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Certifying whether a photon Fock state is present or not while preserving its quantum state is an important
task that proves useful in quantum technologies. The existing methods to perform such task apply to single
photons only and consume costly quantum resources. In this paper, we propose a resource-efficient scheme for
certification of an arbitrary (nonvacuum) photon Fock state by using second-order nonlinearity. In particular,
we utilize the correlations in both photon number and polarization of a stimulated parametric downconversion
process to herald the presence and the quantum state of an incoming Fock state. The proposed scheme works
excellently with a near perfect certification fidelity even when using nonideal photodetectors. We then compare
our scheme with the existing ones taking into account relevant figures of merit for each method. We also
present applications of our scheme in overcoming transmission loss of photons in quantum channels as well
as in preparation of NOON states, (|N〉|0〉 + |0〉|N〉)/

√
2. Our paper introduces to the optical toolbox a practical

technique that is beneficial for quantum communication and quantum metrology.
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I. INTRODUCTION

Quantum nondemolition (QND) measurement of a single
photon plays an essential role in overcoming transmission
loss in various quantum protocols such as device-independent
quantum key distribution [1,2], random number generation
[3,4], and tests of Bell inequalities [5,6]. Implementing this
kind of measurement often involves an auxiliary probe system
coupled to the photon in such a way that the probe’s quantum
state is dependent on whether or not the photon is present [7].
In that way, measurement on the probe confirms the photon’s
existence without destroying it and such measurement can
be repeated, yielding the same outcome [8]. A well-known
proposal following this principle is the use of cross-Kerr effect
[9] that induces change in the phase of a probe field with
respect to the photon number of a target field. However, this
method is inefficient due to the inherently weak third-order
nonlinearity and the multimode nature of photons [10,11].
Recently, deterministic QND measurement of a photon has
been realized in an advanced cavity-QED system [12–14],
where reflection of a photon from a cavity imparts a π shift
on the relative phase of an atomic superposition state.

A close variant of the above QND measurement is the so-
called certification of a single photon [15], by which the input
field is annihilated after measurement but its quantum state
is transferred to an auxiliary mode. This task is suitable for
quantum protocols, e.g., tests of Bell inequalities, where the
input photon waveform is not of interest [13]. To our knowl-
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edge, there exist three approaches that have experimentally
realized certification of a single photon. The first one exploits
spontaneous parametric downconversion (PDC) of the input
photon [15,16]. The other two rely on quantum teleportations
of single-rail [17,18] and dual-rail [19,20] qubits, respectively.
These methods however suffer from several limitations, either
yielding a very low certification rate due to the weakness of
third-order nonlinearity [16] or consuming costly quantum
overheads such as single photons [18] and polarization Bell
pairs [20]. Furthermore, the latter two methods necessitate at-
tentive synchronization between distant and indistinguishable
photons, thus posing a practical difficulty when implemented
with distinct source and receiver.

In this paper, we propose a different scheme based on
second-order nonlinearity for certification of photons. We
show that stimulated type-II PDC in a nonlinear crystal
[21,22] can be employed to certify the presence of an arbitrary
(nonvacuum) photon Fock state, i.e., a state containing an
arbitrary number of photons. This is possible owing to the
intriguing correlations in both photon number and polariza-
tion of the downconverted photons that allow one of these
modes to resemble the quantum state of the input Fock state.
Our scheme offers advantages compared with the existing
ones. First, similar to the spontaneous-PDC scheme ours does
not involve synchronization or indistinguishability but has a
much higher success rate by means of strong second-order
nonlinearity. Second, it is resource efficient, requiring nei-
ther additional quantum states nor feedforward corrections
that are requisite in the existing schemes. Third, keeping the
same setup it is applicable not only to single photons but
also to arbitrary multiphoton Fock states, |nH , (N − n)V 〉, and
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their symmetric superpositions, α|nH , (N − n)V 〉 + β|(N −
n)H , nV 〉, where |mH , nV 〉 represents a single-mode state that
has m horizontal photons and n vertical ones. In addition, our
scheme is readily realizable, as experimental demonstrations
of stimulated PDC have been shown in numerous works,
including quantum cloning of a single photon [23], state
preparation of a single-rail qubit [24], and implementation of
single-photon addition [25,26].

The outline of this paper is as follows. In Sec. II we reintro-
duce the three existing methods for certification of a photon
and then propose our scheme for an arbitrary Fock state.
We also provide detailed comparisons between our scheme
and the others. In Sec. III we present two applications of
our certification scheme: (i) in overcoming transmission loss
of photons in quantum communication and (ii) in genera-
tion of NOON states. We conclude our paper in Sec. IV.
Three appendices are added to complement the results in the
main text.

II. CERTIFICATION OF A PHOTON FOCK STATE

A. Overview of the existing schemes

1. Using spontaneous PDC

The scheme proposed by Cabello and Sciarrino [15] and
implemented by Meyer-Scott et al. [16] certifies a single
photon by splitting it into two via spontaneous PDC (see
Appendix A1 for more details of the scheme). One of the
downconverted photons is measured in a particular basis,
which projects the other one onto a quantum state that is
unitarily identical to that of the input photon. Concretely, the
input photon is assumed to be in the state

|ψ〉in = α|H〉in + β|V 〉in, (1)

where |α|2 + |β|2 = 1 and |H〉 ≡ |1H 〉 (|V 〉 ≡ |1V 〉) is a Fock
state containing one photon of horizontal (vertical) polariza-
tion. The photon is sent to a waveguide nonlinear crystal with
high nonlinearity; with some probability it is downconverted
into |0〉in(α|H〉1|H〉2 + β|V 〉1|V 〉2), where the subscripts 1
and 2 denote the two downconverted modes. Mode 1 is then
measured in the diagonal basis, (|H〉1 ± |V 〉1)/

√
2. Depend-

ing on the outcome of this measurement, mode 2 will be
collapsed into α|H〉2 ± β|V 〉2, which is identical to the initial
state |ψ〉in up to a feedforward Pauli correction. Therefore, the
measurement “click” in mode 1 has heralded the presence of
|ψ〉in, while also transferring entirely its qubit state onto the
photon in mode 2.

2. Using single-rail quantum teleportation

The second scheme for certification of a single photon is
based on quantum teleportation of a single-rail qubit [17,18]
(see Appendix A2 for more details of the scheme). To under-
stand this scheme, we first rewrite the input state as |ψ〉in =
α|1H 〉in|0V 〉in + β|0H 〉in|1V 〉in, which explicitly separates its
horizontal and vertical parts. We also prepare auxiliary
single-rail entanglements in the form (

√
1 − t |1H 〉1|0〉2 +√

t |0〉1|1H 〉2) ⊗ (
√

1 − t |1V 〉1|0〉2 + √
t |0〉1|1V 〉2), which are

created by sending two photons |1H 〉|1V 〉 to a beam splitter
(BS) with transmittance t . This transmittance plays an im-
portant role when performing amplification of a lossy single

photon using the scheme of interest. The horizontal and ver-
tical parts of |ψ〉in are then respectively teleported to mode
2 using the corresponding horizontal and vertical single-rail
entanglements as quantum channels. Depending on different
outcomes of the Bell-like measurement on mode in and mode
1, an (un-normalized) final state ±α

√
t (t − 1)|1H 〉2|0V 〉2 ±

β
√

t (1 − t )|0H 〉2|1V 〉2 is obtained, to which application of
a feedforward Pauli correction yields the input state |ψ〉in.
Recently, Guanzon et al. [27] have proposed a linear-optics
scheme to implement ideal quantum teleamplification up to
an N-photon Fock state, assisted by N auxiliary single photons
and quantum Fourier transform. This scheme can be adapted
to certification of an arbitrary Fock state.

