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Abstract. Using the Bogoliubov variational method we study the magnetic competition in a
minimal model proposed for kagome magnets. The minimal model consists of itinerant electrons
with their spin-orbit coupling and localized electrons with their anisotropic spin exchange. A
spin exchange between localized and itinerant electrons is also included into the model, and
it is anisotropic. At half filling and in the region of stable in-plane antiferromagnetism, a
magnetic competition between antiferromagnetic phases with different spin chiralities is found.
Depending on the sign of the hopping integral and the spin-orbit coupling, either the 1 × 1 or√

3 ×
√

3 in-plane antiferromagnetism is established. These in-plane antiferromagnetic states
are characterized by distinguishable spin chiralities.

1. Introduction
The interplay between magnetism, correlation, and topology has attracted a lot of research
attention [1–3]. Kagome magnets provides a fertile platform for investigating the interplay.
The principal feature of the kagome magnets is the two-dimensional lattice of triangles with
sharing corners. Due to the special geometric frustration, various exotic states including Dirac
electrons [4], flat band [5], quantum spin liquids [6], unconventional magnetism [7–10], and
the quantized Hall conductivity [11, 12] can be realized in the kagome lattice. Recently, a
magnetic phase transition between the out-of-plane ferromagnetism (O-FM) and the in-plane
antiferromagnetism (I-AFM) and its flexible tunability were experimentally observed in kagome
magnets [13–16]. The kagome magnets also often exhibit a large anomalous Hall conductance
[13, 14]. This indicates an impact of nontrivial topology on the magnetic phase transition.
Since the discovery of the Z2 topological insulator, the spin-orbit coupling (SOC) is an essential
ingredient for maintaining the topological ground state [17–19]. In the electron structure it
creates a gap between the valence and conduction bands and induces a band inverting [17, 18].
Incorporating the SOC into the kagome lattice, a topological state is also achieved [11, 12].
Recently, the magnetic competition between the O-FM and I-AFM in kagome magnets can
be analyzed within a minimal model, that includes anisotropy in the spin exchange between
itinerant and localized electrons, as well as in the spin exchange among localized electrons
[9, 10]. However, the impact of the SOC on the magnetic competition is not yet studied.

In this paper we report the change of the spin chirality in the magnetic competition between
different I-AFM states in the kagome lattice. The spin chirality characterizes the spin rotation
in the lattice, and it is a trace of the SOC impact. The minimal model that we use to study the
magnetic competition was previously proposed [10]. The Bogoliubov variational calculations
reveal the magnetic competition between the O-FM and I-AFM and its universality in the
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regime of strong spin exchange [10]. Applying the Bogoliubov variational method, we find the
dependence of the stable phase and its spin chirality on the SOC. This yields the impact of the
SOC on the magnetic competition. This paper is a complement to the previous work [10].

The present paper consists of 4 sections. In Sec. 2 we introduce the minimal model, which
describes the dynamics of itinerant and localized electrons together with their spin exchanges
in the kagome magnets. The numerical results of the Bogoliubov variational calculations are
presented in Sec. 3. Finally, the conclusion is presented in Sec. 4.

2. Model
In the previous work, we proposed a minimal model, which could describe the electrons dynamics
in the kagome magnets [10]. The model is based on the tight-binding itinerant electrons with
their SOC, and localized electrons with their anisotropic spin exchange on the kagome lattice.
An anisotropic spin exchange between localized and itinerant electrons is also included. In the
second quantization, the model Hamiltonian is

H = −t
∑
〈i,j〉,σ

c†iσcjσ − iλ
∑
〈i,j〉,s,s′

c†iscjs′σ
z
ss′νij

−
∑
i,α,ss′

c†iscis′S
α
i σ

α
ss′hα −

∑
〈i,j〉,α

Sαi S
α
j Jα. (1)

Here we have used the conventional notations: i, j are the lattice site indices, σ, s, s′ are the spin
indices, σα (α = x, y, z) is the component of the Pauli matrices. The first term in Hamiltonian
(1) is the nearest-neighbor hopping of itinerant electrons with the hopping parameter t and

