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Abstract
We predict a novel topological state, half-topological state, in magnetic topological insulators.
The topological state is characterized by different topologies of electrons with different spin
orientations, i.e., electrons with one spin orientation occupy a nontrivial topological insulating
state, while electrons with opposite orientation occupy another insulating state with trivial
topology. We demonstrate the occurrence of the half-topological state in magnetic topological
insulators by employing a minimal model. The minimal model is a combination of the spinful
Haldane and the double-exchange models. The double-exchange processes maintain a
spontaneous magnetic ordering, while the next-nearest-neighbor hopping in the Haldane
model gives rise to a nontrivial topological insulator. The minimal model is studied by
applying the dynamical mean field theory. It is found that the long-range antiferromagnetic
ordering drives the system from either topological or topologically trivial antiferromagnetic
insulator to the half-topological state, and finally to topologically trivial antiferromagnetic
insulator. The equations for the topological phase transitions are also explicitly derived.

Keywords: magnetic topological insulator, topological phase transition, topologically
breaking of spin symmetry, electron correlations
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1. Introduction

Since the discovery of magnetic topological insulators (MTIs),
the interplay between a long-range magnetic ordering and
topology has attracted a lot of research attention [1–5]. While
the magnetic ordering is established by a symmetry break-
ing within the Landau phase theory, topology of the ground
state is beyond the theory of symmetry breaking. The mag-
netic ordering may intriguingly impact on the topology of the
ground state, and as a result exotic states may emerge [6, 7].
In MTIs the anomalous Hall conductivity is quantized, and
it coexists with magnetism of the materials. The quantiza-
tion of the Hall conductance manifests a nontrivial topology
of the ground state [8, 9]. In paramagnetic (PM) topological
insulators (TIs), electrons with both spin orientations simul-
taneously form the topological ground state. For example, in
two-dimensional Z2 TIs, electrons of both spin orientations
occupy the lowest spin-degenerate energy bands, and these
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occupied bands for each spin orientation give equal quan-
tized amounts to the Hall conductivity but with opposite signs
[10]. As a consequence, the spin Hall conductivity is quan-
tized, while the charge Hall conductivity vanishes. Within the
Kane–Mele model of the Z2 TI, electrons of both spin orien-
tations simultaneously are in either nontrivial or trivial topo-
logical insulating state [10]. In ferromagnetic (FM) materials,
the spin-degenerate bands are split by the FM magnetization.
Electrons are magnetically polarized, and electrons of one spin
orientation dominantly occupy the lowest energy bands, while
electrons of opposite spin orientation dominantly occupy the
higher-energy split bands. Since the FM magnetization can
play like an external magnetic field, the anomalous Hall effect
can occur in FM materials [1, 2]. In ferromagnetic topologi-
cal insulators (FMTIs), the lowest energy bands are occupied
by electrons with the polarized spin, and the ground state is
topologically nontrivial [1, 2]. Although electrons with oppo-
site spin orientation may not occupy the topological ground
state, the higher-energy split band that is occupied by them
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is still topologically nontrivial. Therefore, both spin orienta-
tions of electrons in FMTIs are magnetically inequivalent, but
they are simultaneously in the nontrivial topological state. In
FMTIs both spin orientations are topologically symmetry. The
topological symmetry of the spin orientations also occurs in
antiferromagnetic topological insulators (AFTIs) [11, 12]. In
AFTIs electrons of both spin components occupy the topologi-
cal ground state, although their sublattice magnetizations have
opposite values. The occupied bands for each spin component
contribute a quantized value to the Hall conductivity, there-
fore electrons of both spin orientations are simultaneously
topological [11, 12].