3. Using dual-rail quantum teleportation

The third scheme is conceptually simple, certifying the
input state |ψ〉in by teleporting it to mode 2 of an auxil-
iary dual-rail Bell pair [19,20], say, |�+〉12 = (|H〉1|V 〉2 +
|V 〉1|H〉2)/

√
2 (see Appendix A3 for more details of the

scheme). The scheme thus requires a Bell measurement on
modes in and 1 as well as a Pauli correction conditioned on
the measurement outcome.

B. Our scheme using stimulated type-II PDC

Different from the above schemes, in what follows we
propose exploiting type-II PDC for certification of an arbitrary
photon Fock state. To this end, we examine spontaneous and
stimulated PDC processes in a type-II nonlinear crystal in
the presence of a strong classical pump field. We analyze the
correlations in photon number and polarization of the down-
converted photons in both cases. Based on these, we describe
our certification scheme and explain its working mechanism.

Type-II second-order interaction in a nonlinear crystal
gives rise to spontaneous PDC of a pumping photon into two
lower-frequency ones that are called the signal (s) and idler
(i) modes. The downconverted photons are orthogonal in po-
larization and emitted into directions symmetrically oriented
relative to that of the pumping beam [28] [see Fig. 1(a)]. This
interaction is described by the Hamiltonian [21,29]

Ĥsi = γ (â†
s,H â†

i,V + â†
s,V â†

i,H ) + H.c., (2)

where γ is the coupling strength proportional to second-order
nonlinearity as well as the intensity of the classical pump and
â†

m,p is the creation operator of the photon in mode m ∈ {s, i}
with polarization p ∈ {H,V }. Ĥsi is an effective squeezing
interaction between the signal and idler modes, resulted from
a three-wave mixing process when the pump is treated classi-
cally. These modes are required to fulfill the phase-matching
conditions, including conservations of momentum and energy
[30]. The time evolution of Ĥsi is

Ŝsi = exp(ξ K̂†
si − ξ ∗K̂si ), (3)

where K̂†
si = â†

s,H â†
i,V + â†

s,V â†
i,H and ξ = −iγ τ/h̄ with τ the

interacting time. Ŝsi is sometimes referred to as a type-II two-
mode squeezer [31]. We introduce an input-output relation via
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FIG. 1. (a) Schematic of spontaneous type-II PDC, where a
photon from the pumping beam is split into two daughter photons
in the signal (s) and idler (i) modes. Photon detections in these two
modes show the nonclassical correlations in their photon number and
polarization: If mode s is found in |kH , lV 〉s, then mode i will be
|lH , kV 〉i, and vice versa. (b) Schematic of stimulated type-II PDC,
where a seed Fock state |NH 〉 is injected to mode s. The correlations
of photons in modes s and i remain the same as in (a) except now
mode s after the stimulated process has N horizontal photons more.
(c) Our scheme for certification of an arbitrary photon Fock state.
From the correlations shown in (b), one sees that photon detection
of mode s in the state |NH , NV 〉s, which corresponds to k = 0 and
l = N , will project mode i exactly onto the state |NH 〉i. This effec-
tively certifies the seed Fock state in mode s without annihilating
it. The setup also works for a symmetric Fock-state superposition
α|nH , (N − n)V 〉 + β|(N − n)H , nV 〉.

application of Ŝsi [32]:

Ŝsi|mH , nV 〉s|0〉i =
∞∑

k,l=0

ck,l
m,n|(m + k)H ,(n + l )V 〉s|lH ,kV 〉i,

(4)
where

ck,l
m,n = (−i
)k+lKm+n

(
Cm

m+kC
n
n+l

)1/2
, (5)

with 
 = tanh(iξ ) the squeezing parameter, Kn = (1 −
|
|2)(n+2)/2 a function of |
|, and Ck

n = n!/[(n − k)!k!].
Following Eq. (4), the output state in modes s and i resulted

from spontaneous PDC is given by

Ŝsi|0〉s|0〉i =
∞∑

k,l=0

ck,l
0,0|kH , lV 〉s|lH , kV 〉i, (6)

which shows clearly the correlations in number and polar-
ization of photons in modes s and i. Particularly, mode s
has k horizontal photons and l vertical ones, while it is vice
versa for mode i that has l horizontal photons and k vertical
ones. Therefore, photon detection on one mode will disclose
the quantum state of the other mode. We demonstrate these
correlations in Fig. 1(a). Of particular interest is the case
when k + l = 1, i.e., the system emits pairs of single photons.
Detection of a single photon in one mode then guarantees the

existence of a single photon in the other mode. This consti-
tutes the most widely used single-photon sources [33,34].

Instead of spontaneous PDC, stimulated PDC occurs in a
type-II second-order nonlinear crystal when injecting a seed
light field to mode s or/and mode i [25,26]. As shown in
Fig. 1(b), we consider sending a horizontal N-photon input
state, |NH 〉in, to mode s. The corresponding stimulated-PDC
output following Eq. (4) reads

Ŝsi|NH 〉s|0〉i =
∞∑

k,l=0

ck,l
N,0|(N+k)H , lV 〉s|lH , kV 〉i. (7)

In Eq. (7) photons in mode s and i remain correlated in the
same fashion as in Eq. (6), except that now mode s has N
more horizontal photons that originate from the seed Fock
state. Intriguingly, one observes from Eq. (7) that if mode s
is detected in the state |NH , NV 〉s, which imposes k = 0 and
l = N , mode i will be collapsed into |NH 〉i, which is identical
to the initial input Fock state. Therefore, the measurement
on mode s has confirmed the presence of such input Fock
state. Its original physical state is destroyed but its quantum
state is sent perfectly to mode i. This presents the underlying
mechanism in our Fock-state certification scheme as depicted
in Fig. 1(c). Markedly, our scheme can also certify a vacuum
input state. In this case, our proposed setup is identified with
the conventional spontaneous PDC with a strong coherent
pump, in which no photons detected in mode s or i imply a
vacuum state in the other mode. Recently, it has been shown
that detection of zero photons might benefit some quantum
information applications [35].

In a similar manner, one can check that the above cer-
tification holds when the initial input state seeded to mode
s contains also vertical photons, for example, in the form
|nH , (N − n)V 〉in or |(N − n)H , nV 〉in with n � N . Remark-
ably, the symmetry between horizontal and vertical modes
in stimulated type-II PDC [see the interaction in Eq. (2)]
allows our certification scheme to work even for an arbitrary
superposition of these Fock states:

|ψN,n〉in = α|nH , (N − n)V 〉in + β|(N − n)H , nV 〉in. (8)

Indeed, taking |ψN,n〉in as the seed state in mode s and using
Eq. (4) we find the corresponding stimulated-PDC output:

α

∞∑
k,l=0

ck,l
n,N−n|(n + k)H , (N − n + l )V 〉s|lH , kV 〉i

+β

∞∑
k′,l ′=0

ck′,l ′
N−n,n|(N − n + k′)H , (n + l ′)V 〉s|l ′

H , k′
V 〉i. (9)

Within this state, detection of mode s in |NH , NV 〉s implies
k = N − n, l = n, k′ = n, and l ′ = N − n and hence projects
mode i exactly into the state |ψN,n〉 in Eq. (8). The success
probability of our certification scheme for this general input
state is

PN,n = ∣∣cN−n,n
n,N−n

∣∣2 = |
|2N (KN )2
(
Cn

N

)2
. (10)

For N = n = 1 this amounts to certification of a single pho-
ton with the success probability PN=1,n=1, which is of order
10−4–10−2 for a typical value of the squeezing parameter
|
| ≈ 10−2–10−1 [29].
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FIG. 2. (a) Success probability and (b) fidelity between the certi-
fied output state and the input state of our scheme when certifying a
single photon as functions of the detector efficiency η. We consider
using both PNR (marked by filled triangles) and on-off (marked by
filled circles) detectors. Here the squeezing parameter |
| is chosen
to be 0.05.