the conventional notations c†iσ, ciσ for the creation and the annihilation operators of itinerant
electrons. The second term is the SOC of itinerant electrons with its parameter λ. It is
actually the nearest-neighbor direction-dependent hopping with the sign νij = 1 (−1) for the
counterclockwise (clockwise) hopping direction (see figure 1(a)). The third term is the spin
exchange between itinerant and localized electrons with the strength hα in the α axis and
the conventional notation Sαi for the localized electron spin in the α axis. The last term in
Hamiltonian (1) is the Heisenberg spin exchange of localized electrons with strength Jα in the
α axis. We will consider the case where the spin exchanges are the same in the xy plane,
but not in the z direction. We denote hxy ≡ hx = hy, and Jxy ≡ −Jx = −Jy. The spin
exchange between itinerant and localized electrons describes the double-exchange mechanism
of long-range magnetic ordering [20, 21]. The Heisenberg spin exchange of localized electrons
describes a magnetic phase transition from the O-FM to an I-AFM states at Jxy = 2Jz [7–
9]. In the double-exchange mechanism, both itinerant electrons and magnetic moments are
together magnetically ordered, therefore the change of magnetic moment ordering due to the
spin exchange also gives rise to a change of the magnetic ordering of itinerant electrons. This
yields the magnetic phase transition in the kagome magnets [10].

The SOC of itinerant electrons can be encoded into a complex spin-dependent hopping
tijσ = t + iνijσλ = r exp(±iΦ/3), where r =

√
t2 + λ2 is its module, and Φ = 3 arg(t + iλ)

is its argument. The argument Φ can be considered as a magnetic flux penetrating the corner-
sharing triangles of the kagome lattice. This indicates that the SOC plays like a magnetic flux.
Therefore the impact of the SOC on the magnetic competition is like the impact of the magnetic
flux on the magnetic competition. With the notation of the complex hopping, we rewrite the
first two terms in Hamiltonian (1) as a tight-binding Hamiltonian

H0 = −
∑
〈i,j〉,σ

tijσc
†
iσcjσ. (2)
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Figure 1. (a) The geometric structure of the kagome lattice. The SOC sign νij = 1 is indicated
by the arrows on the lattice edges, and the magnetic flux penetrating the lattice induced by the
SOC is Φ. The

√
3×
√

3 unit cell is denoted by the dotted rhombus. (b) Out-of-plane FM state.
(c) & (d) 1× 1 and

√
3×
√

3 in-plane AFM states, respectively. The spin chiralities χ = ±1 of
the in-plane AFM states are denoted by the sign ± in each triangle. The lattice parameter is
set a = 1.

This Hamiltonian can be considered as the spinful model for the quantum anomalous Hall effect
[12, 17]. Its spin component can be obtained from the double exchange model in the limit of
strong spin exchange [11]. However, in our work it just describes the tight-binding dynamics
of itinerant electrons with their SOC. In each spin sector the band structure consists of three
bands, which are separated by two gaps [11]. The lowest band carries the Hall conductance
σσxy = (e2/h)Cσ, where Cσ = σ is the Chern number [11]. Therefore, at filling 2/3 or 4/3, the
ground state exhibits the quantized spin Hall effect and it actually yields a Z2 topological
insulator [11, 12, 17]. At half filling the ground state is metallic. However, when the spin
exchange is included, it exhibits a large anomalous spin Hall conductance, and agrees well
with experimental observations [10, 13–15]. In the following we will consider the half filling case,
and use r = 1 as the unit of energy.

3. Bogoliubov variational principle and numerical results
We will use the Bogoliubov variational method to find the stable phases. It is based on the
Bogoliubov inequality

Ω ≤ 〈H −Htr〉tr + Ωtr ≡ Ω̃, (3)

where H and Htr are the original and trial Hamiltonians, respectively. Ω, Ωtr are the grand
potentials of the statistical ensembles, where Hamiltonian defining their statistical dynamics is
given by H and trial Htr, respectively [35, 36]. The statistical average is performed over the trial
ensemble. The trial Hamiltonian is chosen by an appropriate phase ansatz, which is relevant to
the consideration. The stable phase is found by minimizing Ω̃. It would be the lowest grand
potential among the ansatz phases defined by the trial ensemble. In zero-temperature limit
T = 0, Ω̃ is reduced to the ground state energy Ω̃ → E − µnN , where E and n are the energy
and the electron filling of the trial state, and µ is the chemical potential. The details of numerical
calculations are presented elsewhere [10]. Actually, we treat the localized electron spin classically
and set S2

i = 1 as usually adopted in many studies of magnetic materials [20–33]. We calculate Ω̃
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Figure 2. (a) The grand potential difference Ω−ΩFM from the O-FM state as a function of Φ
at fixed hxy = 5. The filled blue (open red) disks are the grand potential of the 1× 1 (

√
3×
√

3)

