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We study phase transition properties of the two-dimensional q-state clock model by an extensive Monte Carlo
simulation. By analyzing the Binder ratio and its temperature derivative, we confirm that the two-dimensional
q-state clock model exhibits two distinct Kosterlitz-Thouless phase transitions for q = 5, 6 but it has one second-
order phase transition for q = 4. The critical temperatures are estimated quite accurately from the crossing
behavior of the Binder ratio (for q < 5) and from negative divergent dips of the derivative of the Binder ratio
(for q � 5) around these critical points. We also calculate the correlation length, the helicity modulus, and the
derivative of the helicity modulus, and analyze their behaviors in different phases in detail.
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I. INTRODUCTION

The two-dimensional (2D) q-state clock model has been
studied extensively in phase transition phenomena for years
[1–9]. It is a generalization of the 2D Ising model for q = 2,
but it approaches the 2D XY model in the limit q → ∞. The
2D Ising model exhibits a second-order phase transition be-
tween the long-range ordered phase and the disordered phase.
For the 2D XY model, in early days it was indicated that there
is no sign of a phase transition [10]. But then it was proved to
have the Kosterlitz-Thouless (KT) phase transition between
the quasi-long-range ordered phase and the disordered phase
[11]. The KT phase transition is one of the most important
concepts in statistical physics. The KT phase transition is
observed in many 2D systems, such as a planar array of
coupled Josephson junctions in a transverse magnetic field
[12], a liquid crystal [13], and a 2D Coulomb crystal [14].
Interestingly, this type of phase transition also appears in the
2D q-state clock model, depending on the number of single
spin states q.

It was theoretically predicted [1] and later confirmed by
several numerical works [2–4] that the 2D q-state clock model
has only one second-order phase transition at Tc for q < 5 and
two distinct KT phase transitions at finite critical tempera-
tures T1 and T2 (T2 > T1) for q � 5. The intermediate phase
between these critical temperatures is a quasi-long-range or-
dered phase like that of the 2D XY model. The phase above T2

is a disordered phase, and the phase below T1 is a long-range
ordered phase [2].

Recently, Monte Carlo simulation studies of phase tran-
sitions in the 2D q-state clock model have mainly tried to
clarify qc, the critical value of the boundary between the KT
transition type (for q � qc) and the non-KT transition type
(for q < qc). From the behavior of the helicity modulus and
the fourth-order helicity modulus, Lapilli et al. [15] claimed

that the KT transitions occur only for q � 8. Based on the
helicity modulus and its temperature derivative, Baek et al. [6]
concluded that the transitions are KT type for q � 6. However,
more recent studies [8,9,16] are in favor of the previous sce-
nario where qc = 5. Kumano et al. [8] and Chatelain et al. [16]
demonstrated that the 2D five-state clock model exhibits two
KT phase transitions via the behavior of the discrete helicity
modulus. Surungan et al. [9] approached in a different way:
they calculated correlation lengths for both the 2D q-state
clock model and the Villain model. By comparing the be-
havior of correlation lengths of these two models, they also
argued about having two KT transitions for q = 5. The phase
transition type of the model in case of q = 5 is controversial
because its different physical quantities lead to different re-
sults of qc. For q = 5, while the helicity modulus shows the
behavior of non-KT phase transitions [6], the discrete helicity
modulus [8] and the correlation length [9] show the behavior
of KT phase transitions, but it seem to be unclear because of
the narrow intermediate phase.

In order to clarify further the type of phase transitions in
the 2D q-state clock model, we perform an extensive Monte
Carlo simulation but focus on q = 4, 5, and 6. We calculate
several independent physical quantities including the Binder
ratio, the derivative of the Binder ratio, the correlation length
ratio, the helicity modulus, and the derivative of the helicity
modulus.

II. MODEL AND METHODS

The q-state clock model in a square lattice is defined by the
Hamiltonian

H = −J
∑
〈i j〉

cos(θi − θ j ), (1)
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where θi and θ j are the angles of spins with respect to the
x axis at sites i and j, respectively. θi = 2πσi/q and θ j =
2πσ j/q with σi, σ j ∈ 0, 1, . . . , q − 1. The coupling J is the
interaction strength, considered as the basic energy scale and
set to 1 throughout this work. Each spin interacts with all of
its nearest neighbor spins.

