (t)

4πR3
0

(46)

is the effective density of the source.
Using r = √−xi xi , ∂i r = −xi/r we get

∂ j Q
j0i = 2GṀ f (t)

c3

xi

r3 . (47)

Inserting (47) in (5), we obtain the gravitation radiation
power of a central field in the f (R)-gravitation

Pf = −Ṁ f (t)c
2. (48)

With a spherical symmetry we can consider Ṁ(t) ≈ 0 since
the total real mass M , compared with M1 and M2, is a con-
stant or slowly-varying function of time (thus, any possible
effect of the pure GR is excluded). Hence, the main contri-
bution to (43) comes from the last two terms, that is

Pf = λ
[
Ṁ1(t) + Ṁ2(t)

]
c2. (49)

To verify (49) experimentally, let us make some numerical
estimations of gravitational radiation based on (49) in several
cases of gravitational collapse. To increase the observable
(measurable) effect, along with a large mass M a rapid change
with time of M f (t), thus, after (13) and (14), of R0(t), is
required. Therefore, within the f (R)-theory, a rapid change
of R0(t) may cause a detectable gravitational radiation.

When a (heavy) object deforms very quickly, such as in the
case of a gravitational collapse, the contribution from Ṁ2(t)
would dominate the other contributions. In such a case the
radiation formula (49) reduces to

P = λṀ2(t)c
2. (50)

Then, the total radiation energy released during a time inter-
val 
t = t − 0 = t ,

Erad =
∫ t

0
Pdt = λc2

∫ t

0
dM2(t) = λc2 
 (M2(t)), (51)

is measured by the change 
(M2(t)) = M2(t) − M2(0) of
the “fictitious” mass M2. This is a way geometry is con-
verted into mass-energy. Whether energy of this kind can
be treated as dark energy is still a matter for further con-
sideration. The difference with the GR is that, in the latter,

unlike (51), the radiation energy is measured by the reduction
(“evaporation”) of the real total mass M (of, e.g., colliding
objects).

Inserting the latter formula in (14) we can obtain M2,
and then, the radiation power and the total radiation energy
by (50) and (51), respectively, for a general f (R). For a
specific model, a formula of a specific type such as (20) or
(23) should be taken instead of the general one (14). To make
the imagination more intuitive, now we apply this procedure
to a model with a definite f (R), namely, the model (18) with
b = 2, that is,

f (R) = R + λR2, (52)

with λ = 0.1511677 × 1018 m2 given in [5]. Denoting

ΔM f = Erad

c2 (but below, for brevity, the script f will be

omitted: ΔM f ≡ ΔM) and using (20) and (51) (with b = 2)
we find

ΔM

M�
= 27λc2

32G2MM�

(
∂R0(t)

∂t

)2

×
⎡
⎣ 3√

2GM
c2R0(t)

arcsin

√
2GM

c2R0(t)

−2

(
3

2
+ 2GM

c2R0(t)

)√
1 − 2GM

c2R0(t)

]
2GM

c2R0(t)

×
(

1 − 2GM

c2R0(t)

)−3
2

. (53)

To illustrate the above-derived result, let us consider a
collapsing star. We assume the star’s gravitational collapse
considered as a free fall of its constituent matter toward its
center. Likely, this can happen during a late stage of the star’s
evolution when the star becomes very cool (so its fuel is
exhausted to counteract a gravitational collapse). Thus, dt
can be calculated as follows [25]

dt = −
(

8πGρ0

3

)−1/2 (
ζ

1 − ζ

)1/2

dζ, (54)

where ζ = R0(t)

R0
, ρ0 = M

4/3π (R0)
3 , R0 is the radius of the

collapsing star at a given time just before the collapse, taken
as the initial time (t = 0), while R0(t) is the radius of the
star at a later time t . Following (54), the speed of the collapse
can be approximated as

∂R0(t)

∂t
= −

√
2GM

R0(t)R0
[R0 − R0(t)]. (55)
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Putting (55) in (53), we finally find

ΔM

M�
=27λc2 [R0 − R0(t)]

16GM�R0(t)R0

⎡
⎣ 3√

2GM
c2R0(t)

arcsin

√
2GM

c2R0(t)

−2

(
3

2
+ 2GM

c2R0(t)

) √
1 − 2GM

c2R0(t)

]

× 2GM

c2R0(t)

(
1 − 2GM

c2R0(t)

)−3
2

. (56)