It deserves noting that our scheme can certify the pres-
ence of an arbitrary symmetric two-mode N-photon state
of the form α|nP1〉1|(N − n)P2〉2 + β|(N − n)P1〉1|nP2〉2, where
mode 1 has polarization P1 which can be horizontal or ver-
tical and similarly for mode 2 with polarization P2. This is
because of the equivalence between path and polarization
degrees of freedom (DOFs), by which a linear-optics trans-
formation can recast such two-mode state into a one-mode
N-photon Fock state, i.e., the state in Eq. (8). For example,
when P1 = H and P2 = V , a polarizing beam splitter trans-
forms the state α|nH 〉1|(N − n)V 〉2 + β|(N − n)H 〉1|nV 〉2 into
α|nH , (N − v)V 〉2 + β|(N − n)H , nV 〉1. The symmetric two-
mode N-photon state has proven useful in achieving the
quantum Cramér-Rao bound of phase estimation in conven-
tional two-path interferometers [36].

Our certification scheme in general demands photon-
number-resolving (PNR) detectors to perform precisely the
detection |NH , NV 〉s in mode s. However, for the case of
certification of a single photon, on-off detectors that only
distinguish between vacuum and nonvacuum states suffice for
our scheme. This is because the squeezing parameter |
| is
typically small, making higher-order terms in the stimulated-
PDC output in Eq. (7) or Eq. (9) with mode s having more
than two photons in horizontal and/or vertical polarizations
insignificant compared with lower-order terms. Namely, for
|
| � 1 it can be verified that the output state in Eq. (9) is
very well approximated to

c0,0
1,0

∣∣ψN=1,n=1〉s|0〉i + c0,1
1,0

∣∣1H , 1V 〉s|ψN=1,n=1〉i

+ αc1,0
1,0

∣∣2H , 0V 〉s|0H , 1V 〉i + βc0,1
0,1

∣∣0H , 2V 〉s|1H , 0V 〉i,

in which higher-order terms with mode s being in |kH , lV 〉 (k +
l > 2) are absent.

In Fig. 2 we examine the performance of our certifica-
tion scheme for a single photon using both PNR and on-off

detectors. Mathematical models for these detectors are pre-
sented in Appendix B. We assume the squeezing parameter to
be |
| = 0.05 and plot our scheme’s success probability and
the fidelity between the output certified state and the input
single photon versus the detector efficiency η. One observes
from Fig. 2(a) that the success probability is virtually the
same for both types of photodetectors, varying from near
0.001 to above 0.002. Meanwhile, Fig. 2(b) shows that the
fidelity in both cases is excellently high, larger than 0.99 for
η � 0.6. These justify the use of just on-off detectors in our
certification scheme for a single photon.

In Appendix B we reiterate the above analysis for certifica-
tion of an N-photon Fock state with N ∈ {2, 3}. We find that
in this multiphoton scenario PNR detectors are utterly needed
to realize a high-fidelity certification, which is in contrast to
the single-photon scenario. We also compute the probability
and the certification fidelity of our scheme for different values
of the squeezing parameter |
| in Appendix B. We observe
that for |
| � 1, the probability is substantially reduced when
decreasing the PNR detection efficiency; however, the certi-
fication fidelity remains close to 1. This is understandable,
since in such limit high-photon-number terms in mode s of
the stimulated-PDC output are negligible compared to the
target detection term |NH , NV 〉s, which results in a very small
false-detection probability and thus a very high certification
fidelity. Realistically nonideal PNR detectors are thus suffi-
cient for a high-quality multiphoton certification using our
scheme.

C. Comparisons with the existing schemes

Table I shows the comparisons between our certification
scheme and the existing ones in terms of various charac-
teristics for each method. To facilitate our discussion, from
now on we refer to the spontaneous-PDC scheme as C1, the
single-rail teleportation based scheme as C2, and the dual-rail
teleportation based scheme as C3.

Regarding the working mechanism, our scheme puts
forward a totally different approach to certifying photon
Fock states, that is, we utilize stimulated type-II PDC.
This gives us two immediate advantages compared with
the schemes C j ( j = 1, 2, 3). First, making use of second-
order nonlinearity, which is much stronger than third-order
nonlinearity as in C1, will substantially improve the certifi-
cation rate. Second, in contrast to C2 and C3 our scheme does
not rely on interference, so synchronization of indistinguish-
able, distant photons that requires fine temporal, spatial, and
spectral overlaps is irrelevant. This is highly desirable when
the incoming photon source is far away from the detection
location. Despite sharing a similar PDC characteristic, our
scheme is very different from C1. In particular, C1 is based on
a three-wave mixing process, which probabilistically down-
converts the input single photon into two lower-frequency
photons. Meanwhile, ours relies on a squeezing interaction
between the signal and idler modes that gives rise to their
nontrivial correlations in photon number and polarization.

As for the resources needed, our scheme involves a type-II
second-order nonlinear crystal and photodetectors. While the
latter are indispensable in all implementations, the former
is more readily available and economical than third-order
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TABLE I. Comparisons between our photon certification scheme and the existing ones, namely, the spontaneous-PDC scheme and the
two schemes using quantum teleportations of single-rail and dual-rail qubits, in terms of synchronization, resource requirement, photodetector
type, feedforward correction, order of success probability, and applicability. Our scheme features a simplicity in experimental hardware,
acceptable success probability, and applicability to arbitrary Fock states. Here the success probabilities of the two teleportation based schemes
are respectively estimated for on-demand (i.e., deterministic) and probabilistic resources of auxiliary quantum states. Our scheme’s success
probability and that of the single-rail teleportation scheme are estimated only for single-photon certification.

Resource Photodetector Feedforward Order of success
Synchronization requirement type correction probability Applicability

Using spontaneous Third-order
PDC [15,16] Not required nonlinearity On-off Required ≈10−8 Single photons

Using single-rail N auxiliary Arbitrary Fock
teleportation [17,18,27] Required single photons PNR Required ≈10−1 or ≈10−4 states

Using dual-rail An auxiliary
teleportation [19,20] Required Bell pair On-off Required ≈10−1 or ≈10−4 Single photons

Our scheme using Second-order On-off (N =1) Arbitrary Fock
stimulated PDC Not required nonlinearity or PNR (N >1) Not required ≈10−4 − 10−2 states

nonlinearity as in C1, auxiliary single photons as in C2, or an
auxiliary polarization Bell pair as in C3, which are expensive
quantum resources. For certifying a single photon, our scheme
requires only on-off detectors for a reliable operation. For that
of a multiphoton Fock state PNR detectors are requisite in our
scheme. PNR detectors are currently available, which can be
realized via superconducting transition edge sensors [37–39],
multiplexing of single-photon detectors [40–43], or analyses
of output signal waveforms [44]. Moreover, our scheme works
without feedforward corrections that are vital in the existing
schemes, which will reduce the hardware complexity of a
realistic implementation of our scheme. In fact, highly similar
setups to our proposed scheme that use stimulated PDC have
been realized in various experiments, for example, in imple-
menting single-photon addition [25,26].