I-AFM. (b) The difference of the grand potential between the 1× 1 and
√

3×
√

3 I-AFM states
as a function of the in-plane spin exchange hxy at fixed Φ. The filled blue (open red) disks are
the grand potential difference at Φ = π/2 (Φ = 2π). Both figures present the numerical results
at zero temperature, half filling, and model parameters: Jz = 1, Jxy = 3 and hz = 6.

for different trial states which are generated by all arranges of localized electron spins within the
3×3 unit cell, and find its lowest value [10]. The Bogoliubov variational calculations reveal that
at half filling the O-FM and the I-AFM are most stable [10]. The O-FM state is characterized
by the parallel of all spins in the z direction. The in-plane magnetic states are characterized by
fact that all spins are within the xy plane, and the spin directions are arranged at angle 120◦ in
respect of each other (see figure 1(b)-(d)). Depending on the model parameters, the O-FM and
the I-AFM compete each other, and the magnetic phase transition occurs [10]. However, there
are two different stable I-AFM states, which are characterized by different vector chiralities.
The vector chirality is defined within each lattice triangle by

χ =
2

3
√

3

∑
(i 6=j)=1,2,3

Si × Sj . (4)

This vector chirality is parallel to the z axis χ = ezχ, where ez is the z axis unit [37]. It
characterizes the non-collinearity and rotation of spins. The vector chirality is uniform χ = 1
in the 1 × 1 AFM, and staggered χ = ±1 in the

√
3 ×
√

3 AFM. These I-AFM states are
schematically presented in figures 1(c)-(d).

At half filling a magnetic transition between the O-FM and the I-AFM occurs at h∗xy [10].
The ground state is O-FM when hxy < h∗xy, and I-AFM when hxy > h∗xy [10]. The numerical
calculations reveal a universality of the critical in-plane spin exchange h∗xy in the strong out-of-
plane spin exchange regime [10]. This finding agrees well with the experimental observation of
the magnetic tunability [16]. In this paper we will focus our study to the regime hxy > h∗xy. In
this regime the I-AFM is stable. In figure 2(a) we plot the flux dependence of the grand potential
at half filling. One can notice that the grand potential is periodic in flux Φ. The period in Φ
is 3π. It is clear from the complex hopping of itinerant electrons tijσ = r exp(±iΦ/3) in the
presence of the SOC. When Φ→ Φ+3π, tij,σ → tij,−σ, thus the two spin components of electrons
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change their role. Therefore we can consider the impact of the SOC in the range 0 ≤ Φ < 3π.
Figure 2(a) shows the competition between the 1×1 and the

√
3×
√

3 I-AFM states. In the flux
range 0 ≤ Φ ≤ 3π/2, the grand potential of the 1×1 I-AFM state has a lower value, while in the
flux range 3π/2 ≤ Φ < 3π, the grand potential of the

√
3×
√

3 I-AFM state has a lower value.
This indicates that the ground state is the 1× 1 I-AFM when 0 ≤ Φ ≤ 3π/2, and the

√
3×
√

3
I-AFM when 3π/2 ≤ Φ < 3π. The phase transition occurs at Φ∗ = 0, 3π/2. The flux Φ = Φ∗

only when either the SOC or the hopping integral vanishes. Note that when the flux Φ crosses
Φ∗, either the SOC or the hopping integral change their sign. Therefore when λ · t changes its
sign, the ground state changes from the 1 × 1 to the

√
3 ×
√

3 I-AFM. The phase boundary
Φ∗ is independent on the spin exchange, as one can see in figure 2(b). When 0 ≤ Φ ≤ 3π/2,
∆Ω ≡ Ω1×1−Ω√3×

√
3 < 0, and when 3π/2 ≤ Φ < 3π, ∆Ω > 0 for all values of the in-plane spin

exchange hxy. Only in the limit of strong spin exchange, the grand potentials of both 1× 1 and√
3×
√

3 I-AFM states approach each other.

4. Conclusion
In this work we study the magnetic competition in the kagome magnets based on a minimal
model. The minimal model includes the nearest-neighbor hopping, the SOC, the anisotropic spin
exchanges. We use the Bogoliubov variational method to find the stable phase. The variational
calculations reveal that in the regime of strong in-plane spin exchange, where the I-AFM is
stable, a competition between the 1 × 1 and the

√
3 ×
√

3 I-AFM states occurs. These I-AFM
states are distinguishable by the vector chirality. The phase transition between the the 1 × 1
and the

√
3 ×
√

3 I-AFM states occurs when either the hopping integral or the SOC changes
their sign. The finding shows that the vector spin chirality is sensitive to the sign of the hopping
integral or of SOC.
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