We work here on three testing examples with M = 65M�,
M = 500M� and M = 1000M�. The radius R0 of
a star of mass M assumed to have a prio-collapse den-
sity like that of the Sun, is, thus, approximately given by
R0 = (M/M�)1/3 R�. If R0(t) � R0 (i.e., when t is large
enough), the precise choice of R0 does not affect expres-
sion (56) much. The case with M = 65M� is considered
in order to collate it with the LIGO’s observation [10]. As
said above, the gravitational waves in an f (R)-theory can
be released by virtue of increasing “fictitious” M2 mass,
unlike in the conventional GR the gravitational radiation
leads to reduction of the conventional (real) mass M . This
phenomenon is depicted in Figs. 2, 3 and 4 for M = 65M�,
M = 500M� and M = 1000M�, respectively. In these fig-
ures where ΔM ≡ Δ(M2), we see a (positive) change of M2

happens due to a gravitational radiation, or, a change of the
mass M2 causes a gravitational radiation. The Fig. 5 depicts a
combined plot to compare the three above-considered cases.
It is observed that when the radius of the collapsing star
approaches its Schwarzschild-like radius RS the gravita-
tional radiation flares up. The model (52) is just a testing
model which can be replaced by other ones, such as that with
f (R) = R−2Λ+αR2 + γ

R , shown in [11] as a more viable
model. We note that as the Ricci tensor Rμ

ν (also the Rie-

Fig. 2 The change of the “fictitious” mass due to gravitational radiation
of a 65-solar-mass object (e.g., a star) collapsing from a size with a radius
of 10 its Schwarzschild radius Rs to 3 Rs

Fig. 3 The change of the “fictitious” mass due to gravitational radiation
of a 500-solar-mass object collapsing from a size with a radius of 10 its
Schwarzschild radius Rs to 2 Rs

Fig. 4 The change of the “fictitious” mass due to gravitational radiation
of a 1000-solar-mass object collapsing from a size with a radius of 10
its Schwarzschild radius Rs to 1.7 Rs

mann tensor), see (28), and thus, the Ricci scalar R, even
under the spherically symmetry condition, are not stationary
(but functions of the space-time) the tensor modes of gravi-
tational waves are not cancelled out [14,15].

5 Conclusion

To conclude, let us make some remarks. It has been shown
that in the f (R)-theory of gravitation the so-called Birkhoff
theorem (valid in the GR) is overcome, or more precisely,
in the spherically symmetric condition, this theory allows
gravitational radiation of tensor modes and scalar modes,
unlike the GR, which in general allows only radiation of
tensor modes and does not even allow under the spherically
symmetric condition any radiation of any mode.

In the GR, any central gravitational field is always sta-
tionary, therefore, no gravitational radiation can be emitted
from a spherically symmetric gravitational source. In con-
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Fig. 5 Combined plot of three cases M = 65, 500, 1000M�. In
all cases, the gravitational radiation flares up as the star’s surface
approaches, without reaching, the (modified) event horizon

trast, a spherically symmetric varying gravitational source in
the f (R) theory could emit gravitational waves detectable
(on the Earth) if the variation is strong and quick enough.
That means that gravitational waves can be radiated by a sin-
gle varying spherical gravitational source (for example, a star
in collapse/explosion or pulsation – not necessary to have a
collision of two or more heavy objects such as black holes)
– a phenomenon impossible in the GR. In other words, the
f (R)-theory of gravitation predicts more possible sources of
gravitational waves than the GR. This increases the chances
of detection of gravitational waves. These waves can be of
tensor or scalar mode, whereas the latter could be strongly
suppressed, however, we do not yet know the exact fraction of
each mode in the total radiation. We have calculated radiation
power formulas that can be used to instruct a gravitational-
wave-detecting experiment to verify the f (R) theory of grav-
itation. Measurements by such a potential experiment can fix
the precise form of f (R). The technical challenges, such as
precision, sensitivity, etc. of the instruments as well as signal
analysis to distinguish the signal with background (radiations
from other sources), can be the biggest obstacle [24,26]. In
particular, a technique [26] applied to detecting binary GR
black holes, could be used for detecting single black holes in
the f (R)-gravitation.

Finally, let us make some extended discussion. We note
that for some models (e.g., those in (18) with 0 < b < 1)
during a gravitational collapse the mass M1 decreases, while
the mass M2 increases. A gravitational radiation occurs only
if the change of M2 surpasses the change of M1. It is possible
as a gravitational collapse usually happens very quickly. On
the other hand, if an explosion of a star leads to an increasing
M1 and a decreasing M2 (when R0(t) does not change fast
enough) no gravitational radiation occurs, unless λ < 0. For
the case λ < 0 (or λ > 0 with fast changing R0(t)) an explo-
sion of a heavy object could lead to gravitational radiation.

The plots for such processes are similar to those in Figs. 2, 3,
4 and 5 but with the time direction reversed. In any deforma-
tion direction, the gravitational radiation is most intense just
outside the event horizon. We speculate that if the deforming
object is a larger one such as a galaxy or even the Universe
itself we could consider the question of the origin of dark mat-
ter and dark energy. That means, a deformation of a cosmic
object could “produce” (or “absorb”) energy treated as a con-
tribution to the energy-matter budget (including dark energy
and dark matter) of the Universe. It is geometry converted
into energy-matter, according to some speculation [16].
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