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Abstract. We study metal-insulator phase diagram in the half-filled disordered Hubbard
model at finite temperature. We calculate the averaged local density of states at the Fermi
level and the site occupation as a function of the on-site energy at finite temperature by using
typical medium theory with an impurity solver of equation of motion method. Although the
metallicity in the correlated metallic region changes with temperature change, the phase diagram
is almost temperature independent. We find fairly good agreement between our site occupation
and those obtained by the typical medium method with other impurity solver.

1. Introduction
Metal-insulator transitions (MITs) is a crucial problem in condensed matter physics. While
Mott insulating state is induced by correlation, Anderson insulating phase is induced by disor-
der [1, 2, 3]. The investigation of the interplay between correlation and disorder is a challenger for
physicists. For the Mott MIT, the arithmetic averaged value of local density of states (LDOS) at
the Fermi level is enough to describe the transition, but it can not be used as an order parameter
for Anderson localization [4, 5]. In the disordered system, the most probable value or ”typical
value” of the LDOS instead of the arithmetic averaged one is suited to detect the Anderson MIT.
Then Dobrosavljvec and co-workers have proposed the typical medium theory (TMT), where
the typical density of states approximately equal to the geometric mean of LDOS [6]. The dy-
namical mean fiean theory (DMFT) with TMT method have been successfully applied to study
the metal-insulator phase diagram in disordered and correlated systems [7, 8, 9, 10, 11, 12, 13].

Most of studies on MIT in the Anderson-Hubbard model (AHM) has been performed at zero
temperature. In 2015, H. Braganca and co-workers [14] investigated the phase diagram of the
half-filled AHM at finite temperature, focusing on the coexistence region associated with the
Mott phase transition. To solve this problem they have used TMT-DMFT with the iterative
perturbation theory (IPT) as an impurity solver. In our previous works, we have shown that the
equation of motion method (EOM) is the fast and reliable impurity solver for TMT-DMFT at
zero temperature [11, 12, 13]. In this paper we apply this method to study the metal-insulator
phase diagram in the half-filled disordered Hubbard model at finite temperature.

The paper is structured as follows. In Section 2 we briefly present the TMT-DMFT for AHM
model, where we use the equations of motion method as an impurity solver. In Section 3 the
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averaged LDOS at the Fermi level, the site occupancy as well as the phase diagram at finite
temperature are calculated and discussed. The final Section 4 contains the conclusions.

2. Model and Method
The Anderson-Hubbard model with site energies is defined by the following Hamiltonian

H = −t
∑

<ij>σ

(c†iσcjσ + c†jσciσ) +
∑
iσ

(εi − µ)niσ + U
∑
i

ni↑ni↓, (1)

where c†iσ(ciσ) is the creation (annihilation) operator of an electron at site i with spin σ. niσ

is the number particle operator, µ is the chemical potential, and t is the hopping amplitude
between nearest neighbor sites i and j. U is the on-site Coulomb interaction and the local
impurities εi are randomly variables. We assume a box distribution for energy impurities εi
as follows P (εi) = θ(δ/2 − |εi|)/∆, where θ is the step function. ∆ measures the strength of
structural disorder.

In the DMFT, the lattice model is mapped onto a single impurity (with a random energy)
embedded into the bath of non-interacting electrons, which needs to be calculated self-
consistently. The coupling between the single impurity and the DMFT bath is described by the
hybridization function ησ(ω). We restrict our study to the paramagnetic case at half-filling, for
which µ = U/2, the hybridization function and the impurity Green function are spin independent
so the spin indexes are omitted. The impurity Green function can be approximately obtained
from decoupling the equations of motion as follows [15]

G(ω, εi) =

1− < ni > /2

ω − εi + U/2− η(ω) + Uη1(ω)[ω − εi − U/2− η(ω)− η3(ω)]−1

+
< ni > /2

ω − εi − U/2− η(ω)− Uη2(ω)[ω − εi + U/2− η(ω)− η3(ω)]−1
. (2)

The ”self-energies” η1(ω), η2(ω), η3(ω) are temperature dependent [15], they describe a resonant
coupling of site i with the DMFT bath and can be expressed through the hybridization function
as below

ηl(ω) =

∫ +∞

−∞
η(ω)Fl(z)