In this paper, we show a possibility of topologically break-
ing of the spin symmetry in MTIs, i.e. electrons with opposite
spin orientations occupy the insulating states with different
topologies, for instance, electrons with one spin orientation
occupy a nontrivial topological insulating state, while elec-
trons with opposite spin orientation occupy another insulat-
ing state with trivial topology. This state is reminiscent to
the half-metallic state, where electrons of one spin orienta-
tion are metallic, while electrons of opposite spin orientation
are insulating [14, 15]. In mimicking the half-metallic state,
we refer to the state with topologically breaking of the spin
symmetry as half-topological state. The half-topological state
was previously found in correlated TIs by employing topolog-
ical insulator models with the Hubbard interaction [16–19]. It
appears as an emergence of the long-range antiferromagnetic
(AFM) ordering and the lack of the lattice inversion symme-
try [16–19]. However, in the previous studies, the magnetic
topological state is absent and electron correlations drive the
system only from either the PM (topological or normal) or
topologically trivial AFM state to the half-topological state
[16–19]. In contrast, in this paper we will specially show
the existence of the half-topological state in MTIs. The long-
range AFM ordering can drive the system from the topological
or topologically trivial AFM insulator to the half-topological
state, and then to the topologically trivial AFM insulator. Such
topological phase transitions are absent in the previous stud-
ies [16–19]. We will demonstrate the topological phase tran-
sition in MTIs by employing a minimal model. The minimal
model is a combination of the spinful Haldane and the double-
exchange models. The spinful Haldane model is a spin general-
ization of the Haldane one [13]. It was introduced to study the
interplay between correlation and topology in systems with-
out the time-reversal symmetry [20–24]. The spinful Haldane
model consists of two identical Haldane models, each of which
describes the dynamics of electrons of one spin orientation.
The ionic potential, which breaks the lattice inversion symme-
try, can drives the system from topological to normal insulator
[13]. The double exchange model describes the Hund coupling
between itinerant electrons and magnetic moments [25–27].
The Hund coupling generates the double exchange processes
between electrons and magnetic moments, that cause a spon-
taneous magnetic ordering. Including the Hund coupling into
the spinful Haldane model, it can describe both magnetism and
topology in systems without the time-reversal symmetry. This
contrasts to the including the Hund coupling to the Kane–Mele
model, which preserves the time-reversal symmetry [11, 12].

The interplay between magnetism and topology in the pro-
posed model is studied by applying the dynamical mean field
theory (DMFT) [28, 29]. The DMFT has widely and success-
fully been used to study correlated electron systems, and in
particular the double exchange model [30–39]. By using the
topological Green function [40, 41], we derive the equations
that determine the phase transition of the half-topological state.
They show that the AFM ordering and the breaking of the lat-
tice inversion symmetry are necessary, but not sufficient for the
existence of the half-topological state. In contrast to the pre-
vious studies, where the half-topological state transition can
occur at the phase boundary of the magnetic phase transition
[16–19], the stability of the half-topological state in MTIs
requires a finite AFM magnetization, therefore the topologi-
cal phase transition occurs after the magnetic phase transition
takes place.

The rest of the paper is organized as follows. In section 2
we describe the model and its DMFT. The numerical results
are presented in section 3. Finally, section 4 is the conclusion.

2. Model

We study the interplay between magnetism and topology in
MTIs by employing a minimal model. The minimal model
is a combination of the spinful Haldane and the double-
exchange models. It consists of itinerant electrons, hopping
on a honeycomb lattice, and localized magnetic impurities. Its
Hamiltonian can be written as

H = −t
∑
〈i, j〉,σ

c†iσc jσ − t2
∑

〈〈i, j〉〉,σ
eiφi j c†iσc jσ

− Δ

2

∑
iσ

εic
†
iσciσ − J

∑
i,ss′

Sic
†
isσss′cis′ , (1)

where c†iσ (ciσ) is the creation (annihilation) operator of elec-
tron. The subscripts i and σ denote the lattice site and spin
of electrons. The honeycomb lattice is divided into two pen-
etrating sublattices a and b, and 〈i, j〉 (〈〈i, j〉〉) denotes the
nearest-neighbor (next-nearest-neighbor) lattice sites. t (t2) is
the nearest-neighbor (next-nearest-neighbor)hopping parame-
ter. φi j is the Peierls phase that is acquired by electron hopping
in a zero total magnetic flux, but with finite sublattice fluxes
[13]. Without loss of generality, we consider the case φi j =
±π/2 for anticlockwise (clockwise) hopping.Δ is a staggered
ionic potential and εi = ±1 when lattice site i belongs to the
sublattice a (b). The ionic potential breaks the lattice inver-
sion symmetry. Si is spin of magnetic impurity at lattice site i.
σ = (σx , σy, σz) are the Pauli matrices. J is the Hund couping
between itinerant electrons and magnetic impurities. For sim-
plicity, we will consider the FM case J > 0, and treat Si as a
classical spin with the norm S2

i = 1. When the Hund coupling
is FM (J > 0), there is no significant difference between the
quantum and classical spin cases [42]. The first two terms in
Hamiltonian (1) are the spinful Haldane model, where each
spin component term describes the fermion hopping on the
honeycomb lattice with zero total flux [13]. The next-nearest-
neighbor hopping opens a gap and induces a topological state
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when Δ < 6
√

3t2 [13]. When t2 = 0 and Δ = 0, Hamilto-
nian (1) describes the double exchange model [25–27]. The
Hund coupling drives the system from PM to magnetic state.
In the absence of the ionic potential (Δ = 0), both nontrivial
topology and magnetism may simultaneously occur [11, 12].
However, as we will show, when the inversion symmetry is
present (Δ = 0), electrons with both spin orientations simul-
taneously form either topological or normal insulator. When
the ionic potential is present (Δ �= 0), its interplay with mag-
netism may topologically break the spin symmetry and results
in a half-topological state.