Based on our estimates, our scheme’s success probability
(and therefore the certification rate) is several orders of mag-
nitude higher than that of C1. It is much lower than those of C2

and C3 in an idealized situation where the auxiliary quantum
states (i.e., N single photons in C2 and a polarization Bell pair
in C3) are on demand, but is comparable in a more typical
situation where they are probabilistically supplied. One way
to further boost the success probability of our scheme is to
increase the coherent pump amplitude [45,46]. This however
could amplify the undesired effect from higher-order multi-
photon terms (see Appendix B for an analysis of such effect).

Another salient feature of our scheme is its applicability
to arbitrary Fock states and their symmetric superpositions
while keeping the same experimental setup. These nonclas-
sical states are a key resource in many quantum metrology
protocols [47–51]. As will be shown later, using our certifi-
cation method we derive a scheme for preparation of NOON
states for arbitrary N .

III. APPLICATIONS

A. Overcoming transmission loss in quantum channels

We consider a realistic scenario when the pure single pho-
ton |ψ〉in in Eq. (1) is sent through a lossy quantum channel.

Experiencing photon loss, it becomes a mixed state with a
non-negligible vacuum component [18]:

ρ̂in = δ0|0〉in〈0| + δ1|ψ〉in〈ψ |, (11)

where δ0 and δ1 are real positive satisfying δ0 + δ1 = 1 and
δ0 > δ1 for a heavily lossy channel. The scheme of certifica-
tion of a single photon can mitigate this effect of transmission
loss. In fact, it can act as a noiseless single-photon ampli-
fier [27,52,53] that amplifies the single-photon component in
Eq. (11) compared to the vacuum one, i.e., increasing the
weight ratio δ1/δ0, thus making the mixed state ρ̂in close
enough to the initial pure single photon |ψ〉in.

Our certification scheme is also suitable for this purpose.
Specifically, we consider the mixed state ρ̂in in Eq. (11) as
the seed state in mode s of the setup in Fig. 1(c). We find the
stimulated-PDC output in this case as

Ŝsi(δ0|0〉s〈0| + δ1|ψ〉s〈ψ |)|0〉i〈0|Ŝ†
si, (12)

where Ŝsi is given in Eq. (3). Upon detecting mode s in
the state |1H , 1V 〉s, mode i will be projected onto an (un-
normalized) mixed state:

δ0|
|4(K0)2|1H , 1V 〉i〈1H , 1V | + δ1|
|2(K1)2|ψ〉i〈ψ |. (13)

Comparing Eq. (13) to Eq. (11),1 one sees that the vac-
uum component has been replaced by a two-photon term
and the two initial weights, δ0 and δ1, have been modified.
The weight ratio between the single-photon component and
the two-photon one in Eq. (13) is given by |
|−2(K1/K0)2 ×
(δ1/δ0) ≈ 104 × (δ1/δ0) for |
| ≈ 10−2 (note here that K1 ≈
K0 for |
| � 1). This shows amplification of the single-
photon component in the output mixed state with a gain factor
of ≈

√
104 = 102.

1Note the change in the subscript notation from in to i, which
follows our notation use in Fig. 1, i.e., the input state (mode in) is
seeded to mode s and the output certified state is in mode i.
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FIG. 3. (a) Success probability Prec given in Eq. (14), and (b) fi-
delity Frec given in Eq. (15) (both marked by filled circles) as
functions of the vacuum weight δ0 for recovery of a lossy single
photon given in Eq. (11), using our certification scheme. We also
plot the probabilities and the fidelities when using the three existing
certification schemes C j ( j = 1, 2, 3). In (b) the fidelities of the
schemes C1 and C3 are exactly 1. We also plot the fidelity of the lossy
single photon in Eq. (11), which decreases linearly with δ0. Here the
squeezing parameter |
| is chosen to be 0.1.

The success probability and the fidelity for recovery of this
lossy single-photon input are respectively

Prec = δ0|
|4(K0)2 + δ1|
|2(K1)2, (14)

Frec = 1

(δ0/δ1)|
|2(K0/K1)2 + 1
. (15)

The fidelity Frec does not depend on the coefficients of the in-
put single photon |ψ〉in, α and β. This agrees with the fact that
our certification scheme works in the same manner for a single
photon of arbitrary polarization, due to the symmetry between
the horizontal and vertical modes in the type-II squeezing
interaction in Eq. (2). For |
| � 1 and δ1/δ0  O(|
|2), one
finds Frec is very close to 1, indicating that our certification
scheme is capable of recovering almost perfectly a single pho-
ton that was affected by transmission loss. In Fig. 3 we plot
Prec and Frec as functions of the vacuum weight δ0, which is
commensurate with how lossy a quantum channel is. We also
plot the probabilities and the fidelities when using the other
certification schemes C j ( j = 1, 2, 3) to recover a lossy single
photon (we compute and estimate these in Appendix A).

From Fig. 3(a), it is seen that the probability Prec reduces
from 10−2 to near 10−4 when increasing δ0, which is five to six
orders of magnitude higher than that of the scheme C1 and one
to two orders of magnitude lower than those of the schemes
C2 and C3 (here we assume that the required auxiliary quantum
states in C2 and C3 are supplied on demand). This is consistent
with the estimates shown in Table I. In Fig. 3(b), the fidelity
Frec remains above 0.9 for the whole range of δ0, while that
of the scheme C2 decreases relatively quickly to below 0.7.
We note that the schemes C1 and C3 under ideal conditions

restore a lossy single photon perfectly, so the fidelities of these
schemes are exactly 1. In Fig. 3(b), we also plot the fidelity of
the lossy single photon in Fig. (11), which without resorting to
any certification schemes quickly reduces to near zero when
increasing the vacuum weight δ0.

An extended, practical scenario relevant to the above is
when the single photon that undergoes loss in a quantum
channel is entangled with another mode, say, in the form

|�〉in,a = α|1H 〉in|φ〉a + β|1V 〉in|θ〉a, (16)

where |φ〉a and |θ〉a are assumed to be orthogonal to each
other. Transmission loss in the single-photon part, i.e., mode
in, changes the state |�〉in,a into [54]

(δ0|0〉in〈0| + δ1|1H 〉in〈1H |)|α|2|φ〉a〈φ|
+ (δ0|0〉in〈0| + δ1|1V 〉in〈1V |)|β|2|θ〉a〈θ |
+ δ1(αβ∗|1H 〉in〈1V ||φ〉a〈θ | + α∗β|1V 〉in〈1H ||θ〉a〈φ|).