For q = 2, the model becomes the 2D Ising model (spin
has two possible values); for q = ∞, the model becomes
the 2D XY model (infinity of possible values). In this work,
we focus on the cases q = 4, q = 5 and q = 6 only. The
simulation is taken on a square lattice of size L with the
total site number N = L2. The value L is chosen from 16 to
256, and we include additional values L = 512, 1024 for the
q = 5 case. Here we use periodic boundary conditions for
this lattice in both directions.

We carry out an equilibrium Monte Carlo (MC) simulation
by using a combination of the Metropolis algorithm (single
spin flip) and the Wolff algorithm (cluster spin flip). Our unit
MC step includes one Metropolis sweep and one Wolff sweep.
The Monte Carlo simulation parameters for each case are
shown in Table I, where L is the system size, Nr is the number
of independent runs, NMC is the total number of MC steps,
and NT is the number of temperature points. The first half of
total MC simulation steps is discarded and the second half is
used to measure physical quantities. An equality of specific
heat capacities computed by the energy fluctuation and via
the temperature difference of the energy is checked to identify
the thermal equilibrium condition. After reaching the equilib-
rium in the system, we measure several physical quantities,
including the helicity modulus, the temperature derivative of
the helicity modulus, the correlation length ratio, the Binder
ratio, and the temperature derivative of the Binder ratio.

The helicity modulus and its temperature derivative are
defined by [6]

ϒ = 〈e〉 − L2

T
〈s2〉, (2)

dϒ

dT
= 1

T 2

[
〈eH〉−〈e〉〈H〉+L2〈s2〉− L2

T
(〈s2H〉−〈s2〉〈H〉)

]
,

(3)

where e = 1/L2 ∑
〈i j〉x

cos (θi − θ j ), s = 1/L2 ∑
〈i j〉x

sin
(θi − θ j ), the sum is taken over all links in one direction, and
〈· · · 〉 stands for the thermal average.

The second-moment correlation length is defined as
[17–19]

ξ = 1

2 sin(km/2)

√
〈m(�0)2〉
〈m( �km)2〉 − 1, (4)

where km = 2π/L and �km = (km, 0). The k-dependent magne-
tization is expressed as

m(�k)2 =
∑

μ=x,y

∣∣∣∣∣ 1

N

N∑
i=1

Siμ exp(i�k.�r)

∣∣∣∣∣
2

. (5)

The projections of the spin at site i on the x axis and the
y axis are Six = cos θi and Siy = sin θi, respectively. For a
second-order phase transition, ξ/L of different sizes L ap-
proximately cross at the critical temperature [17,20]. For a KT

TABLE I. Various parameters of our Monte Carlo simulations. L
is the system size, Nr is the number of independent runs, NMC is the
total number of MC steps, and NT is the total number of temperature
points.

L Nr NMC NT

q = 4 16 5 2.106 39
32 5 2.106 39
64 5 2.106 39
128 5 2.106 39
256 5 3.106 25

q = 5 16 5 2.106 75
32 5 2.106 75
64 5 2.106 75
128 5 2.106 75
256 5 3.106 60
512 5 4.106 26
1024 5 4.106 23

q = 6 16 5 2.106 77
32 5 2.106 77
64 5 2.106 77
128 5 2.106 77
256 5 3.106 74

phase transition, ξ/L of different sizes L merge at the critical
point [17,21,22]. The Binder ratio is another suitable quantity
to verify a phase transition [17,21,23,24]:

g = 2 − 〈m4〉
〈m2〉2

, (6)