The magnetic ground state can be analyzed in the strong
coupling regime J � t, t2. The classical spin of magnetic
impurities can be presented as

Si = (cos ϕi sin θi, sin ϕi sin θi, cos θi), (2)

where θi and ϕi are the polar and azimuthal angles of spin Si.
Performing the unitary transform [27]

f̂ i ≡
(

f i↑
f i↓

)
= U

(
ci↑
ci↓

)
, (3)

with the unitary matrix

U =

(
cos(θi/2) sin(θi/2)e−iϕi

− sin(θi/2)eiϕi cos(θi/2)

)
, (4)

we obtain

HHund = −2J
∑
i,ss′

Si · si = −J
∑
i,σ

σ f †iσ f iσ, (5)

where si = (1/2)
∑

ss′c
†
isσss′cis′ is the spin of itinerant elec-

trons. In the new basis the Hund coupling is diagonal. It prefers
the magnetization in the z-axis direction. After the unitary
transform, the hopping terms in Hamiltonian (1) become

Hhop = −t
∑
〈i, j〉

f̂ †i T̂ i j f̂ j + t2
∑
〈〈i, j〉〉

eiφi j f̂ †i T̂ i j f̂ j, (6)

where

T̂ i j =

⎛
⎜⎝ cos

θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
e−i(ϕi−ϕ j) − cos

θi

2
sin

θ j

2
e−iϕ j + sin

θi

2
cos

θ j

2
e−iϕi

− sin
θi

2
cos

θ j

2
eiϕi + cos

θi

2
sin

θ j

2
eiϕ j cos

θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
ei(ϕi−ϕ j)

⎞
⎟⎠ .

In contrast to the Kane–Mele model [11], in the spinfull
Haldane model both the nearest-neighbor and next-nearest-
neighbor hoppings have the same hopping matrix T̂ i j. For sim-
plicity, we consider the ground state, where the impurity spins
have the same azimuthal angle ϕi = ϕ. In the strong coupling
regime, electrons with one spin orientation are relevant to the
ground state, and their nearest-neighbor hopping is maximal
when θa − θb = 0 or π. This is equivalent to the parallel or
antiparallel aligning of the nearest-neighbor spins. When the
spin orientations at the nearest-neighbor sites are parallel or
antiparallel, the off-diagonal elements of the hopping matrix
T̂ i j vanish. This is actually the double exchange mechanism,
where spins align parallel or antiparallel in order to minimize
the kinetic energy. Because in the ground state the off-diagonal
elements of the hopping matrix T̂ i j vanish, the spins of itinerant
electrons are ordered in the z-axis direction. On the other hand,
Hamiltonian (1) conserves the total spin St =

∑
i(Si + si) and

its z-component Sz
t . The double-exchange mechanism favours

the state with maximal Sz
t or Sz

t = 0. This also implies that the
spins of magnetic impurities and itinerant electrons also align
parallel.

The dynamics of interacting systems can be analyzed by
using the Green function. Since the proposed model (1) has
both spin and sublattice degrees of freedom, the single-particle
Green function can be defined by

Ĝ(k, τ ) = −〈T Ψk(τ )Ψ†
k〉, (7)

where Ψ†
k = (c†ka↑, c†kb↑, c†ka↓, c†kb↓). It satisfies the Dyson

equation

Ĝ(k, z) =
[
z − Ĥ0(k) − Σ̂(k, z)

]−1
, (8)

where Ĥ0(k) is the non-interacting Bloch Hamiltonian, and
Σ̂(k, z) is the self energy, which contains all interacting effects.
The non-interacting Bloch Hamiltonian is diagonal in the
spinor space

Ĥ0(k) = ĥ(k) × 1̂, (9)

where ĥ(k) is the non-interacting Bloch Hamiltonian for one
spin component

ĥ(k) =

(
−t2ξk −Δ/2 −tγk

−tγ∗
k t2ξk +Δ/2

)
,

and 1̂ is the unique matrix in the spinor space. Here we
use the following notations: γk =

∑
δe

ik·rδ , ξk =
∑

ηeiφη eik·rη ,
where δ and η denotes nearest-neighbor and next-nearest-
neighbor sites of a given site, respectively. ĥ(k) is exactly the
Bloch Hamiltonian of the Haldane model [13]. In the non-
interacting case, electrons of both spin components have the
identical dynamics. The ground state changes from topological
to normal insulating state at Δc = 6

√
3t2 [13].