(17)

We apply our certification scheme to the single photon in
mode in; repeating the calculations in Eqs. (12) and (13) we
find that the mixed state in Eq. (17) is transformed to

δ0|
|4(K0)2|1H , 1V 〉i〈1H , 1V |(|α|2|φ〉a〈φ| + |β|2|θ〉a〈θ |)
+ δ1|
|2(K1)2|�〉i,a〈�|. (18)

The fidelity between this mixed state and the initial entangled
state in Eq. (16) is given by Frec in Eq. (15), which as shown
in Fig. 3(b) can be made close to 1 under suitable conditions.
To quantify the degree of quantum entanglement retained
by the output state after entanglement purification, we use
coherent quantum information Ie = S(ρQ′ ) − S(ρRQ′ ) [55,56],
where S(ρ) = −Tr(ρ log2 ρ) denotes the von Neumann en-
tropy of a density matrix ρ and Q′ and R denote the purified
and reference modes [i.e., mode i and mode a in Eq. (18),
respectively]. Considering a maximally entangled input state
|�〉in,a with |α| = |β| = 1/

√
2, we find that Ie = 2Frec − 1.

For Frec close to 1, Ic is also close to 1, which therefore shows
that our certification scheme can distill entanglement after one
of its modes is affected by transmission loss. This will be of
importance for approaching the ultimate end-to-end rates of a
lossy quantum communication network [57].

B. Preparation of NOON states

NOON states, given in the form of a maximally path-
entangled state

|N :: 0〉 = 1√
2

(|N〉|0〉 + |0〉|N〉), (19)

are particularly useful in quantum metrology. They allow for
surpassing the shot-noise limit in estimation of a phase shift
[58] and beating the Rayleigh limit in optical lithography [59].
There exist methods to generate such states but they are posts-
elected, destroying the prepared state [60–62] or consuming
more quantum resources with increasing N [63–66]. Here
harnessing our Fock-state certification scheme we propose to
prepare NOON states in a heralded fashion and for arbitrary
N using the same resources.
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Our preparation scheme starts by considering the following
polarized Schrödinger cat state:

|Catμ〉 = Nμ(|μH 〉 + eiϕ |− μV 〉), (20)

where Nμ = [2(1 + cos(ϕ)e−μ2
)]−1/2 is a normalization fac-

tor and |μH/V 〉 = ∑∞
n=0 dn,μ|nH/V 〉 represents a horizontally

or vertically polarized coherent state of real amplitude μ with
the coefficient dn,μ = e−μ2/2μn/

√
n!. In our previous works

[31,54] we have shown how to generate this cat state via inter-
ference of a conventional Schrödinger cat state and a coherent
state. We reexpress |Catμ〉 explicitly in the Fock-state basis:

|Catμ〉 = Nμ

∞∑
n=0

dn,μ(|nH 〉 + eiϕ (−1)n|nV 〉). (21)

We see that |Catμ〉 is a superposition of the states

|nH 〉 + eiϕ (−1)n|nV 〉,
which under a simple linear-optics transformation can
be brought to NOON states of the form ∝ (|nH/V 〉|0〉 +
eiϕ (−1)n|0〉|nH/V 〉). The decomposition in Eq. (21) thus sug-
gests that we can prepare a NOON state by filtering out the
N-photon component in the state |Catμ〉 via our certification
scheme.

Particularly, we replace the input state |NH 〉 in Fig. 1(c)
with the |Catμ〉 in Eq. (21). Using Eq. (4) we find the corre-
sponding stimulated-PDC output state:

Nμ

∞∑
n,k,l=0

dn,μ

(
ck,l

n,0

∣∣(n + k)H , lV 〉s|lH , kV 〉i

+ eiϕ (−1)nck,l
0,n

∣∣kH , (n + l )V 〉s|lH , kV 〉i
)
. (22)

Within this output, we measure mode s in the state |NH , NV 〉s,
which collapses mode i into the following (un-normalized)
state:

Nμ

N∑
n=0

dn,μ

(
cN−n,N

n,0 |NH , (N − n)V 〉i

+ eiϕ (−1)ncN,N−n
0,n |(N − n)H , NV 〉i

)
. (23)

This state is expectedly close to the “NOON” state (|NH 〉 +
eiϕ (−1)N |NV 〉)/

√
2.

The success probability and the fidelity for this NOON-
state preparation are respectively

PNOON = 2N 2
μ

(
2
∣∣d0,μcN,N

0,0

∣∣2 +
N∑

n=1

∣∣dn,μcN−n,N
n,0

∣∣2

)
, (24)

FNOON =
∣∣dN,μc0,N

N,0

∣∣2

2
∣∣d0,μcN,N

0,0

∣∣2 + ∑N
n=1

∣∣dn,μcN−n,N
n,0

∣∣2 . (25)

In Fig. 4, we plot PNOON and FNOON versus the cat-state am-
plitude μ for N ∈ {2, 3, 4}, given the other parameters chosen
as ϕ = 0 and |
| = 0.1. We observe that PNOON and FNOON

behave differently when increasing μ. The former initially
tends towards an optimal value and then decreases, while
the latter approaches 1. Notably, starting from a moderate
amplitude μ ≈ 1.25, the fidelity FNOON is greater than 0.9 for
all N ∈ {2, 3, 4}, thus implying that our preparation scheme
is capable of generating high-quality NOON states. However,
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FIG. 4. (a) Success probability PNOON given in Eq. (24) and (b)
fidelity FNOON given in Eq. (25), for generation of a NOON state with
N ∈ {2, 3, 4} as functions of the cat-state amplitude μ. Here we have
chosen ϕ = 0 and |
| = 0.1.

the success probability PNOON will likely need to be improved
to realize a high-rate NOON-state generation.

It deserves noting that in the presence of loss NOON
states decohere rapidly and subsequently lose their ability in
achieving super-resolution and supersensitivity [67–69]. To
fight against this loss effect, we apply our Fock-state certifica-
tion scheme to recover lossy NOON states. In Appendix C
we show that our scheme restores, with fidelity as high as
0.9 or even higher, NOON states for N ∈ {2, 3, 4} that had
undergone loss up to a considerable amount.

IV. CONCLUSIONS

We proposed a scheme to certify arbitrary photon Fock
states and their symmetric superposed states without destroy-
ing their quantum states. This is achieved via our use of the
nontrivial correlations in both photon number and polarization
of the downconverted photons in stimulated type-II PDC. We
showed that our scheme is superior to the existing ones in
terms of resource consumption, hardware complexity, success
probability, and applicability. In particular, our scheme can
be realized using one type-II second-order nonlinear crystal
and efficient photodetectors, which are common devices in
quantum-optics experiments. The success probability of our
scheme could be much higher or comparable to those of the
existing ones. Furthermore, our scheme finds applications not
only in fighting against transmission loss of single photons in
lossy quantum channels but also in preparation of multiphoton
NOON states. A realistic implementation of our scheme is
therefore of high interest in quantum communication as well
as quantum metrology.