where m2 = m(�0)2 and m4 = m(�0)4. For the 2D Ising model,
the Binder ratio shows a crossing behavior at the second-order
phase transition, which is quite similar to ξ/L. For the 2D XY
model, the Binder ratio shows a merging behavior at the KT
phase transition as well as ξ/L [17]. Based on the relation
∂g(L′)/∂g(L)|T =Tc = (L′/L)1/ν [25,26], one can obtain the
critical exponent ν, where 1/ν is nonzero for a second-order
phase transition and zero for a KT phase transition. It indicates
that estimating critical temperatures is easy in second-order
phase transitions but difficult in KT phase transitions. Simi-
larly to dϒ/dT , we also use dg/dT to estimate critical points
[15]:

dg

dT
= 1

T 2

(
−〈m4H〉

〈m2〉2
+ 2〈m4〉〈m2H〉

〈m2〉3
− 〈m4〉〈H〉

〈m2〉2

)
. (7)

The temperature derivative of the Binder ratio diverges at
the critical temperature as L → ∞.

III. SIMULATED RESULTS

In this section, we present our numerical results of several
physical quantities including the Binder ratio and its temper-
ature derivative, the correlation length ratio, and the helicity
modulus and its temperature derivative.

For convenience of notation, let Tc denote the critical
temperature of the unique phase transition for q < 5. For
q � 5, these exist two phase transitions. The lower critical
temperature (between the long-range ordered phase and the

034138-2



BINDER RATIO IN THE TWO-DIMENSIONAL q-STATE … PHYSICAL REVIEW E 106, 034138 (2022)

quasi-long-range ordered phase) is denoted as T1, while the
higher critical temperature (between the quasi-long-range or-
dered phase and the disordered phase) is denoted as T2. These
critical temperatures (Tc, T1, and T2) will be estimated by the
Binder ratio and its temperature derivative.

Figure 1 shows the Binder ratio g versus temperature for
q = 4, 5, 6. For q = 4 [see Fig. 1(a)], g curves of different
system sizes L cross nearly at the critical point, this is the
behavior of a second-order phase transition. In order to extrap-
olate the critical temperature Tc in the thermodynamic limit
L → ∞, we estimate the crossing temperature Tc(L) between
g(L) and g(L/2). Then, the critical temperature Tc = 1.135 is
obtained by fitting Tc(L) in the following form:

Tc(L) = Tc + bL−1/ν . (8)

For q = 5, 6 [see Figs. 1(b) and 1(c)], g(T ) curves of differ-
ent L increase upward to 1 in the low-temperature region, and
decrease downward to 0 in the high-temperature region. These
are behaviors of the low-temperature ordered phase and the
high-temperature disordered phase, respectively. Moreover,
in the intermediate-temperature region between two phase
transitions at T1 and T2, g(L) curves tend to merge to finite
values less than 1 for large system sizes [L = 256, 512, 1024
for q = 5 in Fig. 1(b) and L = 64, 128, 256 for q = 6 in
Fig. 1(c)]. This behavior of the Binder ratio resembles that
of other models, such as the 2D TIAFF model with a KT
phase between a ferromagnetic phase and a paramagnetic
phase [27], and the 2D dimer model with a KT phase be-
tween a long-range ordered phase and a disordered phase
[28]. In order to see more clearly the merging characteristic
of g for q = 5, we plot the g(L) versus L at several tem-
peratures ranging from 0.88 to 0.965 in the lower inset of
Fig. 1(b). With increasing L, g(L) increases monotonically up
to 1 (characteristic of an ordered phase) for low temperatures
T = 0.88, 0.89, decreases monotonically down to 0 (charac-
teristic of an disordered phase) for high temperatures T =
0.955, 0.965, and is almost flat for intermediate temperatures
T = 0.915, 0.920, 0.930, 0.945. It means that g(L′) tends to
be equal to g(L) for lattice size large enough at interme-
diate temperatures. Therefore, ∂g(L′)/∂g(L) = (L′/L)1/ν ≈ 1
for any temperature in range [0.915,0.945]. This implies that
ν = ∞ for any 0.915 < T < 0.945, and consequently, the
correlation length is exponentially divergent. This is a sig-
nal of the existence of a KT phase between T = 0.915 and
T = 0.945. It means that the phase transition at T2 is KT type
between the disordered phase (g = 0) and the KT phase, while
the phase transition at T1 is also KT type between the KT
phase and the ferromagnetic phase (g → 1).