We use the DMFT to calculate the Green function
and its self energy [28, 29]. The DMFT exactly treats
the local dynamics of electrons, but it neglects non-
local spacial correlations. Within the DMFT, the self
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energy depends only on frequency. In addition, the self
energy is also diagonal in the spin and sublattice indices,
i.e., Σ̂(k, z) = diag[Σa↑(z),Σb↑(z),Σa↓(z),Σb↓(z)], because the
double-exchange mechanism favours the magnetic ordering
in the z-axis direction. The self energy Σασ(z) is calculated
from an effective single site of the α-sublattice embedded in
a self-consistent dynamical mean field [29]. The action of the
effective single-site dynamics reads

Sα = −
∑

s

∫ β

0

∫ β

0
dτ dτ ′Ψ†

αs(τ )G−1
αs (τ − τ ′)Ψαs(τ

′)

− Δα

2

∑
s

∫ β

0
dτεαΨ

†
as(τ )Ψαs(τ )

− J
∑
αss′

∫ β

0
dτSα(τ )Ψ†

αs(τ )σss′Ψαs′(τ ), (10)

where G−1
αs (z) = [

∑
kĜ(k, z)]−1

αs,αs − Σαs(z) is the cavity Green
function which represents the dynamical mean field at a site
of the sublattice α (α = a, b). For classical spin Sα, the action
(10) can exactly be solved, and once it is solved, we obtain
the local Green function and its self energy [11]. The self-
consistent condition of the DMFT requires that the local
self energy obtained from the action (10) coincides with the
αs-th component of the lattice self energy Σ̂(z). Once the self
energy and the Green function are obtained, we can com-
pute the sublattice magnetization and determine the mag-
netic type of the ground state. The sublattice magnetization is
determined by

mα =
1

2N

∑
k,σ

σ〈c†kασckασ〉, (11)

which can directly be calculated from the Green function (8).
The ground state is AFM when ma = −mb �= 0. The topol-
ogy of the ground state is determined by the Chern number.
Within the DMFT, the self energy are diagonal in the spin
space, therefore the Chern number can be defined with each
spin component of electrons. The Chern number of αth band
in the spin sector σ is determined by

Cσα =
1

2π

∫
d2kFσα(k), (12)

where Fσα(k) = ∂xAσαy − ∂yAσαx , Aσαx(y) = i〈Φσα(k)|∂kx(y)

|Φσα(k)〉, and |Φσα(k)〉 is the orthonormalized eigenstate of
the topological Bloch Hamiltonian Ĥt(k) = Ĥ0(k) + Σ̂(i0) in
the spin sector σ [43–45]. Equation (12) is a generalization of
the Thouless–Kohmoto–Nightingale–Nijs (TKNN) formula
for interacting systems. It can efficiently be calculated in
discretized Brillouin zone [46]. In determining the ground-
state topology the topological Bloch Hamiltonian Ĥt(k) plays
the same role as the Bloch Hamiltonian Ĥ0(k) in the non-
interacting case.

3. Numerical results

We will study the magnetic and topological properties of the
system at half filling. The ground state at half filling is insulat-
ing. First, we consider the case Δ = 0. In this case the model
has the lattice inversion symmetry. The sublattice magnetiza-
tions and the Chern number for each spin orientation are pre-
sented in figure 1(a) as functions of the Hund coupling J. The
Hund coupling drives the system from PM to AFM state. Jm is
the critical value of that phase transition. The double exchange
processes generated by the Hund coupling induce the magnetic
ordering in order to minimize the kinetic energy [25–27]. The
next-nearest-neighborhopping t2 does not qualitatively change
the magnetic phase transition. Figure 1(a) also shows that the
Chern number Cσ = 1 when J < Jc. The Hund coupling also
drives the system from nontrivial (Cσ = 1) to trivial (Cσ = 0)
topological state. In this topological phase transition electrons
of both spin orientations are simultaneously in either topo-
logical or normal insulating state. However, the topological
phase transition occurs after the AFM phase transition takes
place. Therefore in the range Jm < J < Jc, the ground state is
AFM and topologically nontrivial. It yields an AFM topolog-
ical state. This contrasts the Haldane–Hubbard model, where
there is no intermediate AFM topological state between the
topological PM and the topologically trivial AFM states [16].