A subsequent study that follows up the present paper
will be consideration of applying our certification scheme
to specific quantum tasks such as quantum key distribution
[17,70] and tests of Bell inequalities [15,16]. Investigation of
our NOON-state preparation scheme in a practical situation
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FIG. 5. Certification of a single photon using spontaneous PDC.
The input photon |ψ〉in given in Eq. (1) sent to a nonlinear crystal,
where polarization-preserving parametric downconversion occurs, is
probabilistically downconverted into a pair of photons in modes 1
and 2. The photon in mode 1 is measured in the diagonal basis using
a quarter-wave plate (QWP), which certifies the photon in mode 2
that now carries the quantum state of the input photon. The scheme
requires a phase feedforward correction (φ) on mode 2.

when using an approximate resource as the input polarized
Schrödinger cat state [54] is also of interest.
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APPENDIX A: EXISTING SCHEMES FOR
CERTIFICATION OF A SINGLE PHOTON

1. Using spontaneous PDC

The schematic setup of the single-photon certification
scheme using spontaneous PDC [15,16] is shown in Fig. 5.
The input photon |ψ〉in = α|H〉in + β|V 〉in is sent to a waveg-
uide nonlinear crystal arranged in such a way that the
interaction is of the form

Ĥ = ih̄χ (âin,H â†
1,H â†

2,H + âin,V â†
1,V â†

2,V ) + H.c., (A1)

where χ determines the nonlinearity strength. This Hamilto-
nian describes a process that annihilates a single photon in
mode in with polarization p ∈ {H,V } while it creates two
photons in modes 1 and 2 of the same polarization. We note
that when the input field is not a single photon but a strong
coherent state and thus can be treated classically, the interac-
tion in Eq. (A1) reduces to Ĥ ∝ (â†

1,H â†
2,H + â†

1,V â†
2,V ) + . . . ,

which is similar to the Hamiltonian in Eq. (2).
The time evolution of this interaction, exp (−iĤτ/h̄),

applying to the initial total input (α|1H , 0V 〉in +
β|0H , 1V 〉in)|0H , 0V 〉1|0H , 0V 〉2 yields the output

|�〉in12 = cos(g)(α|H〉in + β|V 〉in)|0〉1|0〉2

+ sin(g)|0〉in(α|H〉1|H〉2 + β|V 〉1|V 〉2), (A2)

where g = χτ � 1 is the nonlinear gain. Mode 1 is measured
in the diagonal basis, (|H〉1 ± |V 〉1)/

√
2. This projects mode

2 onto the state α|H〉2 ± β|V 〉2, which is unitarily identical
to the initial state |ψ〉in. The total success probability of this

scheme is

PC1 = [sin(g)]2, (A3)

which is approximate to g2 for g � 1. g as observed in
Refs. [16,71] is of order 10−4, so PC1 ≈ 10−8.

When the input |ψ〉in is a vacuum state, the output in modes
1 and 2 in Eq. 5 will be strictly vacuum and no photons will
be detected in path 1. However, this detection event can also
happen in the output in Eq. (A2) when |ψ〉in is a single photon.
Therefore, there is no distinct photon detection pattern for the
case of a vacuum input state; in other words, the scheme of
concern cannot certify a vacuum state.

Recovery of a lossy input photon

We make use of this certification scheme to reduce the
effect of transmission loss on a single photon transmitted
through a lossy quantum channel as considered in Sec. III A.
Given the lossy input photon in Eq. (11), we repeat the above
calculations and obtain the spontaneous-PDC output

δ0|0, 0, 0〉in12〈0, 0, 0| + δ1|�〉in12〈�|, (A4)

where |�〉in12 is given in Eq. (A2). We also reiterate measure-
ment on mode 1 in the diagonal basis, which again projects
mode 2 into α|H〉2 ± β|V 〉2. Therefore, in this lossy scenario
the certification scheme of interest works the same as before
but with a reduced success probability given by

PC1,rec = δ1[sin(g)]2. (A5)

The fidelity between the final state in mode 2 and the initial
input photon |ψ〉in is 1, i.e., FC1,rec = 1.

2. Using single-rail quantum teleportation

The schematic setup of the single-photon certification
scheme using single-rail quantum teleportation [17,18] is
shown in Fig. 6. To analyze its working mechanism, we first
recall the process of teleporting a single-rail qubit α|1〉in +
β|0〉in to one mode, say, mode 2, of a single-rail entangled
quantum channel c|1〉1|0〉2 + d|0〉1|1〉2, where |c|2 + |d|2 =
1. A Bell measurement is performed on modes in and 1 by
interfering their photons on a balanced beam splitter (BBS),
that produces the output state

αc√
2

(|2〉3 − |2〉4)|0〉2 + αd√
2

(|1〉3 + |1〉4)|1〉2

+ βc√
2

(|1〉3 − |1〉4)|0〉2 + βd|0〉3|0〉4|1〉2. (A6)

Detection of one photon in mode 3 projects mode 2 onto an
un-normalized outcome state αd|1〉2 + βc|0〉2, while that in
mode 4 projects mode 2 onto αd|1〉2 − βc|0〉2. This can be
described by a map

α|1〉in + β|0〉in
c|1〉1|0〉2+d|0〉1|1〉2−−−−−−−−−−→ αd|1〉2 ± βc|0〉2, (A7)

where we have marked the subscripts of the teleported and
target modes in red. One remarkable finding from this map is
that assuming tunable c and d one can adjust these parameters
such that |αd|  |βc|, thus suppressing the vacuum compo-
nent while amplifying the single-photon one in the final state
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FIG. 6. Certification of a single photon using quantum telepor-
tation of single-rail qubits. The input photon |ψ〉in in Eq. (1) is
teleported to mode 2 of auxiliary single-rail entanglements created
by sending two photons |1H , 1V 〉 through a BS with transmittance t .
Two single-rail Bell measurements performed on the input mode and
mode 1 result in different detection patterns on photons in modes 3
and 4. Depending on these, the certified output state requires a phase
feedforward correction (φ).

αd|1〉2 ± βc|0〉2. By doing this, we have performed noiseless
single-photon amplification [72].

Another insight from Eq. (A7) is that tuning c and d
such that |αd| � |βc| will suppress the single-photon com-
ponent in mode 2 and therefore effectively certify a vacuum
input state.

We also note that the teleportation map in Eq. (A7)
remains basically unchanged when mode in is entangled
with some other modes. That is, if the input state is
α|1〉in|�1〉 + β|0〉in|�0〉, the (un-normalized) final state will
be αd|1〉2|�1〉 ± βc|0〉c|�0〉 corresponding to detection of
one photon in mode 3 or 4. We describe this by a map:

α|1〉in|�1〉 + β|0〉in|�0〉
c|1〉1|0〉2+d|0〉1|1〉2−−−−−−−−−−→ αd|1〉2|�1〉 ± βc|0〉2|�0〉. (A8)

We are now ready to explain the certification scheme in
Refs. [17,18]. We first rewrite the dual-rail input photon as
|ψ〉in = α|1H 〉in|0V 〉in + β|0H 〉in|1V 〉in. We also send two aux-
iliary photons |1H , 1V 〉a through a BS with a transmittance t
to create two separate single-rail entanglements:

(
√

1 − t |1H 〉1|0H 〉2 + √
t |0H 〉1|1H 〉2)

⊗ (
√

1 − t |1V 〉1|0V 〉2 + √
t |0V 〉1|1V 〉2). (A9)

Using the horizontal part in Eq. (A9) as a quantum channel,
we teleport the horizontal part of |ψ〉in to mode 2. Following
the map in Eq. (A8), we find

α|1H 〉in|0V 〉in + β|0H 〉in|1V 〉in
√

1−t |1H 〉1|0H 〉2+
√

t |0H 〉1|1H 〉2−−−−−−−−−−−−−−−−→
×α

√
t |1H 〉2|0V 〉in ± β

√
1 − t |0H 〉2|1V 〉in. (A10)

We next teleport the vertical part of this output state using the
vertical single-rail entanglement in Eq. (A9):

α
√

t |1H 〉2|0V 〉in ± β
√

1 − t |0H 〉2|1V 〉in
√

1−t |1V 〉1|0V 〉2+
√

t |0V 〉1|1V 〉2−−−−−−−−−−−−−−−−→
± α

√
t (1 − t )|1H 〉2|0V 〉2 ± β

√
t (1 − t )|0H 〉2|1V 〉2.