It is difficult to estimate exactly the critical temperatures
T1 and T2 from the Binder ratio in Fig. 1(b) for q = 5
and Fig. 1(c) for q = 6 due to ill-defined boundaries of the
merging interval in the intermediate KT phase, i.e., the quasi-
long-range ordered phase. Furthermore, Baek et al. discussed
that the Binder ratio cannot be used to determine the critical
temperature T1 between the long-range ordered phase and the
quasi-long-range ordered phase in a generalized 2D q-state
clock model [29]. They explained that this is due to the spin
vectors of the long-range ordered phase and the quasi-long-
range ordered phase which differ from each other only in
the angular component. Then, Borisenko et al. proposed a
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FIG. 1. Temperature dependence of the Binder ratio g for
three cases: q = 4 (a), q = 5 (b), and q = 6 (c). Enlarged plots
show the crossing behavior of g(L) curves for q = 4 [the in-
set of (a)] and represent the merging behavior of g(L) for q =
5, 6 [the upper inset of (b) and the inset of (c)]. In order to
show the merging characteristic of g(L) for q = 5 clearly, we
plot g(L) versus L in the lower inset (b) for several tempera-
tures T = 0.88, 0.89, 0.915, 0.930, 0.940, 0.945, 0.955, 0.965 from
top to bottom.

modified Binder ratio based on the angular magnetization
to estimate the critical temperature T1 of the five-state clock
model [24]. However, we show here that the conventional
Binder ratio is still capable of defining both the KT phase
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FIG. 2. The temperature derivative of the Binder ratio dg/dT
versus temperature for three cases: q = 4 (a), q = 5 (b), and q = 6
(c). Enlarged plots for q = 5 and q = 6 present a negative divergent
dip around T1.

transitions, not only between the disordered phase and the
quasi-long-range ordered phase but also between the long-
range ordered phase and the quasi-long-range ordered phase.
Hence, we make an effort to estimate the critical temperatures
precisely by using the temperature derivative of the Binder
ratio dg/dT .

Figure 2 illustrates the temperature dependence of the
derivative of the Binder ratio for q = 4, 5, 6. For q = 4,
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FIG. 3. The dip temperatures of dg/dT with their error bars as
a function of 1/L for q = 4 (a), q = 5 (b), and q = 6 (c). Tc(L) of
q = 4 fits well by a linear function of 1/L in the inset (a). TKT (L)
as a function of l−2 with l = ln bL for q = 5 in the inset (b) and for
q = 6 in the inset (c).

dg/dT has a negative divergent dip at nearly Tc [see Fig. 2(a)].
The dip temperature Tc(L) gradually shifts toward Tc as L →
∞. Tc(L) is a linear function of 1/L in Fig. 3(a), hence it
supports that the phase transition in the case q = 4 is second
order.

For q = 5 and q = 6, there appear two negative divergent
dips of dg/dT : a small one near T1 and a large one near T2 [see
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FIG. 4. The phase diagram of the 2D q-state clock model.

Figs. 2(b) and 2(c)]. As L → ∞, both small dip temperature
T1(L) and large dip temperature T2(L) gradually shift toward
their respective critical temperatures T1 and T2. The size de-
pendences of T1(L) and T2(L) for q = 5, 6 are non-linear in
Figs. 3(b) and 3(c), meaning that the phase transitions at T1

and T2 are not second order.
In order to determine the critical points for q = 5 and

q = 6, we use the best fitting based on Eq. (9) [30]. The
finite-size scaling, based on the form of correlation length near
the critical temperature in a KT phase transition, is ξ (T ) =
A exp (c/

√
t ), with t = (T − TKT )/TKT . We define TKT (L) as

the temperature at the dip bottom of dg/dT . Both g and
ξ/L(= a) near the critical point are approximately indepen-
dent of the system size L. Then, by using the finite-size scaling
form of the Binder ratio, g = g(ξ/L), we have the relation