When the sublattice potential is included (Δ �= 0), the lat-
tice inversion symmetry is broken. In the non-interacting case
(J = 0), the ionic potential Δ drives the system from topolog-
ical to normal insulator [13]. The topological phase transition
occurs at Δc = 6

√
3t2. In figure 1 we also plot the dependence

of the sublattice magnetizations and the Chern numbers on
the Hund coupling in both cases Δ < Δc and Δ > Δc. The
non-interacting ground state is a topological insulator with the
Chern number Cσ = 1 when Δ < Δc, and is a normal insula-
tor with the Chern number Cσ = 0 when Δ > Δc. When the
Hund coupling is finite, the ionic potential does not qualita-
tively change the sublattice magnetizations, but it significantly
impacts on the Chern numbers. It splits the topological phase
transition point Jc into Jc1 and Jc2 for each spin orientation, as
shown in figures 1(b) and (c). As a consequence, in the range
Jc1 < J < Jc2, electrons with different spin orientations have
different topologies. Electrons with spin up are in trivial topo-
logical state, while electrons with spin down are in nontrivial
one. This is a half-topological state. We find that Jc2 > Jc1 >
Jm. This implies that the half-topological state only occurs
in the AFM state. The AFM magnetization drives the system
from either topological or topologically trivial AFM state to
the half-topological state, and finally to the topologically triv-
ial AFM state. Such phase transitions are absent in the models
of correlated TIs with the Hubbard interaction [16–19].

Instead of the Chern number, the ground-state topology can
also be detected by the crosses of the zeros of the diagonal
topological Green function in the momentum space [40, 41].
The diagonal topological Green function is defined by

Ĝγγ
t (k, z) =

[
1

z − Ĥt(k)

]
γγ

=
∑
σα

|Φ(γ)
σα(k)|2

z − Eσα(k)
, (13)
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Figure 1. The Chern number Cσ for spin orientation σ and the sublattice magnetizations ma, mb via the Hund coupling J for different ionic
potentials at fixed t2 = 0.5 (t = 1). (a) Δ = 0, (b) Δ = 1, (c) Δ = 8.

where Eσα(k) and |Φσα(k)〉 are the eigenvalue and eigenvector
of the topological Bloch Hamiltonian Ĥt(k) = Ĥ0(k) + Σ̂(i0),
and |Φ(γ)

σα(k)〉 is the γth component of |Φσα(k)〉 [40, 41]. The
topological Bloch Hamiltonian Ĥt(k) determines the Chern
number, as can be seen from the generalized TKNN formula
(12) for interacting systems [45]. Based on the eigenvector-
eigenvalue identity of Hermitian operator [47], it was shown
that the zeros of the diagonal topological Green function cross
in TIs, and they do not cross in normal insulators [40, 41].
Therefore, the zero’s crosses are a signal of nontrivial topology
of insulating ground state.

Within the DMFT the zeros of the diagonal topological
Green function are simply determined. They read

E (γ)
σ (k) = −εγ̄t2ξk − εγ̄Δ/2 +Σγ̄σ(i0), (14)

where the bar symbol denotes ā = b, b̄ = a. In figure 2 we plot
the spectral function ρaσ(k,ω) = −Im Gασ(k,ω + i0+)/π and
the zeros E (γ)

σ (k) of the diagonal topological Green function
in three typical phase regions, when Δ < Δc and Δ > Δc.
The peaks of the spectral function describe the quasiparti-
cle properties and their momentum dependence resembles the
energy bands. Figure 2 clearly shows a gap which separates
upper and lower bands for all values of J. The ground state
is always insulating at half filling. The gap is opened by both
the next-nearest-neighbor hopping t2 and the Hund coupling
J. When J > Jm, the spectral functions for spin up and spin
down are different, and this is a signal of magnetic ordering.
In the region J < Jc1, the zeros cross when Δ < Δc, and do
not cross whenΔ > Δc. The zero’s crosses are consistent with
the topology of the ground state. The ground state is topolog-
ical when Δ < Δc, and is topologically trivial when Δ > Δc.
In addition, in this region J < Jc1, the zeros of both spin ori-
entations have the same crossing behavior. This implies that
both spin orientations simultaneously form either topological
(when Δ < Δc) or normal (when Δ > Δc) insulators. In the
region Jc1 < J < Jc2, only zeros of one spin orientation cross,
while zeros of the opposite spin orientation do not cross. The
zero’s crosses in this region are also consistent with the topol-
ogy of the ground state, and this yields the half topological
state. In the region J > Jc2, the zeros of both spin orientations