(A11)

This final state is unitarily equivalent to |ψ〉in.
The total success probability of this scheme is

PC2 = t (1 − t ) × Psingle photons, (A12)

where Psingle photons represents the probability for generat-
ing the two auxiliary single photons. For a deterministic
single-photon source such as a semiconductor quantum-dot
emitter [73], Psingle photons = 1 so PC2 ≈ 10−1. For a probabilis-
tic single-photon source such as a spontaneous PDC crystal
[33,34], Psingle photons ≈ 10−3 so PC2 ≈ 10−4.

Recovery of a lossy input photon

We make use of this certification scheme to reduce the
effect of transmission loss on a single photon transmitted
through a lossy quantum channel as considered in Sec. III A.
Given the lossy input photon in Eq. (11), we repeat the
above calculations and obtain the final mixed state after a
successful detection and a corresponding phase feedforward
correction [17]:

1
4δ0(1 − t )2|0〉2〈0| + 1

4δ1t (1 − t )|ψ〉2〈ψ |. (A13)

The success probability for this to happen and the fidelity
between the final mixed state and initial pure state are

PC2,rec = δ0(1 − t )2 + δ1t (1 − t ), (A14)

FC2,rec = δ1t

δ0(1 − t ) + δ1t
, (A15)

where we assume Psingle photons = 1. For t → 1, we find FC2,rec

approaches 1 but PC2,rec tends to zero.

3. Using dual-rail quantum teleportation

The schematic setup of the single-photon certification
scheme using dual-rail quantum teleportation [19,20] is
shown in Fig. 7. In particular, we perform a Bell measurement
on mode in and mode 1 of the Bell pair |�+〉12 = (|H〉1|V 〉2 +
|V 〉1|H〉2)/

√
2 by interfering their photons on a BBS and

performing photon detection afterwards. Mathematically, we
have

|ψ〉in|�+〉12
BBSin,1−−−→ α√

2
(|2H 〉3|0〉4 − |0〉3|2H 〉4)|V 〉2

+ α

2
(|H〉3 + |H〉4)(|V 〉3 − |V 〉4)|H〉2

+ β√
2

(|2V 〉3|0〉4 − |0〉3|2V 〉4)|V 〉2

+ β

2
(|V 〉3 + |V 〉4)(|H〉3 − |H〉4)|H〉2.

(A16)
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FIG. 7. Certification of a single photon using quantum telepor-
tation of a dual-rail qubit. The input photon |ψ〉in in Eq. (1) is
teleported to mode 2 of an auxiliary dual-rail Bell pair, |�+〉12 =
(|H〉1|V 〉2 + |V 〉1|H〉2)/

√
2. A dual-rail Bell measurement per-

formed on the input mode and mode 1 results in different detection
patterns on photons in modes 3 and 4. Depending on these, the
certified output state requires a phase feedforward correction (φ).

Photon detections of modes 3 and 4 in the state |H〉3|V 〉3

or |H〉4|V 〉4 will project mode 2 onto α|H〉2 + β|H〉2, while
those being |H〉3|V 〉4 and |V 〉3|H〉4 will project mode 2 onto
α|H〉2 − β|V 〉2. The latter final state needs a phase-flip cor-
rection.

The total success probability of this scheme

PC3 = 1/2 × PBell pair, (A17)

where PBell pair represents the probability of generating the
auxiliary Bell pair. For an on-demand Bell-pair source such as
a semiconductor quantum-dot emitter [74–76], PBell pair can be
close to 1 so PC3 ≈ 10−1. For a probabilistic Bell-pair source
such as a spontaneous PDC crystal [33,34], PBell pair ≈ 10−3 so
PC3 ≈ 10−4.

We note that mode 2 in Eq. 7 will always be in a pure or
mixed single-photon state, no matter what the state |ψ〉in is,
so the scheme of interest is not applicable to certification of a
vacuum state.

Recovery of a lossy input photon

We make use of this certification scheme to reduce the
effect of transmission loss on a single photon transmitted
through a lossy quantum channel as considered in Sec. III A.
Given the lossy input photon in Eq. (11), we repeat the above
calculations and obtain the final mixed state after a successful
detection and a corresponding feedforward correction:

1
4δ1|ψ〉2〈ψ |, (A18)

which after normalization is exactly the same as the initial
pure photon. This is because the Bell measurement outcomes
have erased the possibility of mode in being in vacuum. The
success probability for this to happen and the fidelity between
the final mixed state and initial pure state are

PC3,rec = 1/2 × δ1, (A19)

FC3,rec = 1, (A20)

where we assume PBell pair = 1.

APPENDIX B: INEFFICIENT PHOTODETECTORS

.We introduce the mathematical model for detection of n
photons on mode a with a quantum efficiency η as a positive
operator-valued measure (POVM) operator [29,54]:

Ê (n)
η,a =

∞∑
k=0

Ck
n+kη

n(1 − η)k|n + k〉a〈n + k|. (B1)

For η = 1, Ê (n)
η=1,a = |n〉a〈n|, describing an ideal projective

measurement operator; for η → 0 and n �= 0, Ê (n)
η→0,a → 0,

implying a complete failure of gaining any measurement in-
formation. A PNR detector with an efficiency η and capability
of resolving photon numbers up to a number M is represented
by a POVM with (M + 2) elements as

PNR detector resolving
up to M photons =

{
Ê ( j)

η,a for j = 0, 1, . . . , M

Ê (>M )
η,a = 1 − ∑M

j=0 Ê ( j)
η,a

.

(B2)
An on-off detector with an efficiency η is a specific case of this
PNR detector with M = 0 and thus its corresponding POVM
has two elements:

on-off detector =
{

Ê (off )
η,a = Ê (0)

η,a

Ê (on)
η,a = 1 − Ê (0)

η,a
. (B3)

The measurement that represents detection of |NH , NV 〉s in
mode s as in Fig. 1(c) using nonideal PNR or on-off detectors
is respectively given by

�̂(PNR)
η,s = Ê (N )

η,s,H ⊗ Ê (N )
η,s,V , (B4)

�̂(on-off)
η,s = Ê (on)

η,s,H ⊗ Ê (on)
η,s,V , (B5)

where we have added the subscripts H and V to specify photon
polarization. The success probability P(PNR)

cer and the fidelity
F (PNR)

cer of our proposed certification scheme when using PNR
detectors are computed by

P(PNR)
cer = si〈φN,n|�̂(PNR)

η,s |φN,n〉si, (B6)

F (PNR)
cer = i〈ψN,n|ρ̂ (PNR)

i |ψN,n〉i, (B7)

where |ψN,n〉 is given in Eq. (8), |φN,n〉 is the stimulated-PDC
output in Eq. (9), and

ρ̂
(PNR)
i = Trs

[
�̂(PNR)

η,s |φN,n〉si〈φN,n|
]

P(PNR)
cer

(B8)

is the reduced density operator of mode i. Similar definitions
hold for P(on-off)

cer , F (on-off)
cer , and ρ̂

(on-off)
i .