TKT (L) = TKT + c2TKT

(ln bL)2
, (9)

where b = a/A.
We plot TKT (L) as a function of l−2 with l = ln bL in the

best parameter fit for q = 5 in Fig. 3(b) and for q = 6 in
Fig. 3(c). For q = 6, best fits of TKT (L) based on Eq. (9) give
us T1 = 0.702+0.010

−0.008 with b1 = 10.67 and T2 = 0.889+0.011
−0.012

with b2 = 2.38. The error bar is estimated by χ2 analysis.
These values are consistent with previous works [8,24]. For
q = 5, we also estimate the critical temperatures by best fits
of TKT and get T1 = 0.918+0.004

−0.004 with b1 = 11.2 and T2 =
0.944+0.002

−0.003 with b2 = 1.08. These critical temperature values,
T1 and T2, are consistent within errors with previous works
[8,9]. Of course, we can estimate the critical temperature
Tc for the q = 4 case (or q � 4 cases, in general) from the
divergent dip temperature of the Binder ratio derivative as we
do for q = 5, 6 cases. We also obtain the same result of Tc as
calculated from the crossing temperature of the Binder ratio.
However, evaluating Tc for q � 4 cases from the crossing
temperature of g is simpler and more precise than from the
dip temperature of dg/dT .

The phase diagram of the 2D q-state clock model obtained
only by analyzing our Binder ratio is shown as in Fig. 4. For
q � 4, there is only one second-order phase transition from
the long-range ordered phase to the disordered phase. The

FIG. 5. The temperature dependence of the correlation
length ratio for three cases: q = 4 (a), q = 5 (b), and q = 6
(c). The upper inset of (b) presents the merging segment
of ξ/L between T1 and T2 for q = 5. The lower inset of
(b) describes ξ/L versus L for q = 5 at several temperatures
T = 0.90, 0.905, 0.915, 0.920, 0.930, 0.940, 0.945, 0.955, 0.965
from top to bottom.

critical temperature Tc is easily defined at the crossing point
of Binder ratio curves as in the q = 4 case. For q � 5, both
phase transitions are KT type, at T2 from the quasi-long-range
ordered phase to the disordered phase, and at T1 from the long-
range ordered phase to the quasi-long-range ordered phase.
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FIG. 6. The helicity modulus versus temperature for q = 4 (a),
q = 5 (b), and q = 6 (c). Enlarged plot in (c) presents the nonvanish-
ing of ϒ for q = 6 in the high-temperature region.

These critical temperatures T1 and T2 are determined from the
negative divergent dips of the derivative of the Binder ratio as
in cases of q = 5, 6. T2(q) is nearly flat, roughly the critical
temperature of the KT transition of the 2D XY model (i.e., the
limit q → ∞), while T1(q) monotonically decreases to 0 as
q increases. Our critical temperatures, T1 and T2, agree with
previous works obtained by different approaches [15,31].

Next, we consider the behavior of the correlation length
ratio around the critical points. Figure 5 illustrates the corre-

FIG. 7. The temperature derivative of the helicity modulus ver-
sus temperature for q = 4 (a), q = 5 (b), and q = 6 (c). The dip
temperatures T ϒ

c (L) for q = 4 and T ϒ
2 (L) for q = 5, 6 versus 1/L

are shown in the inset of (a), the inset of (b), and the lower inset of
(c), respectively. The enlarged plot in the upper inset of (c) presents
a tiny dip below T1 for q = 6.

lation length ratio as a function of temperature for q = 4, 5, 6.
This result of ξ/L for q = 5 and 6 is consistent with the pre-
vious work of Surungan et al. [9]. For q = 4, in Fig. 5(a), ξ/L
curves with different L cross at the critical temperature Tc ≈
1.135, the same as our estimation by the Binder ratio. For q =
5 and 6, in Figs. 5(b) and 5(c), ξ/L decreases towards zero in
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the high-temperature region (disordered phase) and increases
to infinity in the low-temperature region (ordered phase).
Moreover, in the intermediate-temperature region T1 < T <