(
1

ω − z
+

1

ω − 2ϵi + z

)
dz, (3)

where l = 1, 2, 3. F1(z) = f(z) = 1
1+exp (z/T ) is the Fermi function, F2(z) = 1 − F1(z), and

F3(z) = 1. The site occupation at finite temperature

⟨ni⟩ = − 2

π

∫ ∞

−∞
f(ω)ImG(ω, ϵi)dω. (4)

The local density of states is given by

ρ(ω, εi) = − 1

π
ImG(ω, εi), (5)

The typical density of states (TDOS) can be calculated via the geometrically averaged LDOS

ρtyp(ω) = exp

[∫
dεP (ε) ln ρ(ω, ε)

]
. (6)
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The arithmetically averaged local density of states (ADOS) is given as

ρarith(ω) =

∫
dεP (ε)ρ(ω, ε). (7)

The typical Green function is computed by the Hilbert transform

Gtyp(ω) =

∫
dω′ ρtyp(ω

′)

ω − ω′ . (8)

The lattice Green function can be calculated from the self-energy Σ(ω) and the non-interacting
density of states ρ0(ω):

G(ω) =

∫
dω′ ρ0(ω

′)

ω − Σ(ω)− ω′ , (9)

where the self-energy Σ(ω) of effective medium is determined from the Dyson equation

Σ(ω) = ω + µ− η(ω)−G(ω)−1. (10)

The self-consistent DMFT loop is closed by demanding the lattice Green function must be equal
to the typical Green function

G(ω) = Gtyp(ω). (11)

We assume that our system is defined in a Bethe lattice with infinite connectivity, the non-
interaction density of states ρ0(ε) = 4

√
1− 4(ε/W )2/(πW ) with bandwidth W , for which the

hybridization function is given by

η(ω) =
W 2

16
G(ω). (12)

3. Results and Discussion
We numerically solve the equations (2)- (12). In this work, we choose the bandwidth W as
the unit of energy and the Fermi level as the origin of energy axis. For the set of parameters
T,U , and ∆, the possible phases of the system can be classified as follows: 1) nonzero value
of ρtyp(0) ̸= 0 and ρarith(0) ̸= 0 denote a metallic phase; 2) ρtyp(ω) = 0 for all ω indicates an
Anderson insulating phase (gapless); and 3) a Mott insulating phase (hard gap) is signaled by
ρtyp(0) = 0,

∫
ρtyp(ω)dω ̸= 0. Firstly, we consider the influence of temperature on ADOS and

TDOS at the Fermi level, which characterize the metallicity of the system. In Fig.1 we plot
ADOT and TDOS at the Fermi level as a function of disorder strength ∆ at two values of T
and for U = 0.5. It can be seen that, both of these values decrease as ∆ increases and the effect
of temperature is relatively small. For ∆ ≈ 2.5, the ADOS at the band center is finite, while
the TDOS one approaches to zero, so this may be an evidence of MIT. For larger interaction
U = 1.5 case, as shown in Fig. 2, both of ADOS and TDOS at the Fermi level are finite for
1.0 < ∆ < 2.5, it indicates that with increasing disorder two transitions from an insulator via
a metal to an Anderson insulator are found. The ADOS and TDOS at the Fermi level slightly
decrease as temperature is increased due to thermal fluctuation.

Both of ADOS and TDOS at the Fermi level as a function of interaction U at two values of
T is shown in Fig. 3 for ∆ = 1.0 and in Fig. 4 for ∆ = 2.0. In each figure, the two curves have
almost the same behavior and a significantly difference between them is found only for interme-
diate interactions with the larger values at zero temperature. Therefore, the critical interactions
at which ρtyp(0) or/and ρarith(0) vanish, are almost independent on temperature. In Fig.5 we
present the phase diagram for the half-filled AHM at T = 0.2. Similar to the case T = 0, this
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Figure 1. Arithmetic-averaged and typical DOS at the Fermi level as a function of disordered
strength for U = 0.5 at T = 0, 0.2. Energy scale: W = 1.

Figure 2. Arithmetic-averaged and typical DOS at the Fermi level as a function of disordered
strength for U = 1.5 at T = 0, 0.2.

phase diagram consist of three phases: the correlated metal for small U and ∆, the Mott insula-
tor for larger U , and the Anderson insulator for larger ∆. In addition, the boundaries between
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Figure 3. Arithmetic-averaged and typical DOS at the Fermi level as a function of disordered
strength for ∆ = 1.0 at T = 0, 0.2.