In Fig. 8 we compute P(PNR)
cer , F (PNR)

cer , P(on-off)
cer , and F (on-off)

cer
as functions of the detector efficiency η for N = 2 and 3.
We find that P(on-off)

cer is much higher than P(PNR)
cer , which is

understandable as on-off detectors cannot distinguish between
the target detection event and the other, false ones. This
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FIG. 8. (a) Success probability and (b) fidelity between the certi-
fied output state and the input state of our scheme when certifying a
two-photon Fock state (N = 2) as functions of the detector efficiency
η. We consider using both PNR (marked by filled triangles) and
on-off (marked by filled circles) detectors. (c), (d) Same as (a) and
(b) but for a three-photon Fock state (N = 3). Here the squeezing
parameter |
| is chosen to be 0.05.

subsequently renders F (on-off)
cer irrelevant, being almost com-

pletely zero. By contrast, F (PNR)
cer is very close to unit for the

whole range of η ∈ [0.6, 1]. These highlight the essential role
of PNR detectors over on-off ones in our scheme of certifying
a multiphoton Fock state.

FIG. 9. (a) Success probability and (b) fidelity between the certi-
fied output state and the input state of our scheme when certifying
a two-photon Fock state (N = 2) as functions of the detector ef-
ficiency η for different values of the squeezing parameters |
| ∈
{0.05, 0.1, 0.15, 0.2}. We here consider using only PNR detectors. (c,
d) Same as (a) and (b) but for a three-photon Fock state (N = 3). We
note that in the limit η → 0 and for |
| < 1 the probability goes to
zero, while the certification fidelity reduces to a finite nonzero value.
In (a) and (b) the probabilities are arranged from bottom to top as
increasing |
| from 0.05 to 0.2, while in (c) and (d) the fidelities are
arranged from top to bottom.

FIG. 10. (a) Due to the equivalence between path DOF and
polarization DOF, the model of identical losses in both paths of
a NOON state (|N〉1|0〉1′ + |0〉1|N〉1′ )/

√
2 [68,69] is the same as

loss in a single-mode Fock-state superposition (|NH 〉1 + |NV 〉1)/
√

2.
Here loss is modeled by a BS with reflectance r. Application of
our Fock-state certification scheme can recover a lossy single-mode
Fock-state superposition. (b) Fidelity FNOON,rec given in Eq. (C8), as
a function of the reflectance r for N ∈ {2, 3, 4} when recovering a
lossy single-mode Fock-state superposition as in (a).

In Fig. 9 we show P(PNR)
cer and F (PNR)

cer versus η ∈
[0, 1] for different values of the squeezing parameter |
| ∈
{0.05, 0.1, 0.15, 0.2}. For |
| = 0.05 � 1, we observe that
the certification fidelity stays close to 1 for all η. This is due to
the fact that in such limit high-photon-number terms in mode
s of the stimulated-PDC output are almost negligible com-
pared to the desire detection term |NH , NV 〉s. False-detection
probability resulting from inefficiency of PNR photodetectors
is subsequently very small, making the certification fidelity
very high. Therefore, realistically imperfect PNR detectors
are sufficient for a high-quality multiphoton certification using
our scheme. When increasing |
| to 0.2, the success proba-
bility is improved but the certification fidelity becomes worse.
This is because a stronger squeezing enhances the populations
of higher-order multiphoton terms, which subsequently con-
tribute more to false positives or dark counts that degrade the
certification fidelity of our scheme.

APPENDIX C: RECOVERY OF A LOSSY NOON STATE

Consider a NOON state (|N〉1|0〉1′ + |0〉1|N〉1′ )/
√

2 that
is about to experience loss in both paths 1 and 1′ (here we
assume that losses in the two paths are identical). Because
of the equivalence between path and polarization DOFs, this
is the same as a polarized Fock-state superposition (|NH 〉1 +
|NV 〉1)/

√
2 in mode 1 being sent through a single lossy quan-

tum channel.
We model the effect of loss by a BS [67] with reflectance r

(and transmittance t = 1 − r), as demonstrated in Fig. 10(a).
The larger r is, the more lossy the quantum channel is. This
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transforms the single-mode Fock-state superposition state to

1√
2

(|NH 〉1 + |NV 〉1) = 1√
2

(
(â†

1,H )N

√
N!

+ (â†
1,V )N

√
N!

)
|0〉

BS(r)−−−→ 1√
2

[
(
√

ta†
1,H + √

ra†
2,H )N

√
N!

+ (
√

ta†
1,V + √

ra†
2,V )N

√
N!

]
|0〉.

We express the right-hand side of the above equation explic-
itly in Fock-state representation:

N∑
n=0

fn,r[|nH 〉1|(N − n)H 〉2 + |nV 〉1|(N − n)V 〉2], (C1)

where

fn,r = Cn
N√

2(N!)
[n!(N − n)!]1/2t n/2r (N−n)/2. (C2)

This, after tracing out mode 2, results in mode 1 being in an
un-normalized mixed state:

2| f0,r |2|0〉1〈0| +
N−1∑
n=1

| fn,r |2(|nH 〉1〈nH | + |nV 〉1〈nV |)

+ | fN,r |2(|NH 〉 + |NV 〉)1(〈NH | + 〈NV |). (C3)

We then perform our N-photon Fock-state certification on
mode 1. Namely, we take the mixed state in Eq. (C3) as the
seed to mode s in the setup of Fig. 1(c). The corresponding
stimulated-PDC output reads

2| f0,r |2|�0,0〉si〈�0,0| +
N−1∑
n=1

| fn,r |2
(|�n,0〉si〈�n,0|

+ |�0,n〉si〈�0,n|
) + | fN,r|2|�NOON〉si〈�NOON|, (C4)

where

|�m,n〉si = Ŝsi|mH , nV 〉s|0〉i

=
∞∑

k,l=0

ck,l
m,n|(m + k)H ,(n + l )V 〉s|lH ,kV 〉i,

(C5)

|�NOON〉si = Ŝsi(|NH 〉 + |NV 〉)s|0〉i

=
∞∑

k,l=0

(
ck,l

0,N |(N + k)H ,lV 〉s|lH ,kV 〉i

+ ck,l
N,0|kH ,(N + l )V 〉s|lH ,kV 〉i

)
.

(C6)

Within the mixed state in Eq. (C4), we postselect mode s in the
state |NH , NV 〉s, which collapses in mode i onto the following
(un-normalized) output:

2
∣∣ f0,rcN,N

0,0

∣∣2|NH , NV 〉i〈NH , NV |

+
N−1∑
n=1

∣∣ fn,rcN−n,N
n,0

∣∣2(|NH , (N − n)V 〉i〈NH , (N − n)V |

+ |(N − n)H , NV 〉i〈(N − n)H , NV |)
+ ∣∣ fN,rc0,N

N,0

∣∣2
(|NH 〉 + |NV 〉)i(〈NH | + 〈NV |). (C7)

The fidelity between the mixed state in Eq. (C7) and the
initial Fock-state superposition is given by

FNOON,rec =
∣∣ fN,rc0,N

N,0

∣∣2

∣∣ fN,rc0,N
N,0

∣∣2 + ∑N−1
n=0

∣∣ fn,rcN−n,N
n,0

∣∣2 . (C8)

In Fig. 10(b) we plot the fidelity FNOON,rec as a function of
the reflectance r. For r � 0.4 we find that FNOON,rec is close
to 0.9 or higher for all N ∈ {2, 3, 4}. This demonstrates that
our Fock-state certification scheme is suitable for restoring a
lossy NOON state with high fidelity.
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