T2, ξ/L tends to be independent of L, which is indeed a char-
acteristic of the quasi-long-range ordered phase. This is rather
clear for q = 6: the critical temperatures for q = 6 estimated
approximately from Fig. 5(c) are T1 ≈ 0.7 and T2 ≈ 0.89. The
independence of L for q = 5 is not very clear as in q = 6
case, even by magnifying ξ/L in [T1, T2] [see the upper inset
of Fig. 5(b)]. Therefore, we show ξ/L versus L for several
temperatures between 0.90 and 0.965 in the lower inset of
Fig. 5(b). As L increases, ξ/L increases for low tempera-
tures T = 0.90, 0.905 (characteristic of an ordered phase),
decreases for high temperatures T = 0.955, 0.965 (character-
istic of a disordered phase), and is almost constant for several
intermediate temperatures T = 0.920, 0.930, 0.940. This sug-
gests that ξ/L becomes independent of L in the intermediate
temperature range [0.920,0.940], that is a characteristic of the
quasi-long-range ordered phase.

Next, we show the helicity modulus, ϒ , as a function
of temperature for q = 4, q = 5, and q = 6 in Fig. 6. For
q = 4 and q = 5, ϒ does not vanish in the high-temperature
disordered phase. These results are consistent with numerical
results of Kumano et al. (q = 5) [8] and Baek et al. (q = 4
and q = 5) [6]. For q = 6, we find out that ϒ also does not
vanish in the high-temperature disordered phase [see the inset
of Fig. 6(c)]. This observation of ϒ for q = 6 disagrees with
previous numerical works [6,8], but agrees with the analytical
work of Kumano et al. [8]. Therefore, the conclusion about
non-KT phase transition based on the nonvanishing of ϒ in
the high-temperature region by Baek et al. [6] is invalid for
the 2D q-state clock model.

Finally, the data of dϒ/dT for q = 4, q = 5, and q = 6 as
a function of temperature are shown in Fig. 7. These results
are similar to previous work in the high-temperature region
[6]. For q = 4, dϒ/dT has a negative divergent dip at nearly
Tc. As L → ∞, the dip temperature T ϒ

c (L) monotonically
shifts toward Tc as a linear form ∼1/L [see the inset of
Fig. 7(a)]. This behavior reconfirms that the phase transition
of the case q = 4 is second order. For q = 5 and q = 6, there
also appears a negative divergent dip of dϒ/dT around T2

but the dip temperature T ϒ
2 (L) gradually shifts toward the

critical temperature T2 as a nonlinear form of 1/L [see in-
sets of Figs. 7(b) and 7(c)]. This size-dependent behavior of
T ϒ

2 (L) from dϒ/dT suggests that phase transitions at T2 for
q = 5, 6 are not secondorder. On the other hand, the helicity
modulus and its derivative do not show any clear signal of
the phase transition at T1 for q = 5, 6 [see the upper inset of
Fig. 7(c)].

IV. CONCLUSIONS

In this paper, we study the phase transition phenomena of
the 2D q-state clock model for q = 4, q = 5, and q = 6 by
Monte Carlo simulation. Several physical quantities including
the Binder ratio, the derivative of the Binder ratio, the correla-
tion length ratio, the helicity modulus, and the derivative of the
helicity modulus are calculated for this model. Our numerical
results show that the helicity modulus is not a suitable quan-
tity to detect the KT phase transition both for q = 5 and for
q = 6. On the other hand, the Binder ratio and the correlation
length ratio can show the existence of two distinct KT phase
transitions for q = 5.

We show that the conventional Binder ratio is capable of
detecting the KT phase transition between the quasi-long-
range ordered phase and the long-range ordered phase in
the 2D q-state clock model. We also reconstruct the phase
diagram of the 2D q-state clock model by analyzing a unique
physical quantity, the conventional Binder ratio. Although our
technique using the Binder ratio to determine critical points in
this paper is only for a simple model, the q-state clock model,
it can be readily applied to generalized discrete spin models
or generalized XY spin models.
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