do not cross. This indicates that the ground state is topolog-
ically trivial. At the topological phase transition J = Jc1 or
J = Jc2 the zeros of one spin orientation touch, as shown in
figure 2. The touch points separate two regions of different
crossing behaviours of the zeros. In one region the zeros cross,
whereas in the other region they do not cross. The touch points
also yield the gapless edge modes at the boundaries between
two different topological phases. Figure 2 shows that the touch
points of the zeros occur at the vertices K and K′ of the Bril-
louin zone. Therefore, the half-topological state transition can
be determined from the zero’s touch points. In the AFM state,
the self energy at zero frequency can be represented as

Σγσ(i0) = εγΣ+ εγσδΣ, (15)

where Σ = [Σa↑(i0) +Σa↓(i0)]/2, and δΣ = [Σa↑(i0) −
Σa↓(i0)]/2 [40]. It is a combination of staggered non-
magnetic field Σ and staggered magnetic field δΣ. One can
notice that when Δ = 0, Σ vanishes. At the zero’s touch
points the zeros vanish. Therefore from equation (14) we
obtain the equations which determine the phase transition
points of the half-topological state. In the case Δ < Δc, we
obtain

t2ξK +Δ/2 = Σ+ δΣ, (16)

t2ξK′ +Δ/2 = Σ− δΣ, (17)

and in the opposite case Δ > Δc, we obtain

t2ξK +Δ/2 = Σ− δΣ, (18)

t2ξK′ +Δ/2 = Σ− δΣ. (19)

In equations (16)–(19), both quantities Σ and δΣ depend on
the Hund coupling J and the ionic potentialΔ, as well as on the
hopping parameters t, t2. Equations (16)–(19) actually deter-
mine the half-topological state transition points Jc1 and Jc2 in
the cases Δ < Δc and Δ > Δc, respectively. When Δ = 0,
Jc1 = Jc2, because ξK = −ξK′ . Therefore, when Δ = 0,
electrons of both spin components simultaneously are in either
topological or normal insulator. However, when the ionic
potential and the Hund coupling are finite, Σ and δΣ are
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Figure 2. The color density plot of the spectral function of electrons and the color line plot of the zeros of the diagonal topological Green
function (the green and magenta solid lines) along the high symmetry lines of the Brillouin zone for various values of the Hund coupling J,
and t2 = 0.5 (t = 1). The upper (lower) row presents the plots for the spin up (down) orientation. The color density plots only show the
maximum values between the sublattice spectral functions. (a) Δ = 1, (b) Δ = 8.

also finite too. This leads to Jc1 �= Jc2. Therefore, the half-
topological state occurs in the region Jc1 < J < Jc2. It appears
an emergence of the AFM magnetization and the breaking of
the inversion symmetry. However, the AFM ordering and the
breaking of the inversion symmetry are necessary, but not suf-
ficient for the existence of the half-topological state. Instead of
them, equations (16) and (17) or (18) and (19) determine the
existence conditions of the half-topological state. The MTIs
were experimentally observed, but there is no report of the

half-topological state. It is a challenge for observing such half-
topological state by experiments. The half-topological state
may also be realized in artificial lattices simulated by using
ultracold atoms or photonic technique. Indeed, the Haldane
model was simulated by experiments using ultracold atoms
[48]. Therefore, the spin version of the Haldane model may
be simulated too. When an external field like the self energy
in equation (15) is applied to the simulated lattice, the half-
topological state would be observed. Equations (16) and (17)
or (18) and (19) practically determine the value range of
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the external field, where the half-topological state would be
observed.

4. Conclusion

We have demonstrated a possibility of the half-topological
state in AFM insulators. The half topological state is charac-
terized by topologically breaking of the spin symmetry, when
electrons with one spin orientation form a topological insulator
and electrons with the opposite spin orientation form another
insulator with trivial topology. The topologically breaking of
spin symmetry occurs as an emergence of the AFM order-
ing and the lack of the inversion symmetry. However, the
AFM ordering and the breaking of the inversion symmetry
are necessary, but not sufficient for the existence of the half-
topological state. We have also derived equations, which deter-
mine the phase transition of the half-topological state. They
would practically determine the conditions for observing the
half-topological state.
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