.

these phases are almost unchanged compared to the case T = 0, because the critical interactions
are very weakly dependent on temperature as noted above. We note that for the half-filling
system the chemical potential is not affected by temperature due to particle-hole symmetry and
that seems to be one reason why the phase diagram is almost temperature independent. In
addition, although the temperature seemly does not affect in the phase diagram, our obtained
electronic properties of the system, for example, the dc conductivity is still clearly temperature
dependent (not shown). The phase diagram of the half-filled AHM at finite temperature have
been investigated in Ref. [14] within TMT-DMFT with the IPT impurity solver. The main effect
of finite temperature is that the metal-insulator coexistence region is narrowed as temperature
increases, and it vanishes at the critical temperature Tc. There is no coexistence region in our
obtained phase diagrams using TMT-DMFT with the EOM impurity solver at zero and finite
temperatures. However, as well as the case T = 0, we find that our obtained phase diagram at
finite temperature is generally consistent with others at finite and zero temperatures [8, 10, 14].
Finally, in Fig.6 we plot an example of the site occupation as a function of the on-site energy,
normalized by the disordered strength ∆ for U = 1.5 at T = 0.2. For ∆ = 0.5 the system is in
the Mott insulating phase, so the site occupation of all sites approximately equals 1.0; for the
metallic (∆ = 1.5) and the Anderson insulating phases (∆ = 3.5), the site occupation changes
from site to site, where in the latter case the change occurs more rapidly. Our result on the site
occupation is in good agreement with those in Ref. [14].

4. Conclusions
In summary, we have studied the finite-temperature phase diagram of the half-filled AHM
by using TMT-DMFT with EOM as an impurity solver. The results show that although
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Figure 4. Arithmetic-averaged and typical DOS at the Fermi level as a function of disordered
strength for ∆ = 2.0 at T = 0, 0.2.

.

Figure 5. Phase diagram of the half-filled AHM at T = 0.2. M, MI and AI stand for metal,
Mott insulator and Anderson insulator, respectively.
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Figure 6. Site occupation as a function of the on-site energy, normalized by the disordered
strength ∆ for U = 1.5 at T = 0.2

.

the metallicity characterized by the value of the TDOS at the Fermi level in the correlated
metallic region changes with temperature change, the boundaries between the metallic, Mott
and Anderson insulating phases are almost temperature independent. We also have shown that
for the system in the Mott insulating phase, the site occupation of all sites approximately equals
1.0, while for the metallic and the Anderson insulating phases, the site occupation changes from
site to site, where in the latter case the change occurs more rapidly.
The Anderson-Hubbard model at finite temperature including the transport properties needs
further investigation. That issue we will be working on in the near future.

Acknowledgments
This work is supported by International Centre of Physics ICP.2022.16

References
[1] Mott N F 1949 Proc. Phys. Soc. Lond. A 62 416.
[2] Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039.
[3] Anderson P W 1958 Phys. Rev. 109 1492.
[4] Lloyd P 1969 J. Phys. C 2 1717.
[5] Wegner F 1981 Z. Phys. B 44 9.
[6] Dobrosavljevic V, Pastor A A, and Nikolic B. K. 2003 Europhys. Lett. 62 76.
[7] Byczuk K 2005 Phys. Rev. B 71 205105.
[8] Aguiar M C O, Dobrosavljevic V, Abrahams E and Kotliar G 2009 Phys. Rev. Lett. 102 156402
[9] Byczuk K, Hofstetter W, and Vollhardt D 2010 Inter. J. Mod. Phys. B24 1727.

[10] Byczuk K, Hofstetter W, and Vollhardt D 2005 Phys. Rev. Lett. 94 0564021.
[11] Hoang A T, Nguyen T H Y, and Le D A 2019 Physica B 570 320.
[12] Hoang A T, Nguyen T H Y, and Le D A 2021 Mod. Phys. Lett. B 35 2150357.
[13] Nguyen T H , Le D A, and Hoang A T 2022 New J. Phys. 24 053054.
[14] Braganca H, Aguiar M C O,Vucicevic J,Tanaskovic D, and Dobrosavljevic V 2015 Phys. Rev. B 92 125143.
[15] Meir y, Wingreen N S , and Lee P A 1991 Phys. Rev. Lett. 66 3048.


